
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

Anonymous Review Copy

MORTY Embedding
Improved Embeddings without Supervision

Anonymous xxx conference submission

Abstract

We demonstrate a low effort method that unsu-
pervisedly constructs task-optimized embed-
dings from existing word embeddings to gain
performance on a supervised end-task. This
avoids additional labeling or building more
complex model architectures by instead pro-
viding specialized embeddings better fit for the
end-task(s). Furthermore, the method can be
used to roughly estimate whether a specific
kind of end-task(s) can be learned form, or
is represented in, a given unlabeled dataset,
e.g. using publicly available probing tasks. We
evaluate our method for diverse word embed-
ding probing tasks and by size of embedding
training corpus – i.e. to explore its use in re-
duced (pretraining-resource) settings.

1 Introduction

Unsupervisedly pretrained word embeddings pro-
vide a low-effort, high pay-off way to improve the
performance of a specific supervised end-task by
exploiting Transfer learning from an unsupervised
to the supervised task. Additionally, recent works
indicate that universally best embeddings are not
yet possible, and that instead embeddings need
to be tuned to fit specific end-tasks using induc-
tive bias – i.e. semantic supervision for the un-
supervised embedding learning process (Conneau
et al., 2018; Perone et al., 2018). This way, embed-
dings can be tuned to fit a specific Single-task (ST)
or Multi-task (MT: set of tasks) semantic (Xiong
et al., 2018; Kiela et al., 2018a). Hence the es-
tablished notion, that in order to fine-tune embed-
dings for specific end-tasks, labels for those end-
tasks a required. However, in practice, especially
in industry applications, labeled dataset are often
either too small, not available or of low quality and
creating or extending them is costly and slow.

Instead, to lessen the need for complex super-
vised (Multi-task) fine-tuning, we explore using

unsupervised fine-tuning of word embeddings for
either a specific end-task (ST) or a set of desired
end-tasks (MT). By taking pretrained word em-
beddings and unsupervisedly postprocessing (fine-
tuning) them, we evaluate postprocessing perfor-
mance changes on publicly available probing tasks
developed by Jastrzebski et al. (2017)1 to demon-
strate that widely used word embeddings like Fast-
text and GloVe can either: (a) be unsupervisedly
specialized to better fit a single supervised task or,
(b) can generally improve embeddings for multiple
supervised end-tasks – i.e. the method can opti-
mize for single and Multi-task settings. As in stan-
dard methodology, optimal postprocessed embed-
dings can be selected using multiple proxy-tasks
for overall improvement or using a single end-
task’s development split – e.g. on a fast baseline
model for further time reduction. Since most em-
beddings are pretrained on large corpora, we also
investigate whether our method – dubbed MORTY

– benefits embeddings trained on smaller corpora
to gauge usefulness for low-labeling-resource do-
mains like biology or medicine. We demonstrate
the method’s application for Single-task, Multi-
task, small and large corpus-size setting in the
evaluation section 3. Finally, MORTY (sec. 2),
uses very little resources2, especially regarding re-
cent approaches that exploit unsupervised pretain-
ing to boost end-task performance by adding com-
plex pretraining components like ELMo, BERT
(Peters et al., 2018; Devlin et al., 2018) which may
not yet be broadly usable due to their hardware
and processing time requirements. As a result, we
demonstrate a simple method, that allows further
pretraining exploitation, while requiring minimum
extra effort, time and compute resources.

1https://github.com/kudkudak/
word-embeddings-benchmarks

2< 1GB memory and computes fast on GPU and CPU.

https://github.com/kudkudak/word-embeddings-benchmarks
https://github.com/kudkudak/word-embeddings-benchmarks

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Anonymous Review Copy

2 MORTY embedding

We unsupervisedly create specialized inputs for
supervised end-tasks using Multiple Ordinary
Reconstructing Transformations to Ymprove em-
bedding3 of the original inputs. Specifically, as
seen in the Figure 1, MORTY uses multiple, sepa-
rate Autoencoders that create new representations
by learning to reconstruct the original pretrained
embeddings4. The resulting representations (post-
processed embeddings) can provide both: (a) bet-
ter performance for a single supervised probing
task (ST), and (b) boost performance of multiple
tasks (MT) or overall performance across all prob-
ing tasks. To pick an optimal MORTY embedding
for single and Multi-task settings, we can either
use proxy-tasks or an end-task(s)’s development
split(s). In practice, MORTY can be efficiently
trained as a (data) hyperparameter to the end or
proxy tasks – see details in section 3.

894 719 78 48
419 488 71
218 494517601
1111
5197148
52511

or
ig
in
al

R Representation R ReconstructionEmbeddingE

R

E
R

R

E
R

R

E
R

R

E
R

Multiple Autoencoders

supervised
single-task

(ST)

supervised
multi-task

(MT)

RE

pick optimal encoding for task(s)

R E

 pick via dev split pick via probing task(s)

M
O
R
TY

or
ig
in
al

M
O
R
TY

R

E
R

894 719 78 48
419 488 71
218 494517601
1111
5197148
52511

or
ig

in
al

R Representation R ReconstructionEmbeddingE

R

E
R

R

E
R

R

E
R

R

E
R

Multiple Autoencoders

supervised
single-task

(ST)

supervised
multi-task

(MT)

RE

pick optimal encoding for task(s)

R E

 pick via dev split pick via probing task(s)

M
O

R
TY

or
ig

in
al

M
O

R
TY

R

E
R

Figure 1: MORTY steps: From bottom to top: (1) com-
pute multiple representations of the same embeddings,
then (2) pick the best representation for the end-task(s)
via its development split(s) or probing tasks to (3) push
relative performance (colored, MORTY bar).

Embeddings by corpus sizes: We train 100 di-
mensional embeddings with Fasttext (Bojanowski
et al., 2016)5 and GloVe (Pennington et al.,
2014)6 on wikitext-2 and wikitext-103
created by Merity et al. (2016). By also using
public Fasttext and GloVe7 embeddings we can

3Y since labels/outputs (embeddings) are reconstructed
4Link to code will be made public after publication.
5To train Fasttext we used https://fasttext.cc
6To train GloVe we used the python glove python wheel
7glove.840B.300d.zip, crawl-300d-2M.vec.zip

evaluate MORTY for small to very larger corpora.
Both embedding methods are trained five times
each8 for the two smaller corpora to be able to
capture minor variations9 in overall performance
– i.e. performance Σ when summing the scores of
all probing tasks. Training Fasttext and GloVe on
wikitext-2 gives a vocabulary of 25249 and
33237 tokens respectively. On wikitext-103
we get 197256 and 267633 tokens, while the orig-
inal embeddings have 1999995 and 2196008 to-
kens. Embedding task-semantics: To evaluate
MORTY on a variety of end-tasks we use a publicly
available word embedding benchmark developed
by Jastrzebski et al. (2017). It is split into three
semantic categories: (a) word similarity (6 tasks),
(b) word analogy (3 tasks), and (c) word and sen-
tence classification/ categorization (9 tasks).

3 Evaluation

In the following we evaluate embedding perfor-
mance scores for Fasttext and GloVe and their per-
centual change after postprocessing with MORTY.
We evaluate MORTY for Single-task (ST) and
Multi-task (MT) application optimization. Results
can be seen in Tables 1 and 2. For the Single-
task application setting we show MORTY’s per-
centual performance impact in the ST%change
column, where results are produced by choosing
the best MORTY embedding per individual task –
18 MORTYs. For the Multi-task application setting
the MT%change column shows percentual per-
formance impact when choosing the MORTY with
the best over-all-tasks score Σ. Finally, we evalu-
ate by smaller (wikitext 2M, 103M) and very large
(600B/840B) training corpus sizes, as well as by
the three semantic property categories described
in section 2. Model performances, given in Tables
1 and 2, are 5-run averages of Fasttext and GloVe
per corpus sizes 2M and 103M, while the pub-
lic 600B/ 840B were evaluated once. MORTY’s
performances on 2M and 103M are given as rela-
tive, percentual change, averaged over 5 according
base-embedder runs.

3.1 Fasttext and GloVe baselines:

For Fasttext and GloVe – run 5 times on 2M and
103M – we can see in each table’s left column that

8Fasttext was trained using the implementation’s
(fasttext.cc) default parameters. GloVe was trained
with the same parameters as in (Pennington et al., 2014) –
Figure 4b. Though, 4a gave the same results.

9< 0.5% between runs for both Fasttext and GloVe .

www.google.com
https://fasttext.cc
https://github.com/maciejkula/glove-python
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/crawl-300d-2M.vec.zip
fasttext.cc

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

Anonymous Review Copy

model Fasttext MT % change ST % change
corpus 2M 103M 600B 2M 103M 600B 2M 103M 600B
AP 0.31 0.59 0.68 -6.1 -0.9 -1.5 8.2 5.2 4.0
BLESS 0.3 0.73 0.84 -2.2 3.8 -3.0 13.0 9.7 5.4
Battig 0.14 0.32 0.48 -3.6 0.1 -3.7 7.0 4.0 0.5
ESSLI 1a 0.48 0.76 0.77 2.2 4.3 17.6 27.5 10.2 17.6
ESSLI 2b 0.63 0.75 0.78 9.2 2.7 0.0 26.5 11.3 12.9
ESSLI 2c 0.54 0.54 0.62 -3.7 10.7 -10.7 11.0 19.7 10.7
Google 0.06 0.04 0.12 33.6 293.8 187.3 45.3 319.3 217.2
SEval 12 0.11 0.16 0.24 1.6 4.3 -2.8 18.1 14.1 4.8
MSR 0.28 0.08 0.18 18.8 246.2 117.1 27.5 267.3 137
MTurk 0.24 0.52 0.73 65.6 5.1 1.1 98.0 12.6 1.5
RG65 0.29 0.71 0.86 65.2 0.7 2.1 104.7 5.3 5.6
RW 0.21 0.38 0.59 -17.1 -0.8 -2.0 4.1 2.4 0.9
MEN 0.36 0.71 0.84 13.0 0.4 -0.4 22.0 2.3 0.3
SLex999 0.18 0.31 0.50 -23.2 3.7 -1.2 7.3 9.0 3.1
TR9856 0.10 0.13 0.18 2.8 -4.1 -37.1 20.5 17.3 -2.5
WS353 0.46 0.69 0.79 3.9 1.0 -1.7 10.0 2.9 0.6
WS353R 0.35 0.63 0.74 16.4 1.7 -2.8 24.3 4.1 1.6
WS353S 0.52 0.77 0.84 3.2 0.4 0.6 13.3 3.0 1.9
Σ 5.55 8.83 10.79 8.9 5.8 3.4 – – –
category 2.39 3.70 4.17 -2.1 -0.2 1.8 11.4 4.5 3.1
analogy 0.45 0.28 0.55 15.5 115 72.2 24.6 125.2 92.7
similarity 2.71 4.85 6.07 6.2 -0.6 -4.7 17.3 2.2 -0.3

Table 1: MORTY on Fasttext: Above are probing task
scores for: 18 individual tasks(AP-WS353S), the sum
of individual scores Σ, and scores grouped by captured
semantics: similarity (AP-ESSLI2c), analogy (Google-
MSR), classification (MTurk-WS253S). Left column:
shows absolute scores of the original embedder. Mid-
dle column: shows perceptual score change after ap-
plying the MORTY embedder with the best overall
score Σ – i.e. one MORTY embedding trained for ap-
plication to arbitrary tasks (Multi-task). Right col-
umn: shows perceptual score changes after postpro-
cessing by a best MORTY embedding per individual
task – i.e. 18 MORTYs optimal for a Single-task
each. Each column is also split by corpus size –
2M (2 million tokens) for wikitext-2, 103M for
wikitext-103 and 600B/840B for the public em-
bedding corpora size. 2M and 103M are averages of 5
runs – or respective MORTY changes.

results for classification (category), similarity and
analogy improve expectedly with corpora size.

MORTY for Multi-task application: When
looking at the middle columns (MT%change)
we see that using a single best MORTY im-
proves overall performance Σ10 – the sum of
18 tasks – by roughly 2 − 9% compared to
base embeddings, especially for smaller corpus
sizes. While Fasttext benefits more than GloVe
from MORTY, both perform particularly badly
for analogy tasks on the smaller corpora 2M and
103M where Fasttext beats GloVe, especially af-
ter applying MORTY. This is also reflected in
the small/medium set Google and MSR analogy
scores doubling and tripling (still middle col-
umn). However, public GloVe (840B) has the

10Note that, percentual change Σ (middle, right column)
is not the average of the individual task changes, but the per-
centual change of the sum of the 18 individual scores.

model Glove MT % change ST % change
corpus 2M 103M 840B 2M 103M 840B 2M 103M 840B
AP 0.2 0.43 0.61 2.7 5.6 9.3 13.2 9.2 12.2
BLESS 0.27 0.51 0.85 1.6 -1.6 -1.8 7.9 7.9 4.7
Battig 0.1 0.19 0.46 3.5 2.0 1.9 7.4 5.4 8.5
ESSLI 1a 0.46 0.63 0.75 0.0 3.1 9.1 8.0 8.9 12.1
ESSLI 2b 0.51 0.74 0.75 19.9 -0.5 6.7 23.7 11.7 16.7
ESSLI 2c 0.46 0.54 0.62 2.1 2.7 0.0 16.9 16.7 10.7
Google 0.00 0.05 0.58 42.7 13.8 2.8 60.4 18.6 5.9
SEval 12 0.11 0.15 0.20 6.5 2.2 1.0 11.4 5.0 2.4
MSR 0.00 0.09 0.57 45.6 30.9 -2.4 100.7 38.1 10.1
MTurk 0.30 0.46 0.69 -22.4 2.6 0.5 1.6 4.2 2.6
RG65 0.15 0.44 0.77 11.6 3.9 -1.3 30.8 10.0 4.0
RW 0.20 0.21 0.46 -2.1 11.8 2.0 4.0 19.8 10.3
MEN 0.16 0.51 0.80 3.6 5.6 0.5 15.1 7.0 7.7
SLex999 0.03 0.22 0.41 147.8 7.3 3.1 228.3 11.7 9.3
TR9856 0.09 0.08 0.10 13.9 8.9 -4.7 19.8 47.3 36.7
WS353 0.16 0.45 0.74 31.5 7.2 0.7 36.8 8.2 5.6
WS353R 0.08 0.40 0.69 53.1 6.5 1.1 62.0 8.2 2.7
WS353S 0.27 0.58 0.80 15.1 6.5 0.3 20.2 7.6 5.9
Σ 3.56 6.68 10.84 7.8 4.3 1.9 – – –
category 2.00 3.04 4.05 3.5 -0.8 2.4 7.3 3.3 5.5
analogy 0.11 0.29 1.34 7.4 4.2 1.3 12.3 15.8 6.5
similarity 1.45 3.35 5.45 9.2 1.8 0.0 11.0 6.3 2.9

Table 2: MORTY on Glove: Same as in Table 1 but for
GloVe .

best analogy performance, while MORTY further
improves analogy scores for both public embed-
dings – 600B/840B. Additionally, for similarity
we see decent improvements for the smallest cor-
pus, but not for larger corpora as base Fasttext al-
ready has higher performance. Classification ex-
hibits more mixed, smaller, changes. For smaller
datasets Fasttext clearly beats GloVe in overall
performance (8.83 vs. 6.68). For public embed-
dings (600B/840B) base scores are equal. GloVe
leads analogy. Fasttext leads similarity and im-
proves more from MORTY. However, despite
GloVe’s significantly lower base performance on
smaller datasets, MORTY used on GloVe produces
lower but more stable improvements for the MT
setting (middle column). Generally, we see both
performance increases and drops for individual
task, especially on the smaller datasets and for
Fasttext, indicating that, an overall best MORTY

specializes the original Fasttext embedding to bet-
ter fit a specific subset of the 18 tasks, while still
being able to beat base embeddings in overall (Σ)
score.

MORTY for Single-task application: When
looking at the ST%change columns in both ta-
bles we see Single-task (ST) results for 18 indi-
vidually best MORTY embeddings. Both Fasttext
and GloVe show consistent improvements from
using MORTY, with Fasttext exhibiting more im-
provement potential on smaller datasets, while
GloVe shows more ST improvement on very large
datasets, indicating that MORTY benefits both em-
bedding methods. Particularly when base scores

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Anonymous Review Copy

for a task were low – e.g. for the analogy tasks –
MORTY often improved upon the particular base-
embedding’s weaknesses.

Low-resource benefits: MORTY seems espe-
cially beneficial on the smaller corpora (2M and
103M) for both MT and ST applications as well as
for Fasttext and GloVe – indicating that MORTY is
well suited for low-resource settings.

MORTY training: Finally, we found optimal
parameters for training MORTY to be close to
or the same as the original embedding model
– i.e. same learning rate, embedding size and
epochs. Though we initially experimented with
variations such as sparse and denoising, or sig-
moid and ReLu activations, we found linear acti-
vation, (over)complete Autoencoders trained with
bMSE (batch-wise mean squared error) to perform
best. In settings, where no supervised, or proxy
dataset(s) are available to select the best MORTY

embedding we found a practical setting for Fast-
text and GloVe that consistently increased over-
all probing-task performance by simply training
with a learning rate lr = 0.0111, for 1 epoch,
and a representation size equal to or twice as
large as the original embedding – i.e. train an
(over)complete representation. When compress-
ing from the original embedding size, e.g. from
100 to 20, space reduction outweighed perfor-
mance loss – so larger vocabularies are usable at
sublinear performance loss12. More involved pa-
rameter exploration yielded little extra gains.

4 Related Work

Methods of information transfer from or to su-
pervised tasks has been heavily focused in recent
Transfer Learning literature, while transfer be-
tween unsupervised tasks received less attention.
Unsupervised-to-Supervised: For word meaning
transfer, Word2Vec (Mikolov et al., 2013), Fastext
(Bojanowski et al., 2016; Pennington et al., 2014)
and GloVe (Pennington et al., 2014) provide
unsupervisedly pretrained embeddings that can
be used to generally improve performance on
arbitrary supervised end-tasks. Supervised-to-
unsupervised: However, transfer can also be used
vice versa, to (learn to) specialize embeddings to

11This lr is roughly the lr of Fasttext or GloVe times the
number of original epochs, thereby increasing the lr to be
suitable for training only 1 epoch.

12This is an expected, well explored, property of under-
complete encoding, that did not yield interesting insights.

better fit a specific supervised signal (Ye et al.,
2018; Ruder and Plank, 2017) or even to enforce
that generally relevant semantics are encoded
by using auxiliary Multi-task supervision (Kiela
et al., 2018b; Faruqui et al., 2015). The approach
by Ruder and Plank (2017) is especially inter-
esting since they proposed an automated method
(Bayesian optimization) for tuning embeddings to
a specific end-task. Supervised-to-supervised:
Another way to realize knowledge transfer is
between supervised tasks, that can be exploited
successively (Kirkpatrick et al., 2017), jointly
(Kiela et al., 2018b) and in joint-succession
(Hashimoto et al., 2017) to improve each others
performance. Unsupervised-to-unsupervised:
More recently, Dingwall and Potts (2018) pro-
posed a GloVe modification that retrofits publicly
available (external) GloVe embeddings to produce
better domain embeddings for a specific end-task.

In contrast, MORTY does not require external
(public) embeddings, does not require target do-
main texts13, can be applied to embeddings pro-
duced by any embedding method, and can be used
with or without direct supervision by a desired
(set of) end-tasks – resulting in low-effort usage.
MORTY instead uses unsupervised fine-tuning of
embeddings to better fit one or more desired su-
pervised semantics. This way, we can avoid man-
ual extensions like complex multitask learning se-
tups or creating potentially hard to come by task-
related supervised data sets. Instead MORTY can
be optimized as a data-input parameter for a de-
sired (set of) end-tasks or proxy-tasks (proxy-
semantics), and shows additional benefits in low-
resource settings.

5 Conclusion

We demonstrated a low-effort method to unsuper-
visedly construct task-optimized word embeddings
from existing ones to gain performance on a (set
of) supervised end-task(s). Despite its simplic-
ity, MORTY is able to produces significant perfor-
mance improvements for Single and Multi-task su-
pervision settings as well as for a variety of desir-
able word encoding properties – even on smaller
corpus sizes – while forgoing additional labeling
or building more complex model architectures.

13Though MORTY can be applied arbitrary public and do-
main trained embeddings.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

Anonymous Review Copy

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Alexis Conneau, Germán Kruszewski, Guillaume
Lample, Loı̈c Barrault, and Marco” Baroni. 2018.
What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic proper-
ties. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2126–2136. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Nicholas Dingwall and Christopher Potts. 2018. Mit-
tens: an extension of glove for learning domain-
specialized representations. In Proceedings of the
2018 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short
Papers), pages 212–217. Association for Computa-
tional Linguistics.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, pages 1606–1615. Association for Computa-
tional Linguistics.

Kazuma Hashimoto, caiming xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-
task model: Growing a neural network for multiple
nlp tasks. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1923–1933. Association for Compu-
tational Linguistics.

Stanislaw Jastrzebski, Damian Lesniak, and Woj-
ciech Marian Czarnecki. 2017. How to evalu-
ate word embeddings? on importance of data
efficiency and simple supervised tasks. CoRR,
abs/1702.02170.

Douwe Kiela, Changhan Wang, and Kyunghyun Cho.
2018a. Context-attentive embeddings for improved
sentence representations. CoRR, abs/1804.07983.

Douwe Kiela, Changhan Wang, and Kyunghyun Cho.
2018b. Dynamic meta-embeddings for improved
sentence representations. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1466–1477. Associa-
tion for Computational Linguistics.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,

Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences,
114(13):3521–3526.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. CoRR, abs/1609.07843.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Christian S. Perone, Roberto Silveira, and Thomas S.
Paula. 2018. Evaluation of sentence embeddings in
downstream and linguistic probing tasks.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. CoRR, abs/1802.05365.

Sebastian Ruder and Barbara Plank. 2017. Learning to
select data for transfer learning with bayesian opti-
mization. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 372–382. Association for Computational
Linguistics.

Shufeng Xiong, Hailian Lv, Weiting Zhao, and
Donghong Ji. 2018. Towards twitter sentiment clas-
sification by multi-level sentiment-enriched word
embeddings. Neurocomputing, 275:2459–2466.

Zhe Ye, Fang Li, and Timothy Baldwin. 2018. En-
coding sentiment information into word vectors for
sentiment analysis. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics, pages 997–1007. Association for Computa-
tional Linguistics.

http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://aclweb.org/anthology/P18-1198
http://aclweb.org/anthology/P18-1198
http://aclweb.org/anthology/P18-1198
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/N18-2034
https://doi.org/10.18653/v1/N18-2034
https://doi.org/10.18653/v1/N18-2034
https://doi.org/10.3115/v1/N15-1184
https://doi.org/10.18653/v1/D17-1206
https://doi.org/10.18653/v1/D17-1206
https://doi.org/10.18653/v1/D17-1206
http://arxiv.org/abs/1702.02170
http://arxiv.org/abs/1702.02170
http://arxiv.org/abs/1702.02170
http://arxiv.org/abs/1804.07983
http://arxiv.org/abs/1804.07983
http://aclweb.org/anthology/D18-1176
http://aclweb.org/anthology/D18-1176
https://www.pnas.org/content/114/13/3521
https://www.pnas.org/content/114/13/3521
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/1806.06259
http://arxiv.org/abs/1806.06259
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
https://doi.org/10.18653/v1/D17-1038
https://doi.org/10.18653/v1/D17-1038
https://doi.org/10.18653/v1/D17-1038
https://dl.acm.org/citation.cfm?id=3198777
https://dl.acm.org/citation.cfm?id=3198777
https://dl.acm.org/citation.cfm?id=3198777
http://aclweb.org/anthology/C18-1085
http://aclweb.org/anthology/C18-1085
http://aclweb.org/anthology/C18-1085

