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Abstract

Primates have a remarkable ability to correctly classify images even in the presence
of significant noise and degradation. In contrast, even the state-of-art CNNs are
extremely vulnerable to imperceptible level of noise. Many neuroscience studies
have suggested that robustness in human vision arises from the interaction between
the feedforward signals from bottom-up pathways of the visual cortex and the
feedback signals from the top-down pathways. Motivated by this, we propose a
new neuro-inspired model, namely Convolutional Neural Networks with Feedback
(CNN-F). CNN-F augments CNN with a feedback generative network that shares
the same set of weights along with an additional set of latent variables. CNN-F
combines bottom-up and top-down inference through approximate loopy belief
propagation to obtain the MAP-estimates of the latent variables. We show that
CNN-F’s iterative inference allows for disentanglement of latent variables across
layers. We validate the advantages of CNN-F over the baseline CNN in multiple
ways. Our experimental results suggest that the CNN-F is more robust to image
degradation such as pixel noise, occlusion, and blur than the corresponding CNN.
Furthermore, we show that the CNN-F is capable of restoring original images from
the degraded ones with high reconstruction accuracy while introducing negligible

artifacts.

1 Introduction

Convolutional neural networks (CNNs) have been widely
adopted for image classification and achieved impressive
prediction accuracy. While state-of-the-art CNNs can
achieve near- or super-human classification performance
[1], these networks are susceptible to accuracy drops in the
presence of image degradation such as blur and noise, or
adversarial attacks, to which human vision is much more
robust [2]. This weakness suggests that CNNs are not able
to fully capture the complexity of human vision. Unlike
the CNN, the human’s visual cortex contains not only feed-
forward but also feedback connections which propagate
the information from higher to lower order visual cortical
areas as suggested by the predictive coding model [3]. Ad-
ditionally, recent studies suggest that recurrent circuits are
crucial for core object recognition [4].

A recently proposed model extends CNN with a feedback
generative network [5], moving a step forward towards
more brain-like CNNs. The inference of the model is
carried out by the feedforward only CNN. We term con-
volutional neural networks with feedback whose inference
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Figure 1: Left: Graphical model of CNN-F (0
iterations) and corresponding CNN. Starting
from y, images are rendered with finer details.
Dependence of latent variables z across lay-
ers is captured by a structured prior. Bottom-
up and top-down pathways are indicated in
blue and red respectively. Right: Graphical
model of the CNN-F (k iterations). Latent
variables z are inferred by propagating along
both bottom-up and top-down pathways.
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uses no iterations as CNN-F (0 iterations). The generative feedback models the joint distribution of
the data and latent variables. This methodology is similar to how human brain works: building an
internal model of the world [6] [7]. Despite the success of CNN-F (0 iterations) in semi-supervised
learning [5] and out-of-distribution detection [8], the feedforward only CNN can be a noisy inference
in practice and the power of the rendering top-down path is not fully utilized.

A neuro-inspired model that carries out more accurate inference is therefore desired for robust vision.
Our work is motivated by the interaction of feedforward and feedback signals in the brain, and our
contributions are:

We propose the Convolutional Neural Network with Feedback (CNN-F) with more accurate
inference. We perform approximated loopy belief propagation to infer latent variables. We introduce
recurrent structure into our network by feeding the generated image from the feedback process back
into the feedforward process. We term the model with k-iteration inference as CNN-F (k iterations).
In the context without confusion, we will use the name CNN-F for short in the rest of the paper.

We demonstrate that the CNN-F is more robust to image degradation including noise, blur,
and occlusion than the CNN. In particular, our experiments show that CNN-F experiences smaller
accuracy drop compared to the corresponding CNN on degraded images.

We verify that CNN-F is capable of restoring degraded images. When trained on clean data, the
CNN-F can recover the original image from the degraded images at test time with high reconstruction
accuracy.

2 Background

Convolutional Neural Network with Feedback (CNN-F) [5] is a generative model that generates
images by coarse-to-fine rendering using the features computed by the corresponding CNN. Latent
variables in CNN-F account for the uncertainty of the rendering process. The prior distribution of
those latent variables is designed to capture the dependencies between them across layers. Inference
for the optimal latent variables given image = and label y matches a feedforward CNN in CNN-F (0
iterations) (see Fig. 1). We provide mathematical description of CNN-F (0 iterations) below.

Let h(0) be the generated image, y € {1, ..., K} be object category. z(¢) = {t(¢),s(¢)},¢=1,...,L
are the latent variables at layer ¢, where ¢({) defines translation of rendering templates based on the
position of local maximum from Maxpool, and s(¢) decides whether to render a pixel or not based
on whether it is activated (ReLU) in the feed-forward CNN. T'(¢(¢)) denotes the translation matrix
corresponding to the translation latent variable ¢(¢). W (¢)T are rendering templates, where W is the
weight matrix at layer ¢ in the corresponding CNN. h(£) is the intermediate rendered image at layer /.
The generation process in CNN-F (0 iterations) is given by:

h(€—=1) = T(t()WT(€) (s(6) © h(£)); z[z,y ~ N (h(0),0%1) (1)
The dependencies among latent variables {z(¢)}1.;, across different layers are captured by the

structured prior 7, £ Softmax (0—12 SO (b(0), s(0) © h(ﬁ)}) where Softmax(n) £ %,
n

and b({) corresponds the bias after convolutions in CNN. Under the assumption that the intermediate
rendered images {h(¢)};.. are nonnegative, the joint maximum a posteriori (JMAP) inference of
latent variable z in CNN-F (0 iterations) is a CNN [5].

3 Approach

Convolutional Neural Networks with Feedback using k-iteration inference [CNN-F (k iterations)]
performs approximated loopy belief propagation on CNN-F for £ times (see Fig. 1). Inference of
latent variables is performed by propagating along both directions of the model. In the following of
this session, we will use CNN-F to denote CNN-F (k iterations) for short. Inheriting the notation for
the formulation in the CNN-F (0 iterations), we formulate CNN-F as follows.

The generation process of the top-down pathway in CNN-F is the same as in the CNN-F (0 iterations),
ie. h(0 —1) =T@{)WT(£)(s(¢) ® h(£)). Different from the CNN-F (0 iterations), the generated
image h(0) in the CNN-F is fed back to the bottomup pathway for approximated loopy belief
propagation. In other words, the CNN-F performs bottom-up followed by top-down inference
such that the information at later layers in the CNNs can be used to update the noisy estimations
at the early layers in the same network. Specifically, the feedforward process in the CNN-F is
g(0) = W(£) AdaPool{AdaRelu(g(¢ — 1))} + b(£), where g(¢) denotes the network activations at
layer ¢. The top-down messages correct for the noisy bottom-up inference by the adaptive operators



Algorithm 1 Convolutional Neural Network with Feedback

Input: Input image «.

Output: Optimal latent variables {z*(¢)}L_, = ({s* Oy, {t*(ﬁ)}%_l) and object class y*.

Parameters: 0 = < {wrt (E)}L,L:1 , {b(Z)}éL_1> where WT(¢) is the rendering template at layer ¢,

and b(/) is the parameters of the structured prior 7/, at layer £. T'(£(£)) is the translation matrix
corresponding to the translation latent variable ¢(¢).

1. Initialize {zo(¢)}}-, and yo by performing one feed-forward step of CNN.

2. Top-down pathway: Render h.(¢), ¢ = 0,1,...,L — 1 using the recursion h:(¢{ — 1) =
Tt (€))WT(€)(s¢(€) © hy(€)) where h(L) = yo.

3. Bottom-up pathway: Starting from h;(0) and infer for z,;(¢) layer by layer, where g;1(¢) =
W (¢) AdaPool{AdaRelu(g:+1(¢ — 1))} + b(¢) and g:41(0) = h:(0)

ziy1(0) = arg(lgaxp(zw)lztﬂ(l), vzt (= 1), 26+ 1), 2 (L), yt, he(0))
= argmax he(0)T{s(€) © (TT(t(£))ge+1(€))}

4. Repeat step 2 - 3 until convergence or early stopping.

(see Algorithm 1):

Pool(g(¢)), ifh(£) >0

AdaRelu(g(¢)) = {Relu(g(g))’ R 20 AdaPool(g(0) = {pod(g(e)) if h(¢) < 0

Relu(—g(¢)), ifh(f) <0

4 Experimental Studies

We study the robustness and image restoration performance of CNN-F (10 iterations). Additionally,
we observe the disentanglement of information stored in latent variables. In this section, we will refer
to CNN-F (10 iterations) as CNN-F.

Experiment Details We train a 4 layer CNN and CNN-F (10 iterations) of corresponding architec-
ture on the clean MNIST train set. For the architecture, we use 3 convolutional layers followed by 1
fully connected layer. We use 5x5 convolutional kernel for each convolutional layer with 8 channels
in the first layer followed by 16 channels in the second layer followed by 8 channels in the third layer.
We use instance norm between layers to normalize the input. We test the models on degraded test set
images. The CNN trained has test accuracy 99.1% while CNN-F has test accuracy 95.26%.

Disentanglement across layers: Our experimental study shows that the iterative inference in CNN-
F promotes disentanglement of latent factors across layers. In particular, we observe that the latent
variables at each layer in CNN-F captures different essences of the reconstructed image. For example,
in the case of MNIST digits, those essences are different strokes that form the digits. Those strokes
differ from each other in their location, styles, or angles. In our experiment, we trained a CNN-F
with 3 convolutional layers on MNIST. Then, we sent an MNIST image of digit 0 and an MNIST
image of digit 1 into the trained networks and collected their corresponding sets of latent variables.
We denote zj, to be the estimated latent variables from the image of digit 1 at layer k = 1,2,3 in
CNN-F. Figure 2 illustrates that each set of latent variables zj, captures strokes at a particular location
in digit 1. In the first column of Figure 2, we use latent variables z3 at the top layer in CNN-F to
reconstruct the image. Similarly, in the second column of Figure 2, in addition to z3, we add z; into
the reconstruction. We observe that the latent variables z3 capture the center of the digit 1 while the
latent variables 25 try to extend the digits to both ends. Finally, we include z; into the reconstruction
and observe that it completes the digit by filling in the two ends. This observation suggests that
CNN-F and its iterative inference algorithm lead to effective disentanglement of latent factors across
the layers.

Robustness Table 1 shows the accuracy and percent accuracy drop on noisy, blurry and occluded
input. The accuracy of CNN-F drops less compared to CNN of same architecture, indicating that
CNN-F is more robust.



(a) CNN-F (0 iterations)
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(b) CNN-F (10 iterations)
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Figure 2: Reconstruction from from (a) CNN-F (0 iterations) and (b) CNN-F (10 iterations) by changing latent
variables at each layer. The left image is reconstructed with latent variables of digit 1 at the top layer and latent
variables of digit O at the middle and bottom layers. The middle image is reconstructed with latent variables of
digit 1 at the top 2 layers and latent variables of digit O at the bottom layer. The right image is reconstructed with
latent variables of digit 1 at all the layers.

Table 1: Accuracy and accuracy drop comparison between CNN-F and CNN of same architecture across various
sources and levels of degradation. Gaussian noise is sampled with variance o2, blur is added with kernel size
9 and variance o2, and occlusion is created by adding a grey block at image center. CNN-F achieves higher
accuracy and smaller accuracy drop compared to CNN.

Gaussian Noise (c2) Blur (¢2) Occlusion (Block Size)
1.0 1.5 2.0 2.0 3.0 6x6 8x8 10x10
CNN-F Acc 93.13 89.25 82.58 | 84.81 67.55 | 87.70 78.35 61.88
CNN Acc 85.74 82.78 7432 | 7741 50.01 | 82.12 58.71 30.16
CNN-F Acc Drop | 2.24 631 1331 | 10.05 2836 | 794 17.75 35.05
CNN Acc Drop 12.51 2626 4257 | 21.63 49.37 | 16.20 40.09 69.22

Image Restoration Table 2 shows CNN-F’s reconstruction of images with added gaussian noise,
blur, and occlusion. CNN-F is able to denoise, deblur, and do some degree of inpainting in on the
degraded images. We note that with more iterations of feedback, the reconstructed image becomes
more clean. The ability of CNN-F to restore images is consistent with studies in neuroscience which
suggest that feedback signals contribute to automatic sharpening of images. For example, Abdelhack
and Kamitani [9] showed that the neural representation of blurry images is more similar to the latent
representation of the clean version from a deep neural network than the latent representation of the
blurry image. CNN-F is able to sharpen blurry images, which is consistent with this study.

Table 2: CNN-F reconstruction of degraded images. Gaussian noise is sampled with variance o2, blur is added
with kernel size 9 and variance o2, and occlusion is created by adding a grey block at image center. We can see
that with more iterations, CNN-F’s reconstruction is able to denoise, sharpen, and fill in missing information in
degraded images.

Gaussian Noise (02) Blur (¢?) Occlusion (Block Size)
1.0 2.0 2.0 3.0 6x6 8x8

Input
Image

0 Iteration
Recon-
struction

10
Iteration
Recon-
struction




5 Discussion & Conclusion

Future Directions We are planning to compare CNN-F with other models with iterative inference or
recurrence [10][11][12] to understand better the role of feedback in robust vision. To compare CNN-F
with neuronal/psychological data, we will scale up the training to ImageNet. A more challenging
scenario for robust vision is adversarial attack. We will study the robustness of the proposed CNN-F
under various types of adversarial attacks. We also plan to measure the similarity between the latent
representations of the CNN-F with neural activity recorded from the brain in order to access whether
CNN-F is a good model for human vision.

Conclusion We propose the Convolutional Neural Networks with Feedback (CNN-F) which consists
of both a classification pathway and a generation pathway similar to the feedforward and feedback
connections in human vision. Our model uses approximate loopy belief propagation for inferring
latent variables, allowing for messages to be propagated along both directions of the model. We also
introduce recurrency by passing the reconstructed image and predicted label back into the network.
We show that CNN-F is more robust than CNN on corrupted images such as noisy, blurry, and
occluded images and is able to restore degraded images when trained only on clean images.
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