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ABSTRACT

Deep learning has become a widely used tool in many computational and classi-
fication problems. Nevertheless obtaining and labeling data, which is needed for
strong results, is often expensive or even not possible. In this paper three different
algorithmic approaches to deal with limited access to data are evaluated and com-
pared to each other. We show the drawbacks and benefits of each method. One
successful approach, especially in one- or few-shot learning tasks, is the use of
external data during the classification task. Another successful approach, which
achieves state of the art results in semi-supervised learning (SSL) benchmarks,
is consistency regularization. Especially virtual adversarial training (VAT) has
shown strong results and will be investigated in this paper. The aim of consistency
regularization is to force the network not to change the output, when the input
or the network itself is perturbed. Generative adversarial networks (GANs) have
also shown strong empirical results. In many approaches the GAN architecture is
used in order to create additional data and therefor to increase the generalization
capability of the classification network. Furthermore we consider the use of un-
labeled data for further performance improvement. The use of unlabeled data is
investigated both for GANs and VAT.

1 INTRODUCTION

Deep neural networks have shown great performance in a variety of tasks, like speech or image
recognition. However often extremely large datasets are necessary for achieving this. In real world
applications collecting data is often very expensive in terms of cost or time. Furthermore collected
data is often unbalanced or even incorrect labeled. Hence performance achieved in academic papers
is hard to match.

Recently different approaches tackled these problems and tried to achieve good performance, when
otherwise fully supervised baselines failed to do so. One approach to learn from very few examples,
the so called few-shot learning task, consists of giving a collection of inputs and their corresponding
similarities instead of input-label pairs. This approach was thoroughly investigated in Koch et al.
(2015), Vinyals et al. (2016), Snell et al. (2017) and gave impressive results tested on the Omniglot
dataset (Lake et al. (2011)). In essence a task specific similarity measure is learned, that embeds the
inputs before comparison.

Furthermore semi-supervised learning (SSL) achieved strong results in image classification tasks.
In SSL a labeled set of input-target pairs (x,y) ∈ DL and additionally an unlabeled set of inputs
x ∈ DUL is given. Generally spoken the use of DUL shall provide additional information about
the structure of the data. Generative models can be used to create additional labeled or unlabeled
samples and leverage information from these samples (Salimans et al. (2016), Odena (2016)). Fur-
thermore in Dai et al. (2017) it is argued, that GAN-based semi-supervised frameworks perform
best, when the generated images are of poor quality. Using these badly generated images a classi-
fier with better generalization capability is obtained. On the other side Kingma et al. (2014) uses
generative models in order to learn feature representations, instead of generating additional data.

Another approach in order to deal with limited data is consistency regularization. The main point
of consistency regularization is, that the output of the network shall not change, when the input or
the network itself is perturbed. These perturbations may also result in inputs, which are not realistic
anymore. This way a smooth manifold is found on which the data lies. Different approaches to
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consistency regularization can be found in Miyato et al. (2018), Sajjadi et al. (2016), Laine & Aila
(2017), and Tarvainen & Valpola (2017).

The aim of this paper is to investigate how different approaches behave compared to each other.
Therefore a specific image and sound recognition task is created with varying amount of labeled data.
Beyond that it is further explored how different amounts of unlabeled data support the tasks, whilst
also varying the size of labeled data. The possible accuracy improvement by labeled and unlabeled
examples is compared to each other. Since there is a correlation between category mismatch of
unlabeled data and labeled data (Oliver et al. (2018)) reported, we investigate how this correlation
behaves for different approaches and datasets.

2 ALGORITHMIC APPROACHES

When dealing with little data, transfer learning (Yosinski et al. (2014), Bengio (2011)) offers for
many use cases a good method. Transfer learning relies on transferring knowledge from a base
model, which was trained on a similar problem, to another problem. The weights from the base
model, which was trained on a seperate big dataset, are then used as initializing parameters for the
target model. The weights of the target model are afterwards fine-tuned. Whilst often yielding good
results, nevertheless a similar dataset for the training of the base model is necessary. Many prob-
lems are too specific and similar datasets are not available. In Miyato et al. (2018) transfer learning
achieves better results than any compared consistency regularization method, when transferring from
ImageNet (Deng et al. (2009)) to CIFAR-10 (Krizhevsky (2009)). On contrast, no convincing re-
sults could be achieved when transferring from ImageNet to SVHN (Netzer et al. (2011)), although
the task itself remains a computer vision problem. Therefore the generalization of this approach
is somehow limited. In order to increase the generalization of this work transfer learning is not
investigated.

Instead this paper focuses on generative models, consistency regularization, and the usage of exter-
nal data during the classification of new samples. Since there exist several algorithms for each of
these approaches, only one representative algorithm for each of the three approaches is picked and
compared against each other.

2.1 USAGE OF EXTERNAL DATA DURING CLASSIFICATION

The usage of external data after training during the classification task is a common technique used
in few shot learning problems. Instead of input-label pairs, the network is trained with a collection
of inputs and their similarities.

Due to its simplicity and good performance the approach by Koch et al. (2015), which is inspired by
Bromley et al. (2014), is used in this paper. Koch et al. (2015) uses a convolutional siamese neural
network, which basically learns an embedding of the inputs. The same convolutional part of the
network is used for two inputs x1 and x2. After the convolution each input is flattened into a vector.
Afterwards the L1 distance between the two embeddings is computed and fed into a fully-connected
layer, which outputs a similarity between [0, 1].

In order to classify a test image x into one ofK categories, a support set {xk}Kk=1 with examples for
each category is used. The input x is compared to each element in the support set and the category
corresponding to the maximum similarity is returned. When there are more examples per class the
query can be repeated several times, such that the network returns the class with the highest average
similarity.

Using this approach is advantageous, when the number of categories is high or not known at all. On
the downside the prediction of the category depends on a support set and furthermore the computa-
tional effort of predicting a category increases with O(K), since a comparison has to be made for
each category.

2.2 CONSISTENCY REGULARIZATION

Consistency regularization relies on increasing the robustness of a network against tiny perturbations
of the input or the network. For perturbations of the input d (f(x;θ), f(x̂;θ)) shall be minimized,

2



Under review as a conference paper at ICLR 2019

whereas d is a distance measurement like euclidean distance or Kullback-Leibler divergence and x̂
is the perturbed input. It is possible to sample x from both DL and DUL.

An empirical investigation Oliver et al. (2018) has shown, that many consistency regularization
methods, like mean teacher (Tarvainen & Valpola (2017)), Π-model (Sajjadi et al. (2016), Laine &
Aila (2017)), and virtual adversarial training (VAT) Miyato et al. (2018) are quite hard to compare,
since the results may rely on many parameters (network, task, etc.). Nevertheless VAT is chosen
in this work, since it achieves convincing results on many tasks. VAT is a training method, which
is greatly inspired by adversarial training (Goodfellow et al. (2015)). The perturbation radv of the
input x can be computed as

r ∼ N

(
0,

ξ√
dim(x)

I

)
(1)

radv = ε
∇rd(f(x,θ), f(x+ r,θ))

||∇rd(f(x,θ), f(x+ r,θ))||
(2)

,where ξ and ε are hyperparameters, which have to be tuned for each task. After the perturbation
was added to x consistency regularization is applied. The distance between the clean (not perturbed)
prediction and perturbed prediction d(f(x,θ), f(x + radv,θ)) shall be minimized. In order to
reduce the distance the gradients are just backpropagated through f(x+radv). Combining VAT with
entropy minimization Grandvalet & Bengio (2005) it is possible to further increase the performance
Miyato et al. (2018). For entropy minimization an additional loss term is computed as:

−
∑

f(x;θ)log[f(x;θ)] (3)

and added to the overall loss. This way the network is forced to make more confident predictions
regardless of the input.

2.3 GENERATIVE MODELS

Generative models are commonly used for increasing the accuracy or robustness of models in a semi-
or unsupervised manner (Kingma et al. (2014), Zhao et al. (2016), Springenberg (2015), Odena
(2016), Radford et al. (2016)).

A popular approach is the use of generative adversarial neural networks (GANs), introduced by
Goodfellow et al. (2014). The goal of a GAN is to train a generator network G, wich produces
realistic samples by transforming a noise vector z as xfake = G(z,θ), and a discriminator network
D, which has to distinguish between real samples xreal ∼ pData and fake samples xfake ∼ G.

In this paper the training method defined in Salimans et al. (2016) is used. Using this approach the
output of D consists of K + 1 categories, whereas K is the number of categories the classifier shall
be actually trained on. One additional extra category is added for samples generated by D. Since
the output of D is over-parameterized the logit output lK+1, which represents the fake category,
is permanently fixed to 0 after training. The loss function consists of two parts Lsupervised and
Lunsupervised, which can be computed as:

Lsupervised = −Ex,y∼pdata
log[p(y|x, y < K + 1)] (4)

Lunsupervised = −{Ex∼pdata
log[1− p(y = K + 1|x)] + Ex∼G log[p(y = K + 1|x)]}. (5)

Lsupervised represents the standard classification loss, i.e. negative log probability. Lunsupervised

itself again consists of two parts, the first part forces the network to output a low probability of fake
category for inputs x ∼ pdata and corresponding a high probability for inputs x ∼ G. Since the
the category y is not used in Lunsupervised, the input x can be sampled from both DL and DUL. In
order to further improve the performance feature matching is used, as described in Salimans et al.
(2016).
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3 EXPERIMENTS

Three different experiments are conducted in this paper using the MNIST (LeCun et al. (1998)) and
UrbanSound8k Salamon et al. (2014) dataset. The UrbanSound8k dataset consists of 8732 sound
clips with a maximum duration of 4 s. Each sound clip represents a different urban noise class
like drilling, engine, jackhammer, etc. Before using the sound files for training a neural network,
they are prepared in a similar manner to Salamon & Bello (2017), in essence each sound clip is
transferred to a log-scaled mel-spectrogram with 128 components covering the frequency range
between 0-22050 Hz. The window size is chosen to be 23 ms and hop size of the same duration.
Sound snippets with shorter duration as 4 s are repeated and concatenated until a duration of 4 s is
reached. The preprocessing is done using librosa (McFee et al. (2015)). For training and evaluation
purposes a random snippet with a length of 3 s is selected, resulting in an input size of 128× 128.

In the first experiment no external unlabeled data is used. Instead, the amount of labeled data in
each category is varied and the three methods are compared to each other. In the second experi-
ment the amount of labeled and unlabeled data is varied, in order to explore how unlabeled data
can compensate labeled data. The last experiment considers class distribution mismatch while the
amount of labeled and unlabeled data is fixed. In the second and third experiment only two methods
are compared, since only generative models and consistency regularization allow the use of external
unlabeled data.

All methods are compared to a standard model. When using the MNIST dataset the standard
model consists of three convolutional layers, followed by two fully-connected layers. For the Ur-
banSound8k dataset the standard model consists of four convolutional layers, followed by three
fully-connected layers. ReLU nonlinearities were used in all hidden layers. The training was done
by using the Adam optimizer (Kingma & Ba (2014)). Furthermore batch normalization (Offe &
Szegedy (2015)), dropout (Srivastava et al. (2014)), and max-pooling was used between convolu-
tional layers. For further increasing the generalization capability L2 regularization (Ng (2004)) is
used. The models, representing the three different approaches, have the same computational power
as the standard model, in essence three/ four convolutional layers and two/ three fully connected
layers. The number of hidden dimensions and other per layer hyperparameters (e.g. stride, padding)
is kept equal to the corresponding standard models. The hyperparameters were tuned manually on
the training dataset by performing gridsearch and picking the most promising results. Whereas the
L2 and batchnorm coefficients, as well as dropout rate are shared across all models for each dataset.
The test accuracy was calculated in all experiments with a separate test dataset, which contains 500
samples per category for the MNIST dataset and, respectively, 200 samples per category for the
UrbanSound8k dataset. Train and test set have no overlap. All experiments were conducted using
the PyTorch framework (Paszke et al. (2017)).

3.1 VARYING AMOUNT OF LABELED DATA AND NO UNLABELED DATA

In this experiment the amount of labeled data is varied. Furthermore there is not used any unlabeled
external data. For each amount of labeled data and training approach (i.e. baseline, VAT Miyato et al.
(2018), GAN Salimans et al. (2016), and siamese neural network Koch et al. (2015)) the training
procedure was repeated eight times. Afterwards the mean accuracies and standard deviations have
been calculated.

Figure 1 shows the results obtained in this experiment for the MNIST dataset. The amount of labeled
data per category was varied on a logarithmic scale in the range between [0, 200] with 31 steps. Using
200 labeled samples per category the baseline network is able to reach about 95 % accuracy. With
just one labeled sample per class the baseline networks reaches already around 35 %, which is a
already good compared to 10 %, when random guessing. Generally all three methods are consistent
with the literature, such that they are superior over baseline in the low data regime (1-10 samples per
category). Using a siamese neural network the accuracy can be significantly improved in the low
data regime. With just one labeled sample the siamese architecture already reaches around 45 %.
When using a dataset with more categories, like Omniglot, the advantage of using siamese networks
should be even higher in the low data regime. The performance of this approach becomes worse
compared to the baseline model, when using more than 10 labeled examples per class. VAT has a
higher benefit compared to GAN for up to 20 labeled samples per category. For higher numbers of
labeled samples both methods show only little (0-2 %) improvement over the baseline results.
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Similar results are obtained on the UrbanSound8k dataset (figure 2). As for the experiment on the
MNIST dataset the amount of labeled data was varied on a logarithmic scale in the range between
[0, 200], but with 6 steps instead of 31, since the computational effort was much higher. The siamese
network yields a large improvement when there is only one labeled sample, but fast returns worse
results than the baseline network. On contrast the usage of VAT or GAN comes with a benefit in
terms of accuracy for higher amounts of labeled data. Nevertheless these both methods are either not
able to further improve the accuracy for high amounts of labeled data (more than 100). Furthermore
the accuracy even declines compared to baseline for 200 labeled samples. The observation, that
adversarial training can decrease accuracy, is inline with literature (Schmidt et al. (2018), Su et al.
(2018)), where it was shown that in high data regimes there may be a trade-off between accuracy
and robustness. Whereas in some cases adversarial training can improve accuracy in the low data
regime.
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Figure 1: Comparison of different methods with varying amount of labeled data on MNIST. Left:
Total accuracy achieved for each method. Right: Accuracy improvements over baseline.
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Figure 2: Comparison of different methods with varying amount of labeled data on UrbanSound8k.
Left: Total accuracy achieved for each method. Right: Accuracy improvements over baseline.

3.2 VARYING AMOUNT OF LABELED DATA AND UNLABELED DATA

In this experiment the amount of labeled and unlabeled data was varied. Like in the previous ex-
periment the scale, on which the amount of data is varied, is chosen to be [0, 200] with 31 steps for
the MNIST dataset and 6 steps for the UrbanSound8k dataset. Since only the generative models and
consistency regularization allow the use of unlabeled data, siamese neural networks have not been
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investigated in this experiment. Each of the two different approaches has been trained eight times
for every point (number of labeled examples and unlabeled examples per category), afterwards the
run with the highest result was picked as the final result. Baseline results have been computed in a
similar way. For each amount of labeled data eight networks have been trained and the best result
has been picked. Afterwards the difference between VAT/ GAN and baseline has been calculated.
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Figure 3: Comparison of VAT and GAN training with varying amount of labeled and additional
unlabeled data to baseline method for MNIST dataset.

Figure 3 shows the results of this experiment for the MNIST dataset. On the left side the results
achieved with the GAN method and on the right side the results achieved with VAT are visualized.
Both methods show a significant increase in terms of accuracy when the amount of labeled data is
low and corresponding the amount of unlabeled data is high. When the amount of labeled data in-
creases the amount of necessary unlabeled data also increases in order to achieve the same accuracy
improvements. VAT achieves better results with less unlabeled data compared to GAN, when there
is little labeled data (∼ 2-10 examples per category). On contrast GANs achieve better results when
there is a moderate amount of labeled examples (∼ 10-50 examples per category) and also many un-
labeled examples. When the amount labeled examples is high both methods behave approximately
equal.
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Figure 4: Comparison of VAT and GAN training with varying amount of labeled and additional
unlabeled data to baseline method for UrbanSound8k dataset.
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The results for the UrbanSound8k dataset can be seen in Figure 4. Overall similar results as for the
MNIST dataset are achieved, in terms of having high benefits, when the amount of labeled data is
low and concurrently the amounts of unlabeled data is high. Nevertheless the total improvement
is lower and for high amounts of labeled data, more unlabeled data is necessary in order to get an
improvement at all. For the VAT the amount of unlabeled data need to have similar magnitudes as
the amount of labeled data in order to get an improvement at all. Further the same observation as
before can be made, that VAT achieves better results with less unlabeled data, when there is little
labeled data

3.3 CLASS DISTRIBUTION MISSMATCH

In this experiment the possibility of adding additional unlabeled examples, which do not correspond
to the target labels (mismatched samples), is investigated. This experiment was done for VAT in
Oliver et al. (2018). In this work the investigation is extended in such a way that the results for
VAT are compared to GAN. Furthermore not only the extend of mismatch, but also the influence
of the amount of additional unlabeled examples is investigated. Both datasets (MNIST and Urban-
Sound8k) consist of 10 categories with label values [0, 9] and the aim is to train a neural network,
which is able to classify inputs corresponding to categories [0, 6], hence the network has six outputs.
Mismatched examples belong to categories [7, 9]. The number of labeled examples per category
is fixed to be five. Having five labeled samples it can be seen in figure 3 and 4, that the accuracy
improvement shows a strong dependency on the amount of unlabeled samples. The total number of
unlabeled examples is varied between {30, 120, 600}. Furthermore the mismatch for each number
of unlabeled examples is varied between 0-100 % using a 10 % increment, e.g. when the amount
of unlabeled examples is set to be 120 and the mismatch is 70 % the unlabeled examples consist
of 84 examples belonging to categories [0, 6] and 36 examples belonging to categories [7, 9]. The
distribution across the categories in the six matched and four remaining mismatched classes is kept
approximately equal, with a maximum difference of ±1. For each amount of mismatch and method
eight neural networks have been trained. Afterwards their average accuracies and standard devia-
tions have been calculated. For baseline results also eight neural networks have been trained and
their average accuracy and standard deviation computed. Since the number of classes is reduced
to 6 the accuracy, when compared to the previous experiments, is higher with the same amount of
labeled data.
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Figure 5: Comparison of different methods with varying amount of mismatch and unlabeled data
for MNIST dataset. All networks have been trained with five labeled samples.

Figure 5 shows the results of this experiment for the MNIST dataset. Overall the accuracy de-
creases for both methods when the class mismatch increases, which is in line with literature (Oliver
et al. (2018)). As in the experiments before, the GAN method shows little to no accuracy improve-
ment, when the additional amount of unlabeled data is low (30 unlabeled samples). For 120 and
respectively 600 additional unlabeled elements both methods show an approximate equal maximal
accuracy improvement, when there is no class mismatch. When the class mismatch is very high
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(80-100 %) using VAT results in worse performance than baseline results. Using GANs the perfor-
mance is in worst case at the same level as baseline performance. GAN shows a linear correlation
between accuracy and class mismatch. On contrast VAT shows a parabolic trend. Overall increasing
the amount of unlabeled data seems to increase the robustness towards class mismatch. All in all
both methods show an accuracy improvement even for high amounts (> 50 %) of class mismatch.
Whereas VAT performs better, when the amount of mismatch is low.
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Figure 6: Comparison of different methods with varying amount of mismatch and unlabeled data
for UrbanSound8k dataset. All networks have been trained with five labeled samples.

Figure 6 shows the results obtained with the UrbanSound8k dataset. Overall there seems to be no,
or only little correlation between class mismatch and accuracy. Only for the GAN, when using 30 or
120 unlabeled samples, a small correlation can be observed. This is a surprising observation, since
in the previous experiment and in Oliver et al. (2018) a decrease in terms of accuracy is reported for
increasing class mismatch. In essence it can be stated, that adding samples, which do not necessarily
belong to the target classes, can improve the overall accuracy. This is especially interesting for
training classifiers on hard to obtain or rare samples (rare disease, etc.). Nevertheless it has to be
checked whether adding this samples hurts the performance or not. Furthermore the correlation
between more unlabeled data and accuracy can be observed, as in the previous experiments.

4 CONCLUSION

In this paper three methods for dealing with little data have been compared to each other. When the
amount of labeled data is very little and no unlabeled data is available, siamese neural networks offer
the best alternative in order to achieve good results in terms of accuracy. Furthermore when there
is additional unlabeled data available using GANs or VAT offer a good option. VAT outperforms
GAN when the amount of data is low. On contrast GANs should be preferred for moderate or high
amounts of data. Nevertheless both methods must be tested for any individual use case, since the
behavior of these methods may change for different datasets.

Surprising results have been obtained on the class mismatch experiment. It was observed that adding
samples, which do not belong to the target classes, not necessarily reduce the accuracy. Whether
adding such samples improves or reduce the accuracy, may heavily depend on how closely these
samples/ classes are related to the target samples/ classes. An interesting questions remains whether
datasets which perform good in transfer learning tasks (e.g. transferring from ImageNet to CIFAR-
10) also may be suitable for such semi-supervised learning tasks.

Furthermore any combinations of three examined methods can bear interesting results, e.g.VAT
could be applied to the discriminator in the GAN framework. Also a combination of GAN and
siamese neural networks could be useful, in this case the siamese neural network would have two
outputs, one for the source and one for the similarity.
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