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Abstract

Autonomous driving is still considered as an “un-
solved problem” given its inherent important vari-
ability and that many processes associated with
its development like vehicle control and scenes
recognition remain open issues. Despite rein-
forcement learning algorithms have achieved no-
table results in games and some robotic manipula-
tions, this technique has not been widely scaled
up to the more challenging real world applica-
tions like autonomous driving. In this work, we
propose a deep reinforcement learning (R L) algo-
rithm embedding an actor critic architecture with
multi-step returns to achieve a better robustness
of the agent learning strategies when acting in
complex and unstable environments. The experi-
ment is conducted with Carla simulator offering
a customizable and realistic urban driving condi-
tions. The developed deep actor RL guided by
a policy-evaluator critic distinctly surpasses the
performance of a standard deep RL agent.

1. Introduction

An important approach for goal-oriented optimization is
reinforcement learning (R L) inspired from behaviorist psy-
chology (Sutton & Barto, 2018). The frame of RL is an
agent learning through interaction with its environment
driven by an impact (reward) signal. The environment return
reinforces the agent to select new actions improving learning
process, hence the name of reinforcement learning (Jaafra
etal., 2018). RL algorithms have achieved notable results
in many domains as games (Mnih et al., 2015; Silver et al.,
2016) and advanced robotic manipulations (Levine et al.,
2016; Lillicrap et al., 2016) beating human performance.
However, standard RL strategies that randomly explore and
learn faced problems lose efficiency and become computa-
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tionally intractable when dealing with high-dimensional and
complex environments(Wahlstrom et al., 2015).

Autonomous driving is one of the current highly challenging
tasks that is still an ”unsolved problem” more than one
decade after the promising 2007 DARPA Urban Challenge
(Buehler et al., 2009). The origin of its difficulty lies in
the important variability inherent to the driving task (e.g.
uncertainty of human behavior, diversity of driving styles,
complexity of scene perception...).

In this work, we propose to implement an advantage actor-
critic approach with multi-step returns for autonomous
driving. This type of RL has demonstrated good conver-
gence performance and faster learning in several applica-
tions which make it among the preferred RL algorithms
(Grondman et al., 2012). Actor-critic RL consolidates the
robustness of the agent learning strategy by using a tem-
poral difference (7'D) update to control returns and guide
exploration. The training and evaluation of the approach are
conducted with the recent CARLA simulator (Dosovitskiy
et al., 2017). Designed as a server-client system, where
the server runs the simulation commands and renders the
scene readings in return, CARLA is an interesting tool since
physical autonomous urban driving generates major infras-
tructure costs and logistical difficulties. It particularly offers
a realistic driving environment with challenging properties
variability as weather conditions, illumination, and density
of cars and pedestrians.

The next sections review previous work on actor-critic RL
and provide a detailed description of the proposed method.
After presenting CARLA simulator and related application
advantages, we evaluate our model using this environment
and discuss experimental results.

2. Related Work

Various types of RL algorithms have been introduced and
are classified into three categories, actor, critic or actor-critic
depending on whether they rely on a parameterized policy,
a value function or a combination of both to predict actions
(Konda & Tsitsiklis, 2003). In the actor-only methods, a
gradient is generated to update the policy parameters in a
direction of improvement (Williams, 1992). Despite policy
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gradients offer tough convergence guarantees, they may
suffer from high variance resulting in slow learning (Berenji
& Vengerov, 2003). On the other hand, critic-only methods
built on value function approximation, use 7' D learning and
show lower variance of estimated returns (Boyan, 2002).
However, they lack reliable guarantee of converging and
reaching the real optimum (Grondman et al., 2012).

Actor-critic methods combine the advantages of the two
previous ones by inducting a repetitive cycle of policy eval-
uation and improvement. (Barto et al., 1990) is considered
as the starting point that defined the basics of actor-critic
algorithms commonly used in recent research. Since then,
several algorithms have been developed with different di-
rections of improvements. (Wang et al., 2007), introduced
the Fuzzy Actor-Critic Reinforcement Learning Network
(FACRLN), which involves one neural network to approx-
imate both the actor and the critic. Based on the same
strategy, (Niedzwiedz et al., 2008) developed the Consoli-
dated Actor-Critic Model (CACM). (Jan et al., 2003) used
for the first time a natural gradient (Amari & Douglas, 1998)
for the policy updates in their actor-critic algorithm. (Silver
et al., 2014) presented the Deterministic Policy Gradient
algorithm (DPG) that assign a learned value estimate to
train a deterministic policy. Recently, (Mnih et al., 2016)
proposed the Asynchronous Advantage Actor-Critic (A3C)
algorithm where multiple agents operate in parallel allowing
data decorrelation and learning experience diversity.

Despite that several actor-critic methods have been devel-
oped, most of them were tested on standard R L benchmarks.
The latter generally include basic tasks with low-level com-
plexity comparatively to real world applications, like cart-
pole balancing (Wang et al., 2007; Jan et al., 2003), maze
problems (Niedzwiedz et al., 2008), multi-armed bandit (Sil-
ver et al., 2014), Atari games (Mnih et al., 2016; Gruslys
et al., 2018) and OpenAl Gym tasks (Parisi et al., 2019;
Lillicrap et al., 2016). Our work contribution consists in
extending actor-critic RL application to a very challenging
task which is urban autonomous driving. The domain setting
is particularly difficult to handle due to intricate and con-
flicting dynamics. Indeed, the driving agent must interact,
in changing weather and lighting conditions and through
a wide action space, with several actors that may behave
unexpectedly, identify traffic rules and street lights, estimate
appropriate speed and distance... Our approach, that will
be detailed in the next section, incorporates an actor and a
multi-step T'D critic component to improve the stability of
the RL method.

3. Advantage Actor Critic with multi-step
returns

The RL task considered in this work is a Markov De-
cision Process (MDP) T; defined according to the tuple

(S, A, p, 7,7, po, H) where S is the set of states, A is the
set of actions, p(s¢41|st,a;) is the state transition distri-
bution predicting the probability to reach a state sy in
the next time step given current state and action, r is a
reward function, « is the discount factor, pg is the initial
state distribution and H the horizon. Consider the sum
of expected rewards (return) from a trajectory 7o, gr—1) =
(S0,G0, -y SH—1,0H-1,SH ). A RL setting aims at learning
a policy 7 of parameters 6 (either deterministic or stochas-
tic) that maps each state s to an optimal action @ maximizing
the return R of the trajectory.

t+H-1
Ry =71 + 7R = Z Y (D
i=t

Following the discounted return expressed above, we can de-
fine a state value function V' (s) : S — R and a state-action
value function Q(s,a) : A X S — R to measure, respec-
tively, the current state and state-action returns estimated
under policy 7:

V(St) = E[Rt\st = S] (2)
Q(St, at) = E[Rt‘st = S§,a¢ = a] 3)

In value-based RL algorithms such as Q-learning, a value
function is approximated to select the best action according
to the maximum value attributed to each state and action
pair. On the other hand, policy-based methods directly opti-
mize a parameterized policy without using a value function.
They use instead gradient descents like in the family of RE-
INFORCE algorithms (Williams, 1992) updating the policy
parameters 6 in the direction:

Af = aVglogmy(si|ar) Ry 4)

The main problem with policy based methods is that the
score function R, uses the averaged rewards calculated at
the end of a trajectory which may lead to the inclusion
of ”bad” actions and hence slow learning. The solution
provided in actor-critic framework is to replace the reward
function R; in the policy gradient (equation 4) with the
action value function that will enable the agent to learn
the long-term value of a state and therefore enhance its
prediction decision:

Al = aVglog mg(st|ar)Q(st, ar) 5)

Then train a critic to approximate this value function pa-
rameterized with w and update the model accordingly. At
this point, we can conclude that an efficient way to derive
an optimal control of policies is to evaluate them using ap-
proximated value functions. Hence, building accurate value
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function estimators results in better policy evaluation and
faster learning.

T D learning combining Monte Carlo method and dynamic
programming (Sutton & Barto, 2018) has proved to be an
effective way to calculate good approximations of value
functions by allowing an efficient reuse of rewards during
policy evaluation. It consists in taking an action according to
the policy and bootstrapping the 1-step sampled return from
the value function estimate resulting in the below 1-step
TD target:

Gy =r1i + 7% Vi(si41) (6)

Given the last return estimation, we obtain the 1-step 7'D
update rule that allows the adjustment of the value function
according to the T'D error §; with step size 3:

Vi(st) = V(st) + B(re +vVilse41) = V(se)) (D)
St

At this level, the actor-critic algorithm still suffers from
high variance. In order to reduce the variance of the policy
gradient and stabilize learning, we can subtract a baseline
function, e.g. the state value function, from the policy gra-
dient. For that, we define the advantage function A(s;, a;)
which calculates the improvement in predicting an action
compared to the average V' (s;):

A(St, at) = Q(St,at) - V(St) ®)

An approximation of the advantage function is required
since it involves two value functions Q(s;, a;) and V(s;).
Therefore let’s reformulate A(s;,a;) as the difference be-
tween the expected future reward and the actual reward that
the agent receives from the environment (Heess et al., 2013):

A(st,ar) = R(se,ar) — V(st) )

When used in the previous policy gradient (equation 5), this
gives us the advantage of the actor policy gradient:

AO = aVyglogmg(st|lar)(Gr — V(st)) (10)
We can subsequently assume that 7D error is a good can-

didate to estimate the advantage function. Accordingly, we
deduce the final actor policy gradient:

A = aVglogm(st|ar)ds (11)

Given the complex nature of the autonomous urban driving
task, we will use a generalized version of 7'D learning by

extending the bootstrapping over multiple time steps into
the future. Algorithmically, we will define configurable
multi-step returns within the 7D target. Hence, T'D error
becomes:

t+H—1 )
Se=[ > ATV (sn) = Vis)  (12)
1=t

Multi-step returns have been demonstrated to improve the
performance of learning especially with the advent of deep
RL (Mnih et al., 2016). Indeed, it allows the agent to gather
more information on the environment before calculating the
error in the critic estimates and updating the policy.

So far, we have a good theoretical basis to launch our agent.
The experiments carried out by the application of this ap-
proach in the Carla simulator will be presented in the next
section.

4. Experiment

In this section we investigate the performance of an ad-
vantage actor-critic (A2C) algorithm embedding multi-step
T D target updates on the challenging task of urban au-
tonomous driving. The goal of our experimental evaluation
is to demonstrate that the incorporation of a multi-step re-
turns critic (MSRC) component in a deep RL framework
consolidates the robustness of the agent by controlling and
guiding its learning strategy. We expect a reduction of
the actor gradient variance, an ascendant trend of episodic
average returns and more generally a better performance
comparatively to the case where the MSRC component is
deactivated in the A2C algorithm.

Figure 1. Carla environments. Left: Clear Noon weather in Town
2. Right: Hard Rainy in Town 1.

Environment. We conduct the experiments using CARLA
simulator for autonomous driving which provides an inter-
esting interface allowing our R L agent to control a vehicle
and interact with a dynamic environment. Comparatively
to existing platforms, Carla offers a customizable and quite
realistic urban driving conditions with a set of advanced
features for controlling the vehicle and gathering the envi-
ronment feedback. It is designed as a server-client system
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Figure 2. Training phase - Comparison between n-step A2C and standard deep R L performance trained in Town 2.

where the server implemented in Unreal Engine 4 (UE4) !
runs the simulation commands and returns the scene read-
ings. The client implemented in Python sends the agent
predicted actions mapped as driving commands and receives
the resulting simulation measures that will be interpreted as
the agent rewards.

Carla 3D environment consists of static objects as build-
ings, roads and vegetation and dynamic non-player charac-
ters, mainly pedestrians and vehicles. During training, we
can episodically vary server settings as the traffic density
(number of dynamic objects) and visual effects (weather
and lightening conditions, sun position, cloudiness, precip-
itation...). Some examples of resulting environments are
illustrated in figure 1.

Observation and action spaces. The agent interacts with
the environment by generating actions and receiving obser-
vations over regular time steps. The action space selected
for our experiments is built on the basis of three discrete
driving instructions (steering, throttle, and brake) extended
with some combinations in-between (turn left and acceler-
ate/decelerate...). The observation space includes sensors
outputs as color images produced by RGB cameras and de-
rived depth and semantic segmentations. The second type
of available observations consists in a range of measure-
ments reporting the vehicle location (similarly to GPS) and
speed, number of collisions, traffic rules and positioning of
non-player dynamics characters.

Rewards. A crucial role is played by rewards in building
driving policies as they orient the agent predictions. In or-
der to further optimal learning, the reward is shaped as a
weighted sum of measurements extracted from the observa-
tions space described in the previous paragraph. The idea is
to compute a difference between the current (step t) and the
previous (step t — 1) measure of the selected observation
then impact it positively or negatively on the aggregated
reward. The positively weighted variables are distance trav-
eled to target and speed in km/h. The negatively weighted

1https ://www.unrealengine.com

variables are collisions damage (including collisions with
vehicles, pedestrians and other), intersections with sidewalk
and opposite lane. For example, the agent will get a re-
ward if the distance to goal decreases and a penalty each
time a collision or an intersection with the opposite lane is
recorded.

Experiment settings. The agent training follows a goal-
directed navigation on straight roads from scratch. An
episode is terminated when the target destination is reached
or after a collision with a dynamic non-player character.
The A2C networks are trained with 10 millions steps for 72
hours of simulated continuous driving. Motivated by the
recent success achieved by deep RL in challenging domains
(Mnih et al., 2016), we use convolutional neural networks
(CNN) to approximate both the value function of the critic
and the actor policy where the parameters are represented
by the deep network weights.

The CNN architectures consist of 4 convolutional layers,
3 max-pooling layers and one fully connected layer at the
output. The discount factor is set as 0.9. We used 10-step
rollouts, with initial learning rate set as 0, 0001. Learning
rate is linearly decreased to zero over the course of training.
While training the approach, a stochastic gradient descent is
operated each 10 time steps and the resulting policy model
is stored only if its performance (accumulated rewards)
exceeds the last retained model. The final stored model
is then used in the test phase.

Comparative evaluation. In the absence of various state-
of-the-art works on the recent CARLA simulator, we choose
to compare 2 versions of our algorithm: the original deep
actor RL guided by the MSRC policy-evaluator versus a
standard deep actor RL resulting from the deactivation of
the MSRC component in the original algorithm. In fact
the few available state-of-the-art results in CARLA environ-
ment (Dosovitskiy et al., 2017; Liang et al., 2018) report the
percentage of successfully completed episodes. This type of
quantitative evaluation doesn’t meet our experiment objec-
tives mentioned in the beginning of this section to evaluate
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Figure 3. Testing Phase - Evaluation of n-step A2C and standard deep RL tested in 2 different environments env1 and env2. (Both have

been trained in env1).

and interpret the MSRC contribution in complex tasks like
autonomous driving. Guided by the several works on RL
strategies in different domains (Mnih et al., 2016), (Parisi
et al., 2019), we selected episodic average and cumulative
rewards metrics to evaluate our approach.

Figure 2 shows the generated reward in training phase. We
use average episodic reward to describe the methods global
performance and step reward to emphasize the predictions
return variance. We can make few observations in this
regard. In term of performance, our n-step A2C approach
is dominant over almost all the 10000 training episodes
confirming the efficiency of the RL strategy controlled by
the MSRC. Furthermore, we noticed that regarding the best
retained models, the A2C stored just few models (5) in the
2000 first episodes, then this number drastically increased to
100 retained models in the remaining 8000 episodes. This
means that our method early achieved the exploration phase
and moved to exploitation from the training level of 2000
episodes. On the other hand, the standard deep RL totalized
only 10 best models over the training phase reflecting the
weak efficiency of a random strategy to solve a very complex
and challenging problem like autonomous driving. A last
visual interpretation that we can deduce from the step reward
graph is that the variance of A2C predictions is significantly
reduced relatively to the standard deep RL confirming the
T D learning contribution in accomplishing a faster learning.

Figure 3 recaps the testing phase evaluation following two
different scenarios. First, the testing was conducted in the
same environment and conditions as the training: Town 2
and Clear Noon weather (env1). From the episodic reward
graph we can observe that our approach substantially out-
performs the standard deep R L which means that training
with multi-step returns critic leads to more efficient RL
models. In the second scenario, both methods agents are
tested in a different environment than training: Town 1 and
in hard rainy conditions (env2). The n-step A2C is still
more competitive than the standard deep RL showing su-
perior generalization capabilities in the new unseen setting.

Nevertheless, its performance has decreased in the second
test scenario reflecting a certain fragility to changing envi-
ronment. On the other side, the standard deep RL is still
showing higher prediction return variance in the step reward
graph confirming training phase conclusions.

5. Conclusion

In this paper we addressed the limits of RL algorithms
in solving high-dimensional and complex tasks. Combin-
ing both actor and critic methods advantages, the proposed
approach implemented a continuous process of policy as-
sessment and improvement using multi-step 7'D learning.
Evaluated on the challenging problem of autonomous driv-
ing using CARLA simulator, our deep actor-critic algorithm
demonstrated higher performance and faster learning capa-
bilities than a standard deep RL. Furthermore, the results
showed a certain vulnerability of the approach when fac-
ing unseen testing conditions. Considering this paper as
a preliminary attempt to scale up RL approaches to high-
dimensional real world applications like autonomous driv-
ing, we plan in future work to examine the performance of
other RL methods such as deep Q-learning and Trust Re-
gion Policy Optimization (Schulman et al., 2015) on similar
complex tasks. Furthermore, we propose to tackle the issue
of non-stationary environments impact on RL methods ro-
bustness as a multi-task learning problem (Caruana, 1998).
In such context, we will explore recently applied concepts
and methodologies such as novel adaptive dynamic program-
ming (ADP) approaches, context-aware and meta-learning
strategies. The latter are currently attracting a keen research
interest and particularly achieving promising advances in
designing generalizable and fast adapting RL algorithms
(Santoro et al., 2016; Ravi & Larochelle, 2017). Subse-
quently, we will be able to increase driving tasks complexity
and operate conclusive comparisons with the few available
state-of-the-art experiments on CARLA simulator.
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