
Under review as a conference paper at ICLR 2019

INTERPRETING ADVERSARIAL ROBUSTNESS:
A VIEW FROM DECISION SURFACE IN INPUT SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

One popular hypothesis of neural network generalization is that the flat local
minima of loss surface in parameter space leads to good generalization. However,
we demonstrate that loss surface in parameter space has no obvious relationship
with generalization, especially under adversarial settings. Through visualizing
decision surfaces in both parameter space and input space, we instead show that
the geometry property of decision surface in input space correlates well with the
adversarial robustness. We then propose an adversarial robustness indicator, which
can evaluate a neural network’s intrinsic robustness property without testing its
accuracy under adversarial attacks. Guided by it, we further propose our robust
training method. Without involving adversarial training, our method could enhance
network’s intrinsic adversarial robustness against various adversarial attacks.

1 INTRODUCTION

It is commonly believed that a neural network’s generalization is correlated to its geometric properties
of the loss surface, i.e. the flatness of the local minima in parameter space (Kawaguchi (2016); Im
et al. (2017)). For example, Keskar et al. (2017) showed that a sharp local minima brings poorer neural
network generalization. Li et al. (2017) visualized and demonstrated that the outstanding performance
of ResNet comes from its “wide valley” of the local minima on the loss surface. Chaudhari et al.
(2017) then proposed Entropy-SGD, which utilizes the “wide valleys” property to guide the neural
network training for better generalization.

However, such a generalization estimation approach is challenged by adversarial examples recently
(Szegedy et al. (2013)): even models with good generalization may still suffer from adversarial
examples, resulting in extremely low accuracy. For example, ResNet model usually converges to
a wide and flat local minima on loss surface in parameter space as visualized in Fig. 1(a), which
indicates good test accuracy according to the mentioned evaluation approach. When testing adversarial
examples, the model’s accuracy is significantly defected by the adversarial noises, which are small,
but can cause dramatically loss increments. Therefore, the conventional generalization estimation
in parameter space fails under adversarial settings, and how to estimate the generalization over
adversarial examples, i.e. the adversarial robustness, remains a significant challenge.

Fortunately, the loss increments introduced by adversarial noises can be well reflected in the loss
surface in input space as visualized in Fig. 1(b), where the non-smoothness indicates high sensitivity

(b) ResNet’s loss surface

in input space*

(a) ResNet’s loss surface

in parameter space*

* The magnitude of the two surfaces

indicates the loss value, while the

left surface changes with neural

network parameters (e.g. weights

and biases update), and the right

surface changes with input variation

(e.g. noises on test images).

Figure 1: (a) ResNet’s loss surface on local minima in parameter space has wide and flat geometry,
indicating optimal accuracy. (b) While in input space, the loss surface demonstrates significant
non-smooth variation.

1

Under review as a conference paper at ICLR 2019

to the adversarial noises. The differences in Fig. 1 suggest the ineffectiveness of generalization
estimation in parameter space and the potential in input space. Therefore, different from prior works
focusing on parameter space, we will explore the robustness estimation mainly in input space.

In this work, we have the following contributions:

• We analyze the geometric properties of the loss surface in both parameter and input space.
We demonstrate that the input space is more essential in evaluating the generalization and
adversarial robustness of a neural network;

• We reveal the shared mechanisms of various adversarial attack methods. To do so, we first
extend the concept of loss surface to decision surface for clearer geometry visualization. By
visualizing the adversarial attack trajectory on decision surfaces in input space, we reveal
that various adversarial attacks are all utilizing the decision surface geometry properties to
cross the decision boundary within least distance.

• We then formalize the adversarial robustness indicator by involving the geometric properties
of Jacobian and Hessian’s eigenvalues. Such an indicator can effectively evaluate a neural
network’s intrinsic robustness property against various adversarial attacks without field
accuracy testing of massive adversarial examples; It also concludes that the wide and flat
plateau of decision surface in input space enables better generalization and robustness.

• We also propose a robust training method guided by our adversarial robustness indica-
tor, which aims to smooth the decision surfaces and enhances adversarial robustness by
regulating the Jacobian in training process.

Our robustness estimation approach has provable relationship with neural network’s robustness
performance and geometry properties in input space. This enables us to evaluate adversarial robustness
of a neural network, without conducting massive adversarial attacks for field test. Guided by such an
estimation approach, our robust training method could also effectively enhance the neural network
against various adversarial attacks without involving the time-consuming adversarial training.

2 INEFFECTIVENESS OF ADVERSARIAL ROBUSTNESS ESTIMATION
FROM THE LOSS SURFACE IN PARAMETER SPACE

In this section, we compare the effectiveness of the adversarial robustness estimation from the loss
surface in both parameter and input space with an effective visualization method.

2.1 VISUALIZATION NEURAL NETWORK LOSS SURFACE BY PROJECTION

Given a neural network with a loss function F (θ, x), where θ is neural network parameters (weight
and bias) and x is the input. As the function inputs are usually in high-dimensional space, direct
visualization analysis on the loss surface is impossible. Therefore, following the methods proposed
by Goodfellow et al. (2015) and Li et al. (2017), we project the high-dimensional loss surface into a
low-dimensional space, e.g. 2D hyperplane to visualize it. In such methods, two projection vectors α
and β are chosen and normalized as the base vectors for x and y axes. Then given an starting point o,
the points around it are interpolated and corresponding loss values can be calculated:

V (i, j, α, β) = F (o+ i · α+ j · β) (1)

Here, the original point o in function F could be either in parameter space, which is mostly studied
by prior work (e.g. Li et al. (2017); Im et al. (2017)), or in input space, which is our major focus in
this paper. The coordinate (i, j) denotes how far the original point moves along α and β direction.
After calculating enough points’ loss values, the function F with high-dimensional inputs could be
projected to the chosen hyperplane formed by vector α and β.

Fig. 1 has already shown two visualized loss surface examples in both parameter space and input
space, which give an intuition of the dramatic difference between the two approaches. In the next
section, we will further demonstrate that the loss surface geometry in input space is more essential
regarding the neural network robustness properties.

2

Under review as a conference paper at ICLR 2019

(a) Loss Surface of Natural Model (b) Loss Surface of Robust Model

Figure 2: Loss Surfaces in parameter space (similar settings with Li et al. (2017)). There is no clear
relation between the neural network robustness and loss surface geometry in parameter space.

(a) Loss Surface of Natural Model (b) Loss Surface of Robust Model

Figure 3: Loss Surface in input space (our main focus). There are distinct difference between two
models with different degrees of robustness. Obviously, network robustness is highly correlated to
the loss surface geometry in input space, instead of parameter space.

2.2 THE LOSS SURFACE IN PARAMETER SURFACE VS. INPUT SPACE

To prove our statement, we examine the robustness of a pair of neural networks with the same ResNet
model setting, but trained with natural process and Min-Max robust training scheme respectively.
Both neural networks could achieve optimal accuracy (∼ 90%) on CIFAR10 dataset. However, their
adversarial robustness degrees are significantly different: 0.0% and 44.71% accuracy under `∞ = 8
adversarial attacks. To analyze such a difference, the loss surfaces and corresponding contour maps
are visualized in both parameter space (as shown in Fig. 2) and input space (as shown in Fig. 3). Here
the z-axis of 3D visualization denotes the loss values (as well as the numbers on contour lines in 2D
visualization), and the x and y axes are the corresponding projection vectors α and β.

When illustrated in parameter space, both neural networks’ loss surfaces on local minima are wide
and flat, which align well with their high accuracy as stated in (Li et al. (2017)). But comparing
Fig. 2 (a) and (b), even though the two neural networks have distinct degrees of robustness, there is
no obvious difference between their loss surfaces in parameter space. More examples could be found
in Appendix 8.5, which also indicates the limitations of parameter space loss to describe robustness.

However when illustrated in input space as shown in Fig. 3, obvious differences emerge between the
natural and robust neural networks: (1) Based on the 3D surface visualization, the natural neural
network’s loss surface in input space has a deep and sharp bottom, while the local minima one the
loss surface of the robust neural network is much flatter; (2) Based on the contour map visualization,
we show that the original inputs in the natural neural network’s surface locate in a very small valley,
while the robust one shows a wide area. Thus, in the natural neural network’s case, once some small
perturbations are injected into the inputs and move the inputs out of the small valley, the function loss
will significantly increase and the prediction result could be easily flipped.

By comparison of parameter space and input space loss surfaces, we demonstrate the potential
advantages of using loss surfaces in input space than in parameter space. Therefore, we clarify that
in terms of generalization and adversarial robustness, we should not only focus on the so-called
“wide valley” of loss surfaces in parameter space, but also in input space. In the next section, we
will visualize the adversarial attack trajectory and further demonstrate the close relation between
adversarial vulnerability and decision surface geometry in input space.

3 REVEALING ADVERSARIAL ATTACKS’ MECHANISM
THROUGH DECISION SURFACE ANALYSIS

Previously, we showed the potential of adversarial robustness estimation in input space. In this
section, we further explore the adversarial attacks’ mechanism with input space decision surface.

3

Under review as a conference paper at ICLR 2019

(b) Cross Entropy Loss (c) Least-Likely Loss (d) C&W Loss(a) Random Direction

Lo
ss

 S
ur

fa
ce

D
ec

is
io

n
Su

rf
ac

e

Figure 4: Comparison of cross entropy based loss surface (first row) and our decision surface (second
row). In (a), the projection vectors are randomly selected. In (b)-(d), y-axis projection vector is the
descent direction of corresponding objective function of various adversarial attacks. Along both axes
we use step size = 1 on the pixel range (0 ∼ 255). Clearly, all three adversarial attacks are utilizing
the geometry information of decision surface to find the shortest paths (indicated by arrows and
triangles) to cross the decision boundaries.

3.1 EXTEND LOSS SURFACE TO DECISION SURFACE

Directly visualizing loss surfaces in input space has certain disadvantages: The major issue is that
there is no explicit decision boundary for the correct or wrong prediction for a given input image;
Another deficiency of cross entropy based loss surface is that it cannot well demonstrate the geometry,
especially when the loss is relatively low 1. This usually causes large blank regions with no useful
information in visualization. To resolve these problems, we extend the concept of loss surface to
decision surface, which enriches the geometry information and offers clear decision boundary.

Here, we introduce the definition of neural network decision boundary and decision surface. For one
input image x with label yt, the decision boundary of a neural network is defined as following:

L(x) = Z(x)t − max{Z(x)i, i 6= t} = 0. (2)

Z(x) is the logit layer output before softmax layer, and t is the true class of input x. The decision
function L(x) evaluates the confidence of prediction, i.e. how much correct logit output exceeds the
max incorrect logit. In correct prediction cases, L(x) should always be positive and higher value
is often better (different from cross-entropy loss that lower is better). L(x) = 0 indicates the equal
confidence in correct and wrong class, and thus is the decision boundary between correct and wrong
prediction. The surface formed by function L(x) is called the decision surface to distinguish from
cross entropy based loss surface, also because it contains the explicit decision boundary.

Fig. 4 compares the cross entropy based loss surface visualization (first row) and the decision
surface visualization (second row). The decision surfaces can well resemble the loss surfaces in their
informative areas but also include the confidence information in the blank area of the loss surfaces.
Meanwhile, the explicit decision boundary, i.e. contour line L(x) = 0, enables us to clearly see when
network decision changes, which is very useful in analyzing adversarial examples as we will show
next. In the following paper, we will use decision surface visualization as default settings.

3.2 SHARED MECHANISM OF VARIOUS ADVERSARIAL ATTACKS

As shown in Eq. 1, we could project the decision surface to a hyperplane composed of two base
vectors – α and β. Therefore, using adversarial attacking direction δ as the projection vector β
(y-axis), we could visualize the adversarially projected decision surfaces and the corresponding attack
trajectory along the y-axis direction.

For generality, we compare four cases with different projection vector β: The first one is random
direction, but the other three are produced from three representative adversarial attack objective
functions: cross-entropy non-targeted loss, cross-entropy targeted loss (least-likely class) (Kurakin

1For the same input image, neural network prediction with high confidence can have similar loss with low
confidence prediction due to the non-linear operations. Detailed analysis could be find in the Appendix.

4

Under review as a conference paper at ICLR 2019

et al. (2016)), and C&W loss (Carlini & Wagner (2017)):

β = sign(∇x loss(x)), where loss(x) ∈
{ ytlog(softmax(Z)), yllog(softmax(Z)) , max{Z(x)i, i 6= t} − Z(x)t. },

(3)

where yt is the true class label, yl is least likely class label (both one-hot).

The decision surface and adversarial trajectory visualization results are shown in Fig. 4. The length
of blue and green arrows denote the distance needed to cross the decision boundary. In random
projection (a), the length of green arrows is long. This indicates that towards a random direction, the
original input is far from neural network’s decision boundary or wrong classification regions with
L(x) < 0. This explains the common sense that natural images with random noises won’t degrade
neural network accuracy significantly. However, in adversarially projected hyperplane (b-d), wrong
regions are much closer indicated by extremely short arrows: Towards y-axis adversarial direction,
adversarial examples could be easily found and even within `inf(δ) = 1.

Comparing different adversarial attack trajectories in Fig. 4(b)-(d), we could find that they all
demonstrate similar behaviors even though their objective functions are designed differently: All
y-axis attack directions show extremely dense contour lines. This denotes the steepest descent
direction to cross decision boundary L = 0 and to enter wrong classification regions. Therefore, we
can conclude the shared mechanism by different adversarial attacks, which is to utilize the decision
surface geometry information to cross the decision boundary within shortest distance.

Meanwhile, our visualization results reveal the nature of adversarial examples: Although a neural
network’s training loss in parameter space seems to converge well after model training, there still
exist large regions of points that the neural network fails to classify correctly (proved by the large
negative regions on the adversarial projected hyperplane). And some of these regions are extremely
close to the original input points (some even within `inf(δ) = 1 distance). Since the data points in
such regions are in the close neighborhood of the natural input images, they seem no difference by
human vision, which is conventionally recognized as adversarial examples.

Therefore, we conclude that rather than being "crafted" by adversarial attacks, adversarial examples
are "naturally existed" points. Rather than defending "adversarial attacks", the essential solution of
robustness enhancement is to solve the "neighborhood under-fitting" issue of neural networks. We
then propose an adversarial robustness evaluation approach, which uses decision surface’s differential
geometry property to interpret and evaluate the neural network robustness.

4 ADVERSARIAL ROBUSTNESS INDICATOR WITH
DECISION SURFACE GEOMETRY

4.1 THEORETICAL ROBUSTNESS BOUND BASED ON SECOND-ORDER TAYLOR EXPANSION

Suppose neural network decision function L(θ, x) is second-order differentiable. We have noticed
that the neural network decision surface in input space captures more information about adversarial
vulnerability. Since L(θ, x) has no explicit formulation, we could utilize the second-order Taylor
Approximation w.r.t input x to approximate it within x′s neighborhood:

L(θ, x+ ∆x) = L(θ, x) + J∆x+
1

2!
∆xTH∆x, (4)

where θ is the parameters of the neural network. The Jacobian vector J is of the same dimension
with x , and x is the input feature vector. And Hessian matrix H is a square matrix of second-order
partial derivatives of F (θ, x) with regard to x.

Given a correctly classified input x with confidence L(θ, x) = t (t > 0). In adversarial settings, the
adversarial robustness of neural network means that given a feasible set S, e.g. `∞ constraints, all
perturbations in this set cannot change the decision. Formally, it can be defined as following:

sign(L(θ, x+ δ)) = sign(L(θ, x)), ∀δ ∈ S. (5)

To connect this objective function with our decision surface, we enforce a new constraint:

|L(θ, x+ δ)− L(θ, x)| < t, ∀δ ∈ S. (6)

5

Under review as a conference paper at ICLR 2019

This leads to L(θ, x+ δ) ∈ (0, 2t), thus L(θ, x+ δ) has the same sign with L(θ, x). Clearly, Eq. 5
is strictly guaranteed. Meanwhile, this formulation enforces stronger constraints: it means when
neural network predicts, its neighborhood points should not only share the same decision but also
have similar confidence bounded by absolute difference t, similar with mixup (Zhang et al. (2017)).

Then, combining Taylor Approximation in Eq. 4 and Eq. 6, the following inequality can be derived:

max
δ∈S

(|J · δ +
1

2
δTHδ|) < t. (7)

Since Hessian matrix H is orthogonally diagonalizable, it could be decomposed by eigen-
decomposition: H = EΛET . E is the eigenvector matrix [e0, e1, · · · , en] composed of H’s
eigenvectors ei, and Λ is the diagonal eigenvalue matrix with only H’s eigenvalues in the diag-
onal as the non-zero entries. Let y = ET δ, we have:

δTHδ = δTEΛET δ = (ET δ)TΛ(ET δ) = yTΛ y. (8)

Therefore, we could show that the upper bound of Eq. 7 is:

|J · δ +
1

2
δTHδ| ≤ |J · δ|+ 1

2
|yTΛ y| ≤

n∑
i=1

|Ji| · |δi|+
1

2

n∑
i=1

|λi| · |y2i |. (9)

Here δi and yi are the entries of vector δ and y, which depend on the choice of perturbation δ. Ji is
the entry of Jacobian vector, and λi is the eigenvalue of Hessian H . Intuitively, given the constraints
on δ (e.g. `∞ constraints), the upper bound highly depends on the Jacobian and Hessian matrix.
As long as the magnitude of every Ji and eigenvalue λi of Hessian H could be controlled to the
minimum, e.g. near zeros, the influence of perturbation δ can be constrained to a certain range,
i.e. robust to any noises. Therefore, the average magnitude of these two parameter sets of a neural
network could be defined as its robustness indicator.

4.2 THE GEOMETRIC EXPLANATION OF ROBUSTNESS INDICATOR

As shown in Eq. 9, model robustness highly relies on the magnitude of Jacobian entries and eigen-
values of Hessian. In differential geometry, these parameters has their specific geometry meaning:

Figure 5: An 1-D illustration
of slope and curvature

For a multi-variable function F (x), Jacobian entry Ji measures the
slope of the tangent vector at point x along xi axis, where low value
denotes flat neighborhood. Therefore, it’s easy to understand that
smaller Jacobian leads to a flat minima. Meanwhile, magnitude of
eigenvalues λi of Hessian denotes the curvature (Alain et al. (2018);
Cheeger & Ebin (2008)), which is defined as:

κ = 1/r. (10)

κ is the reciprocal of the radius R of osculating circle at current
point. The conception in simple 1-d case is shown in Fig. 5. Clearly,
lower curvature (small eigenvalues) means that the hyperplane bends
less, leading to a wider neighborhood of original point.

Based on the differential geometry meaning of Jacobian and Hessian, we could conclude that both
constraints on Jacobian and Hessian in Eq. 9 appeal for a wider and flatter local neighborhood of input
space decision surface (not parameter space). This is consistent with our preliminary visualization
results in Fig. 3. Next, we will qualitatively and quantitatively demonstrate the effectiveness of our
neural network robustness indicator.

4.3 ROBUSTNESS INDICATOR EVALUATION: A CASE STUDY

Decision Surface of Natural Model vs. Robust Model In this section, we compare two pairs
of robust and natural models on MNIST and CIFAR10. The two pair of models are released in
MNIST/CIFAR adversarial challenges (Madry et al. (2018)) with same structure and comparable
accuracy in natural test settings but different degree of robustness. The robust MNIST model is
trained by Min-Max optimization and could achieve ∼88% accuracy under all attacks with the
`∞ < 0.3 constraints on a (0, 1) pixel range, which is believed to be the currently most robust model

6

Under review as a conference paper at ICLR 2019

(d) Robust-Adv(a) Natural-Rdm (b) Natural-Adv (c) Robust-Rdm

M
N

IS
T

Figure 6: Decision Surface of the natural and robust model on MNIST. (a)-(d): natural model
surface with random projection, adversarial projection; robust model surface with random projection,
adversarial projection (red arrows denote the adversarial direction with step size = 0.05). On robust
model surface, both original input and its neighbor points (within `∞ < 0.3) locate on the flat plateau.
However, natural surfaces usually show sharp peaks and thus are vulnerable to adversarial noises.

on MNIST dataset. By contrast, the natural model can be totally broken with 0.0% accuracy within
same constraints. CIFAR models are same as Sec. 2. To prove our geometric robustness theory, we
first visualize two pair of models’ decision surfaces in Fig. 6 (MNIST), and Fig. 7 (CIFAR10).

From Fig. 6, we can find significant difference between natural and robust decision surface: On robust
decision surfaces (c) and (d), whether we choose random or adversarial projection, all neighborhood
points around the original input point locates on the high plateau with L(x) > 0. The surface in the
neighborhood is rather flat with minimum slopes until it reaches `∞ < 0.3 constraints, which is the
given adversarial attack constraint. This explains its exceptional robustness against all adversarial
attacks. By contrast, natural decision surfaces shows sharp peaks and large slopes, on which decision
confidence could quickly drop to negative along the y-axis. For CIFAR10 models as shown in Fig. 7,
similar conclusions could be drawn that the degree of adversarial robustness depends on how well
models could fit the neighborhood of input points, and a flat and wide plateau around the original
points on decision surface is one of the most desired properties of a robust model 2.

Jacobian and Hessian Statistics Analysis We also analyze the statistics of previous natural and
robust MNIST model’s Jacobian and Hessian matrix. We randomly take 100 input images from test
set and calculate their Jacobian and Hessian using natural and robust model, respectively. The data
distribution and visualization results are shown in Fig. 8.

First, the `1 norm of robust model’s Jacobian is much smaller than natural models: average `1 norm of
robust model’s Jacobian is about ∼ 50, ten times less than ∼ 500 of natural model’s. And `1 norm of
robust model’s Hessian are 0.53, two times less than 1.26 of natural models’. Therefore, the statistics

2More examples could be found in Appendix.

(d) Robust-Adv(a) Natural-Rdm (b) Natural-Adv (c) Robust-Rdm

C
IF

A
R

-1
0

Figure 7: Comparison of Decision Surface of natural and robust model on CIFAR10 (step size = 1).
As assumed, natural model’s surface shows sharp peaks while robust model’s shows flat plateau.

7

Under review as a conference paper at ICLR 2019

N
at

u
ra

l
M

o
d

el
R

o
b
u

st
 M

o
d

el

Figure 8: MINST models’ Jacobian and Hessian visualization and analysis with randomly selected
input image "6". Robust model’s Jacobian and Hessian are more sparse, and have smaller `1 norm.

of Jacobian and Hessian also verifies our robustness indicator theory in Eq. 9. Another significant
difference is that compared to natural model, robust model’s Jacobian and Hessian are more sparse.
For natural and robust models, the ratio of zeros in Jacobian are 1.1% and 54.0% respectively. As
for Hessian, the ratio of zeros in eigenvalues for natural and robust models are 65.6% and 97.1%
respectively3. One intuitive explanation of the relationship between robustness with Jacobian sparsity
is that natural model’s Jacobian contains many un-meaningful but noisy gradients, while most of
robust model’s Jacobian non-zero entries concentrate on the main trace of the digits, or so-called main
features. This assumption is based on our observation that for most input images, robust model’s
Jacobian could precisely capture the main trace of digits or main patterns of the object, as shown in
Fig. 8. In such ways, if adversarial noise is uniformly injected into every pixel of the input image,
only a small portion of them will be likely to influence decision, thus more robust to perturbations.

5 TOWARD ROBUSTNESS ENHANCEMENT AGAINST ADVERSARIAL ATTACKS

5.1 ROBUST TRAINING FOR SMOOTHING DECISION SURFACE IN INPUT SPACE

As shown in Eq. 9, better robustness of neural networks needs lower magnitude or zero Jacobian and
Hessian. Here, we use Jacobian of our decision function L(θ, x) w.r.t x. Therefore to improve the
network robustness and flatten the local minima, we propose a simple yet effective approach: add a
regularizer on the Jacobian of decision loss L(x) in network training process. This could be done
through double backpropagation (Drucker & Le Cun (1991)). As for Hessian eigenvalue, calculating
the Hessian eigenvalues takes Θ(k3) complexity (k is parameter space dimension). Currently there
is no efficient way to regulate it in neural network context. Possible techniques to use are Hessian
diagonal approximation (Martens (2010); Becker et al. (1988)), which we leave as future work.

To regulate the Jacobian of decision function L(θ, x), we could add a regularization term on
∂L(θ, x)/∂x to network training loss Lossθ(x):

Lossθ(x) = Lce + c · Lnorm(
∂L(θ, x)

∂x
), (11)

where Lce is cross-entropy loss, and hyper parameter c is the factor of penalty strength. For the
regulation term Lnorm(·), we can choose `1, `2 or `∞. As aforementioned, introducing the gradient
loss into the training loss needs us to solve a second-order gradient computing problem. To solve this
problem, double backpropagation (Drucker & Le Cun (1991)) is needed. The cross-entropy loss are
first computed by forward-propagation, with the gradients then being calculated by backpropagation.
Note here we need to calculate both ∂Lce/∂θ and ∂L(θ, x))/∂x as required in Eq. 12. Then, to
minimize the gradient loss, the second-order mixed partial derivative of gradient loss w.r.t θ is
calculated. Note this mixed partial derivative is different from Hessian (which is pure second-
order derivative of x or w), and thus is calculable (Ororbia et al. (2016)). After this, a second

3Jacobian and Hessian matrix entries are mostly near zero but non-zero values, therefore we consider values
below 10e-3 (Jacobian) and 10e-10 (Hessian) as zeros.

8

Under review as a conference paper at ICLR 2019

Table 1: Test Accuracy of adversarial examples on MNIST dataset (%)
FGSM BIM C&W

Models Natural 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

Natural Model 99.1 67.3 12.9 4.7 22.5 0.0 0.0 21.6 0.0 0.0
AdvTrain 99.1 73.0 52.7 10.9 62.0 6.5 0.0 71.09 17.0 2.1
CrossEntropy 99.2 91.6 60.4 18.3 87.9 19.9 0.0 88.09 20.0 0.0
Ours 98.4 91.6 70.3 41.6 88.1 64.9 26.7 89.2 72.6 37.6

Table 2: Test Accuracy of adversarial examples on CIFAR10 dataset (%)
FGSM BIM C&W

Models Natural 3 6 9 3 6 9 3 6 9

Natural Model 87.2 5.8 2.4 1.6 0.7 0.0 0.0 0.6 0.0 0.0
AdvTrain* 84.5 10.2 5.8 2.6 1.4 0.0 0.0 0.0 0.0 0.0
CrossEntropy* 86.2 19.1 9.5 6.1 2.6 0.7 0.4 2.1 1.5 1.4
Ours 84.2 59.8 41.9 31.0 54.6 29.5 20.3 53.7 29.8 20.1
Ours+AdvTrain 83.1 68.5 48.5 38.2 62.7 39.3 30.3 60.5 39.0 30.3
MinMax* 79.4 65.8 55.6 47.4 64.2 49.3 41.1 62.9 48.5 40.7
* AdvTraining denotes adversarial training (Kurakin et al. (2016)). CrossEntropy denotes the cross entropy

gradient regularization (Ross & Doshi-Velez (2018)). MinMax denotes (Madry et al. (2018))’s method.

backpropagation operation is performed, and the weights of neural networks are updated according
to gradient descent algorithm:

θ ′ = θ − lr · (∂Lce
∂θ

)− lr · c (
∂Lnorm(∂L(θ, x)/∂x)

∂θ
). (12)

Compared to adversarial training based defense techniques, our proposed robust training method
doesn’t rely on adversarial example generation method, and thus is capable to defend against
different adversarial attacks. The main extra computation overhead is the doubled backpropagation
computation time, which we will show in the following experiments.

5.2 ROBUST TRAINING PERFORMANCE EVALUATION

For comparison of the effect of robustness enhancement, we conduct different previous techniques:
adversarial training (Kurakin et al. (2016)), cross-entropy gradient regularization (Ross & Doshi-
Velez (2018)), Min-Max training (Madry et al. (2018)), our method, and etc. Evaluated adversarial
attacks include Fast Gradient Sign Method (FGSM), Basic Iterative Method (BIM) and C&W attack.
Detailed experiment settings could be found in Appendix. Final results are shown in Table. 1 and 2.

On MNIST dataset, our proposed gradient regularization method can achieve ∼ 90% accuracy under
all considered attacks within `∞ = 0.1 constraints. Cross entropy gradient regularization (Ross
& Doshi-Velez (2018)) achieves similar robustness as ours within `∞ = 0.1, but their robustness
performance drops very fast when adversarial attacking strengths increases, e.g. under `∞ = 0.2, 0.3
attacks. The reason is that the softmax and cross entropy operation introduces unnecessary non-
linearity, in which case the gradients from cross entropy loss is already very small.

Improving robustness on CIFAR10 dataset is much harder than MNIST. State-of-the-art MinMax
training achieves ∼ 40% accuracy under strongest attacks in considered settings. But this method
highly relies on huge amounts of adversarial data augmentation methods, which takes over 10 times
of overhead during training process. By contrast, our method doesn’t need adversarial example
generation and can achieves comparable robustness under `∞ = 3 constraints. We test the average
time of each epoch for both natural training and gradient regularized training. Our time consumption
is average 2.1 times than natural training per epoch. Notice that the robustness enhancement
of our method becomes lower when `∞ becomes larger. This shows one limitation of gradient
regularization methods: Our gradient regularization approach is based on Taylor approximation in a
small neighborhood. When the adversarial examples exceeds the reasonable approximating range, the
gradient regularization effect also exhausts. Empirically, we found robust training usually takes more
epochs to converge: On CIFAR10, natural training takes about 30 epochs, our method usually need
100 epochs, and MinMax robust training takes over 400 epochs to converge in our implementation.

9

Under review as a conference paper at ICLR 2019

5.3 ANALYZING THE INPUT SPACE DECISION SURFACE AND STATISTICS

(a) Natural Model Surface (b) Our Model Surface

Figure 9: Natural and our robust model surface.

To test if our robust training method flattens the
loca minima of decision surfaces, we also visual-
ize and comapre natural and our model’s decision
surface, as shwon in Fig. 9. Compared to natu-
ral model’s surface, our model clearly has wider
local neighborhood and lower slopes as expected.
Meanwhile, the statistics of Jacobian and Hessian
on MNIST models also align well with our previ-
ous robustness indication: The average `1 norm of
Jacobian and Hessian of our models are 10 and 3
times less than natural model, respectively.

Fig. 10 shows several examples and their Jacobian visualization of both natural and robust models
(normalized to 0 ∼ 255 range for visualization). The robust model’s Jacobian demonstrates better
capability to capture the main feature of images on both MNIST and CIFAR10, as mentioned before.

6 RELATED WORK

Previous one popular hypothesis is that neural network’s good generalization comes from flat local
minima of the loss function in parameter space (Im et al. (2017); Keskar et al. (2017); Dinh et al.
(2017); Kawaguchi (2016)). For example, Li et al. (2017) propose a visualize technique which
establishes good connections between the minima geometry and generalization on ResNet. However,
recently adversarial examples were introduced, which challenges the above generalization theory.
Many adversarial attack methods are proposed (Szegedy et al. (2013); Kurakin et al. (2016); Carlini
& Wagner (2017); Papernot et al. (2016a)). As for defense techniques, current defense techniques
include adversarial training (Ian J. Goodfellow (2014)), defensive distillation (Papernot et al. (2016b)),
parseval network (Cisse et al. (2017)), Min-Max robustness optimization (Madry et al. (2018)),
adversarial logit pairing (Kannan et al. (2018)), and etc. Original adversarial training techniques
augment the natural training samples with corresponding adversarial examples together with correct
labels. Recently proposed Min-Max robustness optimization (Madry et al. (2018)) augments the
training dataset with large amount of adversarial examples which cause the maximum loss increments
within a `∞-norm ball, which is currently the strongest defense.

7 CONCLUSION

In this work, through visualizing network loss surface in parameter and input space, we point out the
ineffectiveness of previous generalization theory under adversarial settings. Meanwhile, we show
that adversarial examples are essentially the neighborhood under-fitting issue of neural networks
in input space. We then derive the connection between network robustness and decision surface
geometry as an indicator of the neural network’s adversarial robustness. Guided by the indicator,
we propose a practical robust training method, which involves no adversarial example generation.
Extensive visualization results and experiments verify our theory and demonstrate the effectiveness
of our proposed robustness enhancement method.

(a) Natural Model vs Robust Model (MNIST) (b) Natural Model vs Robust Model (CIFAR10)

Figure 10: Jacobian Visualization on MNIST and CIFAR10. Through gradient regulation, neural
network is more capable to capture the main pattern of input images.

10

Under review as a conference paper at ICLR 2019

REFERENCES

Guillaume Alain, Nicolas Le Roux, and Pierre-Antoine Manzagol. Negative eigenvalues of the
hessian in deep neural networks. 2018.

Sue Becker, Yann Le Cun, et al. Improving the convergence of back-propagation learning with
second order methods. In Proceedings of the 1988 connectionist models summer school, pp. 29–37.
San Matteo, CA: Morgan Kaufmann, 1988.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

P Chaudhari, Anna Choromanska, S Soatto, Yann LeCun, C Baldassi, C Borgs, J Chayes, Levent
Sagun, and R Zecchina. Entropy-sgd: Biasing gradient descent into wide valleys. In International
Conference on Learning Representations (ICLR), 2017.

Jeff Cheeger and David G Ebin. Comparison theorems in Riemannian geometry, volume 365.
American Mathematical Soc., 2008.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International Conference on Machine
Learning, pp. 854–863, 2017.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In International Conference on Machine Learning, pp. 1019–1028, 2017.

Harris Drucker and Yann Le Cun. Double backpropagation increasing generalization performance.
In Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference on, volume 2, pp.
145–150. IEEE, 1991.

Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network
optimization problems. In International Conference on Learning Representations (ICLR), 2015.

Christian Szegedy Ian J. Goodfellow, Jonathon Shlens. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Daniel Jiwoong Im, Michael Tao, and Kristin Branson. An empirical analysis of deep network loss
surfaces. arXiv preprint arXiv:1612.04010, 2017.

Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing. arXiv preprint
arXiv:1803.06373, 2018.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, pp. 586–594, 2016.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations (ICLR), 2017.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of neural nets.
arXiv preprint arXiv:1712.09913, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. 2018.

James Martens. Deep learning via hessian-free optimization. In International Conference on Machine
Learning, 2010.

II Ororbia, G Alexander, C Lee Giles, and Daniel Kifer. Unifying adversarial training algorithms
with flexible deep data gradient regularization. arXiv preprint arXiv:1601.07213, 2016.

11

Under review as a conference paper at ICLR 2019

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In Security and Privacy (EuroS&P),
2016 IEEE European Symposium on, pp. 372–387. IEEE, 2016a.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on
Security and Privacy (SP), pp. 582–597. IEEE, 2016b.

Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and interpretability
of deep neural networks by regularizing their input gradients. In AAAI, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

12

Under review as a conference paper at ICLR 2019

8 APPENDIX

8.1 THE EXPLANATION OF INEFFECTIVENESS OF LOSS SURFACE WITH BLANKS

(a) Random Projection-1 (b) Random Projection-2

Figure 11: Two pairs of random projections of loss surfaces and decision surfaces on the same images.
We could clearly see that proposed decision surfaces can better demonstrate the geometry information
compared to loss surfaces with usually large areas of blanks. The reasons are explained below.

In Sec. 3, we mentioned that loss surfaces often demonstrate large regions of blanks. The rea-
son is that the exponential and log operation involved in the cross entropy calculation. In this
section, we give a simple case to show the ineffectiveness and demonstrate how blank regions
produce. Consider a 10-class neural network and one input image of label 0. Suppose we
have ten different logit output as [0, 1, · · · , 1], [1, 1, · · · , 1] · · · [9, 1, · · · , 1] with confidence score
ranged from -1 to 8. The corresponding cross entropy loss for ten different predictions are
[3.23, 2.30, 1.46, 0.79, 0.37, 0.15, 0.05, 0.02, 0.01, 0.01]. We could see that in low confidence cases,
cross entropy loss demonstrate informative trends with the increase of confidence. But when neural
network prediction confidence reaches or above 5, the loss hardly changes, which causes certain large
blank regions when visualizing the loss surfaces, which is consistent with Fig. 11.

8.2 DECISION SURFACE VISUALIZATION WITH MORE INPUT POINTS

8.2.1 COMPARISONS OF LOSS SURFACE AND DECISION SURFACE WITH MNIST INPUT
IMAGES

(b) Decision Surface 3D Visualization(a) Cross Entropy 3D Visualization

Figure 12: Comparison of cross entropy loss surface and decision surface of state-of-the-art robust
model trained by MinMax robust training. We can see that cross entropy based loss surfaces
demonstrate the opposite geometry with decision surface, but decision surfaces are more stable and
clear in both high confidence areas and low confidence areas.

8.2.2 COMPARISONS OF ROBUST AND NATURAL MODELS WITH CIFAR INPUT IMAGES

13

Under review as a conference paper at ICLR 2019

(a) Random Projection (b) Adv Projection

Figure 13: Comparison of Natural Projection and Adversarial Projection on Natural Models. We
could find that even with random projections, the loss and decision surfaces could demonstrate highly
non-smooth patterns. This neighborhood under-fitting issue is the cause of adversarial examples.

(b) Our Robust Model

(left: loss surface,

right: decision surface)

(a) Our Natural Model

(left: loss surface,

right: decision surface)

Figure 14: Comparison of Adversarial Projections on Natural and our Robust Models. We could find
that the gradient regularization indeed smooths the network decision surfaces, bringing lower slopes.
Therefore, adversarial attacks need to add step size to change the neural network decision.

8.3 EXPERIMENT SETTINGS

In the evaluation on MNIST dataset, a four-layer neural network model with two convolutional layers
and two fully connected layers is adopted. After natural training, the baseline model achieves 99.17%
accuracy. And for CIFAR10, we use a regular ConvNet with five convolutional layers and one global
average pooling layer. For iterative methods BIM and C&W attack, we use 10 iterations and step size
= 0.1 on MNIST and 1 on CIFAR. In adversarial training method, we use C&W attack to generate
adversarial examples: For MNIST, we use 10 iterations, step size = 0.1, `∞ = 0.3 on pixel range
0 ∼ 1. For CIFAR10, we use 10 iterations, step size = 1, `∞ = 8 on pixel range 0 ∼ 255. The
gradient regularization coefficient c (in Eq. 12) is set to 500 for gradient regularization.

14

Under review as a conference paper at ICLR 2019

8.4 INTERPRETABILITY OF JACOBIAN OF OUR ROBUST MODELS

Input Image

(a) Robust Model’s Jacobian from 10 Logits

(b) Natural Model’s Jacobian from 10 Logits

Figure 15: Comparison of robust model’s and natural model’s Jacobian Visualization. (Both normal-
ized to 0 ∼ 255 for visualization.) As we declared before, the property that Jacobian concentrates on
the main pattern of images could enable the neural network better resistance with adversarial noises.

8.5 MORE PARAMETER SPACE EXAMPLES OF NATURAL VS. ROBUST MODELS

In this section, we provide more parameter space loss surface examples of natural and robust
models (Madry et al. (2018)). Specifically, there are four possible combinations of parameter space
settings: 1. natural model surface on natural input; 2. natural model surface on adversarial input;
3. robust model surface on natural input; 4. robust model surface on adversarial input. Here we
show more examples of parameter space in the above four situations. Here natural input is one
random batch (10 images from CIFAR10 test set), and adversarial input are FGSM (Kurakin et al.
(2016)), Least-Likely attack (Kurakin et al. (2016)), and C&W (Carlini & Wagner (2017)) adversarial
examples with eps=3 (Least-Likely and C&W use 10 iterations with step=1). All parameter space
cross-entropy loss visualization results are shown in Fig. 16.

As expected, in parameter space, natural model’s loss surface on adversarial inputs has a larger base
height than the robust model, i.e. the average loss values are much higher than robust models. But
the gap is only obvious on weak attacks, like FGSM, as shown in Fig. 16 (b). When we use strong
attacks like C&W in Fig. 16 (d), the loss surfaces of the natural model and robust model become
similar again: Both models’ surfaces demonstrate high cross-entropy loss.

Therefore, we can use the loss surface in weight space to show their robustness difference if they are
both plotted with weak adversarial inputs. But when we are facing stronger iterative attacks, the loss
surface in weight space can no longer show any difference, thus cannot indicate the model robustness.
By contrast, our input space loss surfaces can explicitly show the model robustness difference with no
such restrictions, and the robustness difference can also be more obviously demonstrated, as shown
in main paper Fig.3. And thus we believe these are the advantages of using input space loss surface
to indicate the model robustness.

15

Under review as a conference paper at ICLR 2019

N
at

u
ra

l
M

o
d
el

R
o
b
u
st

 M
o
d
el

(a) Natural Inputs (b) FGSM Adv. Inputs (c) LL Adv. Inputs (d) C&W Adv. Inputs

Figure 16: More examples of natural model’s and robust model’s loss surfaces in parameter space. As
expected, robust model’s loss surface in parameter space is more stable under weak attacks compared
to the natural model, as shown in (b) and (c). (In case of misunderstanding, we note that the blue
region is low loss region, and the red region is high loss region. The "more stable" means loss
increment is less in robust model’s loss surface, when comparing the second row to the first row.) But
under stronger attacks, like C&W attack in (d), robust model’s and natural model’s loss surfaces in
parameter space become similar again. Therefore, parameter space loss surfaces may not be suitable
to indicate robustness well under such strong attack situations.

8.6 ADDITIONAL MNIST AND CIFAR10 EXPERIMENTAL RESULTS

Due to space limit, we add the left MNIST and CIFAR10 experimental results in Table. 3 and Table. 4
here.

Table 3: Test Accuracy of adversarial examples on MNIST dataset (%)
FGSM BIM C&W

Models Natural 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

Ours+AdvTrain 95.9 87.6 72.2 44.1 89.2 67.2 28.4 89.6 73.2 39.5
MinMax 98.3 97.3 96.3 95.2 97.2 94.3 92.8 97.6 96.4 94.5

Table 4: Original MinMax Model’s Test Accuracy of adversarial examples on CIFAR dataset (%)
FGSM BIM C&W

Model Natural 3 6 8 9 3 6 8 9 3 6 8 9

MinMax 87.3 75.3 63.2 56.1 53.4 74.2 59.3 48.7 46.2 74.2 59.2 49.8 46.1

16

	Introduction
	Ineffectiveness of Adversarial Robustness Estimation from the Loss Surface in Parameter Space
	Visualization Neural Network Loss Surface by Projection
	The Loss Surface in Parameter Surface vs. Input Space

	Revealing Adversarial Attacks' Mechanism through Decision Surface Analysis
	Extend Loss Surface to Decision Surface
	Shared Mechanism of Various Adversarial Attacks

	Adversarial Robustness Indicator with Decision Surface Geometry
	Theoretical Robustness Bound based on Second-Order Taylor Expansion
	The Geometric Explanation of Robustness Indicator
	Robustness Indicator Evaluation: A Case Study

	Toward Robustness Enhancement against Adversarial Attacks
	Robust Training for Smoothing Decision Surface in Input Space
	Robust Training Performance Evaluation
	Analyzing the Input Space Decision Surface and Statistics

	Related Work
	Conclusion
	Appendix
	The Explanation of Ineffectiveness of Loss Surface with Blanks
	Decision Surface Visualization with More Input Points
	Comparisons of Loss Surface and Decision Surface With MNIST Input Images
	Comparisons of Robust and Natural Models With CIFAR Input Images

	Experiment Settings
	Interpretability of Jacobian of Our Robust Models
	More Parameter Space Examples of Natural vs. Robust Models
	Additional MNIST and CIFAR10 Experimental Results

