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ABSTRACT

Many irregular domains such as social networks, financial transactions, neuron
connections, and natural language structures are represented as graphs. In recent
years, a variety of graph neural networks (GNNs) have been successfully applied
for representation learning and prediction on such graphs. However, in many of
the applications, the underlying graph changes over time and existing GNNs are
inadequate for handling such dynamic graphs. In this paper we propose a novel
technique for learning embeddings of dynamic graphs based on a tensor algebra
framework. Our method extends the popular graph convolutional network (GCN)
for learning representations of dynamic graphs using the recently proposed tensor
M-product technique. Theoretical results that establish the connection between
the proposed tensor approach and spectral convolution of tensors are developed.
Numerical experiments on real datasets demonstrate the usefulness of the pro-
posed method for an edge classification task on dynamic graphs.

1 INTRODUCTION

Graphs are popular data structures used to effectively represent interactions and structural relation-
ships between entities in structured data domains. Inspired by the success of deep neural networks
for learning representations in the image and language domains, recently, application of neural net-
works for graph representation learning has attracted much interest. A number of graph neural net-
work (GNN) architectures have been explored in the contemporary literature for a variety of graph
related tasks and applications (Hamilton et al., 2017; Seo et al., 2018; Chen et al., 2018; Zhou et al.,
2018; Wu et al., 2019). Methods based on graph convolution filters which extend convolutional neu-
ral networks (CNNs) to irregular graph domains are popular (Bruna et al., 2013; Defferrard et al.,
2016; Kipf and Welling, 2016). Most of these GNN models operate on a given, static graph.

In many real-world applications, the underlining graph changes over time, and learning representa-
tions of such dynamic graphs is essential. Examples include analyzing social networks (Berger-Wolf
and Saia, 2006), predicting collaboration in citation networks (Leskovec et al., 2005), detecting fraud
and crime in financial networks (Weber et al., 2018; Pareja et al., 2019), traffic control (Zhao et al.,
2019), and understanding neuronal activities in the brain (De Vico Fallani et al., 2014). In such
dynamic settings, the temporal interdependence in the graph connections and features also play a
substantial role. However, efficient GNN methods that handle time varying graphs and that capture
the temporal correlations are lacking.

By dynamic graph, we mean a sequence of graphs (V,A(t),X(t)), t ∈ {1, 2, . . . , T}, with a fixed
set V of N nodes, adjacency matrices A(t) ∈ RN×N , and graph feature matrices X(t) ∈ RN×F

where X
(t)
n: ∈ RF is the feature vector consisting of F features associated with node n at time t.

The graphs can be weighted, and directed or undirected. They can also have additional properties
like (time varying) node and edge classes, which would be stored in a separate structure. Suppose
we only observe the first T ′ < T graphs in the sequence. The goal of our method is to use these
observations to predict some property of the remaining T − T ′ graphs. In this paper, we use it for
edge classification. Other potential applications are node classification and edge/link prediction.

In recent years, tensor constructs have been explored to effectively process high-dimensional data,
in order to better leverage the multidimensional structure of such data (Kolda and Bader, 2009).
Tensor based approaches have been shown to perform well in many image and video processing ap-
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Figure 1: TensorGCN approach.

plications (Hao et al., 2013; Kilmer et al., 2013; Martin et al., 2013; Zhang et al., 2014; Zhang and
Aeron, 2016; Lu et al., 2016; Newman et al., 2018). A number of tensor based neural networks have
also been investigated to extract and learn multi-dimensional representations, e.g. methods based
on tensor decomposition (Phan and Cichocki, 2010), tensor-trains (Novikov et al., 2015; Stouden-
mire and Schwab, 2016), and tensor factorized neural network (Chien and Bao, 2017). Recently, a
new tensor framework called the tensor M-product framework (Braman, 2010; Kilmer and Martin,
2011; Kernfeld et al., 2015) was proposed that extends matrix based theory to high-dimensional
architectures.

In this paper, we propose a novel tensor variant of the popular graph convolutional network (GCN)
architecture (Kipf and Welling, 2016), which we call TensorGCN. It captures correlation over time
by leveraging the tensor M-product framework. The flexibility and matrix mimeticability of the
framework, help us adapt the GCN architecture to tensor space. Figure 1 illustrates our method
at a high level: First, the time varying adjacency matrices A(t) and feature matrices X(t) of the
dynamic graph are aggregated into an adjacency tensor and a feature tensor, respectively. These
tensors are then fed into our TensorGCN, which computes an embedding that can be used for a
variety of tasks, such as link prediction, and edge and node classification. GCN architectures are
motivated by graph convolution filtering, i.e., applying filters/functions to the graph Laplacian (in
turn its eigenvalues) (Bruna et al., 2013), and we establish a similar connection between TensorGCN
and spectral filtering of tensors. Experimental results on real datasets illustrate the performance of
our method for the edge classification task on dynamic graphs. Elements of our method can also be
used as a preprocessing step for other dynamic graph methods.

2 RELATED WORK

The idea of using graph convolution based on the spectral graph theory for GNNs was first intro-
duced by Bruna et al. (2013). Defferrard et al. (2016) then proposed Chebnet, where the spectral
filter was approximated by Chebyshev polynomials in order to make it faster and localized. Kipf and
Welling (2016) presented the simplified GCN, a degree-one polynomial approximation of Chebnet,
in order to speed up computation further and improve the performance. There are many other works
that deal with GNNs when the graph and features are fixed/static; see the review papers by Zhou
et al. (2018) and Wu et al. (2019) and references therein. These methods cannot be directly applied
to the dynamic setting we consider. Seo et al. (2018) devised the Graph Convolutional Recurrent
Network for graphs with time varying features. However, this method assumes that the edges are
fixed over time, and is not applicable in our setting. Wang et al. (2018) proposed a method called
EdgeConv, which is a neural network (NN) approach that applies convolution operations on static
graphs in a dynamic fashion. Their approach is not applicable when the graph itself is dynamic.
Zhao et al. (2019) develop a temporal GCN method called T-GCN, which they apply for traffic
prediction. Their method assumes the graph remains fixed over time, and only the features vary.

The set of methods most relevant to our setting of learning embeddings of dynamic graphs use com-
binations of GNNs and recurrent architectures (RNN), to capture the graph structure and handle
time dynamics, respectively. The approach in Manessi et al. (2019) uses Long Short-Term Memory
(LSTM), a recurrent network, in order to handle time variations along with GNNs. They design
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architectures for semi-supervised node classification and for supervised graph classification. Pareja
et al. (2019) presented a variant of GCN called EvolveGCN, where Gated Recurrent Units (GRU)
and LSTMs are coupled with a GCN to handle dynamic graphs. This paper is currently the state-
of-the-art. However, their approach is based on a heuristic RNN/GRU mechanism, which is not
theoretically viable, and does not harness a tensor algebraic framework to incorporate time varying
information. Newman et al. (2018) present a tensor NN which utilizes the M-product tensor frame-
work. Their approach can be applied to image and other high-dimensional data that lie on regular
grids, and differs from ours since we consider data on dynamic graphs.

3 TENSOR M-PRODUCT FRAMEWORK

Here, we cover the necessary preliminaries on tensors and the M-product framework. For a more
general introduction to tensors, we refer the reader to the review paper by Kolda and Bader (2009).
In this paper, a tensor is a three-dimensional array of real numbers denoted by boldface Euler script
letters, e.g. X ∈ RI×J×T . Matrices are denoted by bold uppercase letters, e.g. X; vectors are
denoted by bold lowercase letter, e.g. x; and scalars are denoted by lowercase letters, e.g. x. An
element at position (i, j, t) in a tensor is denotes by subscripts, e.g. Xijt, with similar notation
for elements of matrices and vectors. A colon will denote all elements along that dimension; Xi:

denotes the ith row of the matrix X, and X::k denotes the kth frontal slice of X. The vectors Xij:

are called the tubes of X.

The framework we consider relies on a new definition of the product of two tensors, called the
M-product (Braman, 2010; Kilmer and Martin, 2011; Kilmer et al., 2013; Kernfeld et al., 2015).
A distinguishing feature of this framework is that the M-product of two three-dimensional tensors
is also three-dimensional, which is not the case for e.g. tensor contractions (Bishop and Goldberg,
2012). It allows one to elegantly generalize many classical numerical methods from linear algebra,
and has been applied e.g. in neural networks (Newman et al., 2018), imaging (Kilmer et al., 2013;
Martin et al., 2013; Semerci et al., 2014), facial recognition (Hao et al., 2013), and tensor completion
and denoising (Zhang et al., 2014; Zhang and Aeron, 2016; Lu et al., 2016). Although the framework
was originally developed for three-dimensional tensors, which is sufficient for our purposes, it has
been extended to handle tensors of dimension greater than three (Martin et al., 2013). The following
definitions 3.1–3.3 describe the M-product.
Definition 3.1 (M-transform). Let M ∈ RT×T be a mixing matrix. The M-transform of a tensor
X ∈ RI×J×T is denoted by X×3 M ∈ RI×J×T and defined elementwise as

(X×3 M)ijt
def
=

T∑
k=1

MtkXijk. (1)

We say that X ×3 M is in the transformed space. Note that if M is invertible, then (X ×3 M) ×3

M−1 = X. Consequently, X ×3 M−1 is the inverse M-transform of X. The definition in (1)
may also be written in matrix form as X×3 M

def
= fold(Munfold(X)), where the unfold operation

takes the tubes of X and stack them as columns into a T × IJ matrix, and fold(unfold(X)) = X.
Appendix A provides illustrations of how the M-transform works.
Definition 3.2 (Facewise product). Let X ∈ RI×J×T and Y ∈ RJ×K×T be two tensors. The
facewise product, denote by X4Y ∈ RI×K×T , is defined facewise as (X4Y)::t

def
= X::tY::t.

Definition 3.3 (M-product). Let X ∈ RI×J×T and Y ∈ RJ×K×T be two tensors, and let M ∈
RT×T be an invertible matrix. The M-product, denoted by X ? Y ∈ RI×K×T , is defined as

X ? Y
def
= ((X×3 M)4(Y×3 M))×3 M−1.

In the original formulation of the M-product, M was chosen to be the Discrete Fourier Transform
(DFT) matrix, which allows efficient computation using the Fast Fourier Transform (FFT) (Braman,
2010; Kilmer and Martin, 2011; Kilmer et al., 2013). The framework was later extended for arbitrary
invertible M (e.g. discrete cosine and wavelet transforms) (Kernfeld et al., 2015). A benefit of
the tensor M-product framework is that many standard matrix concepts can be generalized in a
straightforward manner. Definitions 3.4–3.7 extend the matrix concepts of diagonality, identity,
transpose and orthogonality to tensors (Braman, 2010; Kilmer et al., 2013).
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Definition 3.4 (f-diagonal). A tensor X ∈ RN×N×T is said to be f-diagonal if each frontal slice
X::t is diagonal.

Definition 3.5 (Identity tensor). Let Î ∈ RN×N×T be defined facewise as Î::t = I, where I is the
matrix identity. The M-product identity tensor I ∈ RN×N×T is then defined as I def

= Î×3 M−1.

Definition 3.6 (Tensor transpose). The transpose of a tensor X is defined as X>
def
= Y ×3 M−1,

where Y::t = (X×3 M)>::t for each t ∈ {1, . . . , T}.
Definition 3.7 (Orthogonal tensor). A tensor X ∈ RN×N×T is said to be orthogonal if X ?X> =

X> ?X = I.

Leveraging these concepts, a tensor eigendecomposition can now be defined (Braman, 2010; Kilmer
et al., 2013):
Definition 3.8 (Tensor eigendecomposition). Let X ∈ RN×N×T be a tensor and assume that each
frontal slice (X ×3 M)::t is symmetric. We can then eigendecompose these as (X ×3 M)::t =

Q̂::tD̂::tQ̂
>
::t, where Q̂::t ∈ RN×N is orthogonal and D̂::t ∈ RN×N is diagonal (see e.g. Theo-

rem 8.1.1 in Golub and Van Loan (2013)). The tensor eigendecomposition of X is then defined as
X

def
= Q ?D ?Q>, where Q

def
= Q̂×3 M−1 is orthogonal, and D

def
= D̂×3 M−1 if f-diagonal.

4 TENSOR DYNAMIC GRAPH EMBEDDING

Our approach is inspired by the first order GCN by Kipf and Welling (2016) for static graphs, owed
to its simplicity and effectiveness. For a graph with adjacency matrix A and feature matrix X, a
GCN layer takes the form Y = σ(ÃXW), where

Ã
def
= D̃−1/2(A + I)D̃−1/2,

D̃ is diagonal with D̃ii = 1 +
∑

j Aij , I is the matrix identity, W is a matrix to be learned when
training the NN, and σ is an activation function, e.g., ReLU. Our approach translates this to a tensor
model by utilizing the M-product framework. We first introduce a tensor activation function σ̂ which
operates in the transformed space.
Definition 4.1. Let A ∈ RI×J×T be a tensor and σ an elementwise activation function. We define
the activation function σ̂ as σ̂(A)

def
= σ(A×3 M)×3 M−1.

We can now define our proposed dynamic graph embedding. Let A ∈ RN×N×T be a tensor with
frontal slices A::t = Ã(t), where Ã(t) is the normalization of A(t). Moreover, let X ∈ RN×F×T

be a tensor with frontal slices X::t = X(t). Finally, let W ∈ RF×F ′×T be a weight tensor. We
define our dynamic graph embedding as Y = A ?X ?W ∈ RN×F ′×T . This computation can also
be repeated in multiple layers. For example, a 2-layer formulation would be of the form

Y = A ? σ̂(A ?X ?W(0)) ?W(1).

One important consideration is how to choose the matrix M which defines the M-product. For
time-varying graphs, we choose M to be lower triangular and banded so that each frontal slice
(A×3 M)::t is a linear combination of the adjacency matrices A::max(1,t−b+1), . . . ,A::t, where we
refer to b as the “bandwidth” of M. This choice ensures that each frontal slice (A ×3 M)::t only
contains information from current and past graphs that are close temporally. Specifically, the entries
of M are set to

Mtk
def
=

{
1

min(b,t) if max(1, t− b+ 1) ≤ k ≤ t,
0 otherwise,

which implies that
∑

k Mtk = 1 for each t. Another possibility is to treat M as a parameter matrix
to be learned from the data.

In order to avoid over-parameterization and improve the performance, we choose the weight tensor
W (at each layer), such that each of the frontal slices of W in the transformed domain remains
the same, i.e., (W ×3 M)::t = (W ×3 M)::t′ ∀t, t′. In other words, the parameters in each layer
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are shared and learned over all the training instances. This reduces the number of parameters to be
learned significantly.

An embedding Y ∈ RN×F ′×T can now be used for various prediction tasks, like link prediction,
and edge and node classification. In Section 5, we apply our method for edge classification by using
a model similar to that used by Pareja et al. (2019): Given an edge between nodes m and n at time
t, the predictive model is

p(m,n, t)
def
= softmax(U[(Y×3 M)m:t, (Y×3 M)n:t]

>),

where (Y ×3 M)m:t ∈ RF ′
and (Y ×3 M)n:t ∈ RF ′

are row vectors, U ∈ RC×2F ′
is a weight

matrix, and C the number of classes. Note that the embedding Y is first M-transformed before
the matrix U is applied to the appropriate feature vectors. This, combined with the fact that the
tensor activation functions are applied elementwise in the transformed domain, allow us to avoid
ever needing to apply the inverse M-transform. This approach reduces the computational cost, and
has been found to improve performance in the edge classification task.

4.1 THEORETICAL MOTIVATION FOR TENSORGCN

Here, we present the results that establish the connection between the proposed TensorGCN and
spectral convolution of tensors, in particular spectral filtering and approximation on dynamic graphs.
This is analogous to the graph convolution based on spectral graph theory in the GNNs by Bruna
et al. (2013), Defferrard et al. (2016), and Kipf and Welling (2016). All proofs are provided in
Appendix D.

Let L ∈ RN×N×T be a form of tensor Laplacian defined as L def
= I−A. Throughout the remainder

of this subsection, we will assume that the adjacency matrices A(t) are symmetric.

Proposition 4.2. The tensor L has an eigendecomposition L = Q ?D ?Q>.

Much like the spectrum of a normalized graph Laplacian is contained in [0, 2] (Shuman et al., 2013),
the tensor spectrum of L satisfies a similar property.

Proposition 4.3 (Spectral bound). The entries of D̂ = D×3 M lie in [0, 2].

Following the work by Kilmer et al. (2013), three-dimensional tensors in RM×N×T can be viewed
as operators on N × T matrices, with those matrices “twisted” into tensors in RN×1×T . With this
in mind, we define a tensor variant of the graph Fourier transform.
Definition 4.4 (Tensor-tube M-product). Let X ∈ RI×J×T and θ ∈ R1×1×T . Analogously to the
definition of the matrix-scalar product, we define X ? θ via (X ? θ)ij:

def
= Xij: ? θ.

Definition 4.5 (Tensor graph Fourier transform). Let X ∈ RN×F×T be a tensor. We define a tensor
graph Fourier transform F as F (X)

def
= Q> ?X ∈ RN×F×T .

This is analogous to the definition of the matrix graph Fourier transform. This defines a convolution
like operation for tensors similar to spectral graph convolution (Shuman et al., 2013; Bruna et al.,
2013). Each lateral slice X:j: is expressible in terms of the set {Q:n:}Nn=1 as follows:

X:j: = Q ?Q> ?X:j: =

N∑
n=1

Q:n: ? (Q
> ?X:j:)n1:,

where each (Q> ? X:j:)n1: ∈ R1×1×T can be considered a tubal scalar. In fact, the lateral slices
Q:n: form a basis for the set RN×1×T with product ?; see Appendix D for further details.
Definition 4.6 (Tensor spectral graph filtering). Given a signal X ∈ RN×1×T and a function g :
R1×1×T → R1×1×T , we define the tensor spectral graph filtering of X with respect to g as

Xfilt
def
= Q ? g(D) ?Q> ?X, (2)

where

g(D)mn:
def
=

{
g(Dmn:) if m = n,

0 if m 6= n.
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In order to avoid the computation of an eigendecomposition, Defferrard et al. (2016) use a polyno-
mial to approximate the filter function. We take a similar approach, and approximate g(D) with an
M-product polynomial. For this approximation to make sense, we impose additional structure on g.
Assumption 4.7. Assume that g : R1×1×T → R1×1×T is defined as

g(V)
def
= f(V×3 M)×3 M−1,

where f is defined elementwise as f(V ×3 M)11t
def
= f (t)((V ×3 M)11t) with each f (t) : R → R

continuous.
Proposition 4.8. Suppose g satisfies Assumption 4.7. For any ε > 0, there exists an integer K and
a set {θ(k)}Kk=1 ⊂ R1×1×T such that∥∥∥g(D)−

K∑
k=0

D?k ? θ(k)
∥∥∥ < ε,

where ‖ · ‖ is the tensor Frobenius norm, and where D?k def
= D ? · · · ? D is the M-product of k

instances of D, with the convention that D?0 = I.

As in the work of Defferrard et al. (2016), a tensor polynomial approximation allows us to approxi-
mate Xfilt in (2) without computing the eigendecomposition of L:

Xfilt = Q ? g(D) ?Q> ?X ≈ Q ?
( K∑

k=0

D?k ? θ(k)
)
?Q> ?X =

( K∑
k=0

L?k ? θ(k)
)
?X. (3)

All that is necessary is to compute tensor powers of L. We can also define tensor polynomial
analogs of the Chebyshev polynomials and do the approximation in (3) in terms of those instead of
the tensor monomials D?k. This is not necessary for the purposes of this paper. Instead, we note
that if a degree-one approximation is used, the computation in (3) becomes

Xfilt ≈ (I ? θ(0) +L ? θ(1)) ?X = (I ? θ(0) + (I−A) ? θ(1)) ?X.

Setting θ
def
= θ(0) = −θ(1), which is analogous to the parameter choice made in the degree-one

approximation by Kipf and Welling (2016), we get

Xfilt ≈ A ?X ? θ. (4)

If we let X contain F signals, i.e., X ∈ RN×F×T , and apply F ′ filters, (4) becomes

Xfilt ≈ A ?X ?Θ ∈ RN×F ′×T ,

where Θ ∈ RF×F ′×T . This is precisely our embedding model, with Θ replaced by a learnable
parameter tensor W.

5 NUMERICAL EXPERIMENTS

Here, we present results for edge classification on four datasets1: The Bitcoin Alpha and OTC
transaction datasets (Kumar et al., 2016), the Reddit body hyperlink dataset (Kumar et al., 2018), and
a chess results dataset (Kunegis, 2013). The bitcoin datasets consist of transaction histories for users
on two different platforms. Each node is a user, and each directed edge indicates a transaction and
is labeled with an integer between −10 and 10 which indicates the senders trust for the receiver. We
convert these labels to two classes: positive (trustworthy) and negative (untrustworthy). The Reddit
dataset is build from hyperlinks from one subreddit to another. Each node represents a subreddit,
and each directed edge is an interaction which is labeled with −1 for a hostile interaction or +1 for
a friendly interaction. We only consider those subreddits which have a total of 20 interactions or
more. In the chess dataset, each node is a player, and each directed edge represents a match with the
source node being the white player and the target node being the black player. Each edge is labeled
−1 for a black victory, 0 for a draw, and +1 for a white victory. Table 1 summarizes the statistics
for the different datasets.

1We provide links to the datasets in Appendix B.
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Table 1: Dataset statistics.
Dataset Nodes Edges Graphs (T ) Time window length Classes

Bitcoin OTC 6,005 35,569 135 14 days 2
Bitcoin Alpha 7,604 24,173 135 14 days 2
Reddit 3,818 163,008 86 14 days 2
Chess 7,301 64,958 100 31 days 3

The data is temporally partitioned into T graphs, with each graph containing data from a particular
time window. Both T and the time window length can vary between datasets. For each node-time
pair (n, t) in these graphs, we compute the number of outgoing and incoming edges and use these
two numbers as features. The adjacency tensor A is then constructed as described in Section 4. The
T frontal slices of A are divided into Strain training slices, Sval validation slices, and Stest testing
slices, which come sequentially after each other; see Figure 2 and Table 2.

N
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N

N
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N
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Figure 2: Partitioning of A into training, validation and testing data.

Table 2: Partitioning and performance metric for each dataset.
Partitioning

Dataset Strain Sval Stest Performance metric

Bitcoin OTC 95 20 20 F1 score
Bitcoin Alpha 95 20 20 F1 score
Reddit 66 10 10 F1 score
Chess 80 10 10 Accuracy

Since the adjacency matrices corresponding to graphs are very sparse for these datasets, we apply the
same technique as Pareja et al. (2019) and add the entries of each frontal slice A::t to the following
l − 1 frontal slices A::t, . . . ,A::(t+l−1), where we refer to l as the “edge life.” Note that this only
affects A, and that the added edges are not treated as real edges in the classification problem.

The bitcoin and Reddit datasets are heavily skewed, with about 90% of edges labeled positively,
and the remaining labeled negatively. Since the negative instances are more interesting to identify
(e.g. to prevent financial fraud or online hostility), we use the F1 score to evaluate the experiments
on these datasets, treating the negative edges as the ones we want to identify. The classes are more
well-balanced in the chess dataset, so we use accuracy to evaluate those experiments.

We choose to use an embedding Ytrain = A::(1:Strain) ?X::(1:Strain) ?W for training. When computing
the embeddings for the validation and testing data, we still need Strain frontal slices of A, which
we get by using a sliding window of slices. This is illustrated in Figure 2, where the green, blue
and red blocks show the frontal slices used when computing the embeddings for the training, vali-
dation and testing data, respectively. The embeddings for the validation and testing data are Yval =
A::(Sval+1:Strain+Sval) ?X::(Sval+1:Strain+Sval) ?W and Ytest = A::(Sval+Stest+1:T ) ?X::(Sval+Stest+1:T ) ?W,
respectively. Preliminary experiments with 2-layer architectures did not show convincing improve-
ments in performance. We believe this is due to the fact that the datasets only have two features, and
that a 1-layer architecture therefore is sufficient for extracting relevant information in the data. For
training, we use the cross entropy loss function:

loss = −
∑
t

∑
(m,n)∈Et

C∑
c=1

αcf(m,n, t)c log(p(m,n, t)c), (5)
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Table 3: Results without symmetrizing adjacency matrices. A higher value is better.
Dataset

Method Bitcoin OTC Bitcoin Alpha Reddit Chess

WD-GCN 0.2062 0.1920 0.2337 0.4311
EvolveGCN 0.3284 0.1609 0.2012 0.4351
GCN 0.3317 0.2100 0.1805 0.4342
TensorGCN (Proposal) 0.3529 0.2331 0.2028 0.4708

Table 4: Results when using symmetrized adjacency matrices. A higher value is better.
Dataset

Method Bitcoin OTC Bitcoin Alpha Reddit Chess

WD-GCN 0.1009 0.1319 0.2173 0.4321
EvolveGCN 0.0913 0.2273 0.1942 0.4091
GCN 0.0769 0.1538 0.1966 0.4369
TensorGCN (Proposal) 0.3103 0.2207 0.2071 0.4713

where f(m,n, t) ∈ RC is a one-hot vector encoding the true class of the edge (m,n) at time t, and
α ∈ RC is a vector summing to 1 which contains the weight of each class. Since the bitcoin and
Reddit datasets are so skewed, we weigh the minority class more heavily in the loss function for
those datasets, and treat α as a hyperparameter; see Appendix C for details.

The experiments are implemented in PyTorch with some preprocessing done in Matlab. Our code
is available at [url redacted for review]. In the experiments, we use an edge life of
l = 10, a bandwidth b = 20, and F ′ = 6 output features. Since the graphs in the considered
datasets are directed, we also investigate the impact of symmetrizing the adjacency matrices, where
the symmetrized version of an adjacency matrix A is defined as Asym

def
= 1/2(A + A>).

We compare our method with three other methods. The first one is a variant of the WD-GCN by
Manessi et al. (2019), which they specify in Equation (8a) of their paper. For the LSTM layer in
their description, we use 6 output features instead of N . This is to avoid overfitting and make the
method more comparable to ours which uses 6 output features. For the final layer, we use the same
prediction model as that used by Pareja et al. (2019) for edge classification. The second method is
a 1-layer variant of EvolveGCN-H by Pareja et al. (2019). The third method is a simple baseline
which uses a 1-layer version of the GCN by Kipf and Welling (2016). It uses the same weight matrix
W for all temporal graphs. Both EvolveGCN-H and the baseline GCN use 6 output features as well.

Table 3 shows the results when the adjacency matrices have not been symmetrized. In this case,
our method outperforms the other methods on the two bitcoin datasets and the chess dataset, with
WD-GCN performing best on the Reddit dataset. Table 4 shows the results for when the adjacency
matrices have been symmetrized. Our method outperforms the other methods on the Bitcoin OTC
dataset and the chess dataset, and performs similarly but slightly worse than the best performing
methods on the Bitcoin Alpha and Reddit datasets. Overall, it seems like symmetrizing the adjacency
matrices leads to lower performance.

6 CONCLUSION

We have presented a novel approach for dynamic graph embedding which leverages the tensor M-
product framework. We used it for edge classification in experiments on four real datasets, where
it performed competitively compared to state-of-the-art methods. Future research directions include
further developing the theoretical guarantees for the method, investigating optimal structure and
learning of the transform matrix M, using the method for other prediction tasks, and investigating
how to utilize deeper architectures for dynamic graph learning.
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Appendices

A ILLUSTRATION OF THE M-TRANSFORM

We provide some illustrations that show how the M-transform in Definition 3.1 works. Recall that
X ×3 M = fold(Munfold(X)). The matrix X is first unfolded into a matrix, as illustrated in
Figure 3. This unfolded tensor is then multiplied from the left by the matrix M, as illustrated in
Figure 4; the figure also illustrates the banded lower triangular structure of M. Finally, the output
matrix is folded back into a tensor. The fold operation is defined to be the inverse of the unfold
operation.

Figure 3: Illustration of unfold operation applied to 4× 4× 5 tensor.

Figure 4: Illustration of matrix product between M and the unfolded tensor.

B LINKS TO DATASETS

• The Bitcoin Alpha dataset is available at
https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html.

• The Bitcoin OTC dataset is available at
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html.

• The Reddit dataset is available at
https://snap.stanford.edu/data/soc-RedditHyperlinks.html.
Note that we use the dataset with hyperlinks in the body of the posts.

• The chess dataset is available at
http://konect.uni-koblenz.de/networks/chess.

12

https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
https://snap.stanford.edu/data/soc-RedditHyperlinks.html
http://konect.uni-koblenz.de/networks/chess


Under review as a conference paper at ICLR 2020

C FURTHER DETAILS ON THE EXPERIMENT SETUP

When partitioning the data into T graphs, as described in Section 5, if there are multiple data points
corresponding to an edge (m,n) for a given time step t, we only add that edge once to the cor-
responding graph and set the label equal to the sum of the labels of the different data points. For
example, if bitcoin user m makes three transactions to n during time step t with ratings 10, 2, −1,
then we add a single edge (m,n) to graph t with label 10 + 2− 1 = 11.

For training, we run gradient descent with a learning rate of 0.01 and momentum of 0.9 for 10,000
iterations. For each 100 iterations, we compute and store the performance of the model on the
validation data. As mentioned in Section 5, the weight vector α in the loss function (5) is treated
as a hyperparameter in the bitcoin and Reddit experiments. Since these datasets all have two edge
classes, let α0 and α1 be the weights of the minority (negative) and majority (positive) classes,
respectively. Since these parameters add to 1, we have α1 = 1 − α0. For all methods, we repeat
the bitcoin and Reddit experiments once for each α0 ∈ {0.75, 0.76, . . . , 0.95}. For each model and
dataset, we then find the best stored performance of the model on the validation data across all α0

values. We then treat the corresponding model as the trained model, and report its performance on
the testing data in Tables 3 and 4. The results for the chess experiment are computed in the same
way, but only for a single vector α = [1/3, 1/3, 1/3].

D ADDITIONAL RESULTS AND PROOFS

Throughout this section, ‖ · ‖ will denote the Frobenius norm (i.e., the square root of the sum of the
elements squared) of a matrix or tensor, and ‖ · ‖2 will denote the matrix spectral norm.

We first provide a few further results that clarify the algebraic properties of the M-product. Let
R1×1×T denote the set of 1 × 1 × T tensors. Similarly, let RN×1×T denote the set of N × 1 × T
tensors. Under the M-product framework, the set R1×1×T play a role similar to that played by
scalars in matrix algebra. With this in mind, the set RN×1×T can be seen as a length N vector
consisting of tubal elements of length T . Propositions D.1 and D.2 make this more precise.
Proposition D.1 (Proposition 4.2 in Kernfeld et al. (2015)). The set R1×1×T with product ?, which
is denoted by (?,R1×1×T ), is a commutative ring with identity.

Proposition D.2 (Theorem 4.1 in Kernfeld et al. (2015)). The set RN×1×T with product ?, which is
denoted by (?,RN×1×T ), is a free module over the ring (?,R1×1×T ).

A free module is similar to a vector space. Like a vector space, it has a basis. Proposition D.3 shows
that the lateral slices of Q in the tensor eigendecomposition form a basis for (?,RN×1×T ), similarly
to how the eigenvectors in a matrix eigendecomposition form a basis.
Proposition D.3. The lateral slices Q:n: ∈ RN×1×T of Q in Definition 3.8 form a basis for
(?,RN×1×T ).

Proof. Let X ∈ RN×1×T . Note that

X = I ?X = Q ?Q> ?X =

N∑
n=1

Q:n: ?Vn1:,

where V
def
= Q> ? X ∈ RN×1×T . So the lateral slices of Q are a generating set for (?,RN×1×T ).

Now suppose
N∑

n=1

Q:n: ? Sn1: = 0,

for some S ∈ RN×1×T . Then 0 = Q ? S, and consequently

0 = (Q×3 M)4(S×3 M).

Since each frontal face of Q ×3 M is an invertible matrix, this implies that each frontal face of
S ×3 M is zero, and hence S = 0. So the lateral slices of Q are also linearly independent in
(?,RN×1×T ).
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D.1 PROOFS OF PROPOSITIONS IN THE MAIN TEXT

Proof of Proposition 4.2. Since each adjacency matrix A(t) and each I::t is symmetric, each frontal
slice L::t is also symmetric. Consequently,

(L×3 M)ij: = Lij: ×3 M = Lji: ×3 M = (L×3 M)ji:,

so each frontal slice of L×3 M is symmetric, and therefore L has an eigendecomposition.

Proof of Proposition 4.3. Each A::t has a spectrum contained in [−1, 1]. Since A::t is symmetric, it
follows that ‖A::t‖2 ≤ 1. Consequently,

‖(A×3 M)::t‖2 =
∥∥∥ T∑

j=1

MtjA::j

∥∥∥
2
≤

T∑
j=1

|Mtj |‖A::j‖2 ≤ 1,

where we used the fact that
∑

j |Mtj | = 1. So since the frontal slices (A×3 M)::t are symmetric,
they each have a spectrum in [−1, 1]. It follows that each frontal slice

(L×3 M)::t = I− (A×3 M)::t

has a spectrum contained in [0, 2], which means that the entries of D̂ all lie in [0, 2].

Lemma D.4. Let X ∈ RM×N×T and let M ∈ RT×T be invertible. Then

‖X‖ ≤ ‖M−1‖2‖X×3 M‖.

Proof. We have

‖X‖ = ‖(X×3 M)×3 M−1‖ = ‖M−1 unfold(X×3 M)‖
≤ ‖M−1‖2‖ unfold(X×3 M)‖ = ‖M−1‖2‖X×3 M‖,

where the inequality is a well-known relation that holds for all matrices.

Proof of Proposition 4.8. By Weierstrass approximation theorem, there exists an integer K and a

set {θ̂
(k)
}Kk=1 ⊂ R1×1×T such that for all t ∈ {1, 2, . . . , T},

sup
x∈[0,2]

∣∣∣f (t)(x)− K∑
k=0

xkθ̂
(k)

11t

∣∣∣ < ε

‖M−1‖2
√
NT

.

Let θ(k) def
= θ̂

(k)
×3 M−1. Note that if m 6= n, then( K∑

k=0

D?k ? θ(k)
)
mn:

=

K∑
k=0

((D̂
4 k

)mn: ×3 M−1) ? θ(k) = 0 = g(D)mn:,

since D̂ = D×3 M is f-diagonal. So∥∥∥g(D)−
K∑

k=0

D?k ? θ(k)
∥∥∥2 =

N∑
n=1

∥∥∥g(D)nn: −
K∑

k=0

(D?k)nn: ? θ
(k)
∥∥∥2

≤ ‖M−1‖22
N∑

n=1

∥∥∥g(D)nn: ×3 M−
K∑

k=0

((D×3 M)4 k)nn:4 θ̂
(k)
∥∥∥2

= ‖M−1‖22
N∑

n=1

T∑
t=1

∣∣∣f (t)((D×3 M)nnt)−
K∑

k=0

(D×3 M)knntθ̂
(k)

11t

∣∣∣2
< ε2,

where the first inequality follows from Lemma D.4. Taking square roots completes the proof.
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