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Abstract
We show implicit filter level sparsity manifests in
convolutional neural networks (CNNs) which em-
ploy Batch Normalization and ReLU activation,
and are trained using adaptive gradient descent
techniques with L2 regularization or weight de-
cay. Through an extensive empirical study (Mehta
et al., 2019) we hypothesize the mechanism be-
hind the sparsification process. We find that the
interplay of various phenomena influences the
strength of L2 and weight decay regularizers, lead-
ing the supposedly non sparsity inducing regular-
izers to induce filter sparsity. In this workshop
article we summarize some of our key findings
and experiments, and present additional results on
modern network architectures such as ResNet-50.

1. Introduction
In this article we discuss the findings from (Mehta et al.,
2019) regarding filter level sparsity which emerges in cer-
tain types of feedforward convolutional neural networks.
Filter refers to the weights and the nonlinearity associated
with a particular feature, acting together as a unit. We
use filter and feature interchangeably throughout the doc-
ument. We particularly focus on presenting evidence for
the implicit sparsity, our experimentally backed hypotheses
regarding the cause of the sparsity, and discuss the possi-
ble role such implicit sparsification plays in the adaptive vs
vanilla (m)SGD generalization debate. For implications on
neural network speed up, refer to the original paper (Mehta
et al., 2019).

In networks which employ Batch Normalization and ReLU
activation, after training, certain filters are observed to not
activate for any input. Importantly, the sparsity emerges in
the presence of regularizers such as L2 and weight decay
(WD) which are in general understood to be non sparsity
inducing, and the sparsity vanishes when regularization is
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removed. We experimentally observe the following:

• The sparsity is much higher when using adaptive flavors
of SGD vs. (m)SGD. The sparsity exists even with leaky
ReLU.
• Adaptive methods see higher sparsity with L2 regulariza-

tion than with WD. No sparsity emerges in the absence of
regularization.
• In addition to the regularizers, the extent of the emergent

sparsity is also influenced by hyperparameters seemingly
unrelated to regularization. The sparsity decreases with
increasing mini-batch size, decreasing network size and
increasing task difficulty.
• The primary hypothesis that we put forward is that selec-

tive features1 see a disproportionately higher amount of
regularization than non-selective ones. This consistently
explains how unrelated parameters such as mini-batch
size, network size, and task difficulty indirectly impact
sparsity by affecting feature selectivity.
• A secondary hypothesis to explain the higher sparsity ob-

served with adaptive methods is that Adam (and possibly
other) adaptive approaches learn more selective features.
Though threre is evidence of highly selective features with
Adam, this requires further study.
• Synthetic experiments show that the interaction of L2

regularizer with the update equation in adaptive methods
causes stronger regularization than WD. This can explain
the discrepancy in sparsity between L2 and WD.

Quantifying Feature Sparsity: Feature sparsity can be
measured by per-feature activation and by per-feature scale.
For sparsity by activation, the absolute activations for each
feature are max pooled over the entire feature plane. If the
value is less than 10−12 over the entire training corpus, the
feature is inactive. For sparsity by scale, we consider the
scale γ of the learned affine transform in the Batch Norm
layer. We consider a feature inactive if |γ| for the feature is
less than 10−3. Explicitly zeroing the features thus marked
inactive does not affect the test error, which ensures the
validity of our chosen thresholds. The thresholds chosen are
purposefully conservative, and comparable levels of sparsity
are observed for a higher feature activation threshold of
10−4, and a higher |γ| threshold of 10−2.

1Feature selectivity is the fraction of training exemplars for
which a feature produces max activation less than some threshold.
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Table 1. Convolutional filter sparsity in BasicNet trained on CI-
FAR10/100 for different combinations of regularization and gra-
dient descent methods. Shown are the % of non-useful / inactive
convolution filters, as measured by activation over training cor-
pus (max act. < 10−12) and by the learned BatchNorm scale
(|γ| < 10−03), averaged over 3 runs. The lowest test error per
optimizer is highlighted, and sparsity (green) or lack of sparsity
(red) for the best and near best configurations indicated via text
color. L2: L2 regularization, WD: Weight decay (adjusted with
the same scaling schedule as the learning rate schedule).

CIFAR10 CIFAR100
% Sparsity Test % Sparsity Test

L2 by Act by γ Error by Act by γ Error
1e-03 27 27 21.8 23 23 47.1
1e-04 0 0 11.8 0 0 37.4
1e-05 0 0 10.5 0 0 39.0SG

D

0 0 0 11.3 0 0 40.1
2e-03 88 86 14.7 82 81 42.7
1e-04 71 70 10.5 47 47 36.6
1e-05 48 48 10.7 5 5 40.6A

da
m

0 3 0 11.0 0 0 40.3

5e-04 82 82 13.6 61 61 39.1
2e-04 40 40 11.3 3 3 35.4

A
da
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lta

1e-04 1 1 10.2 1 1 35.9

2e-02 75 75 11.3 88 88 63.3
1e-02 65 65 11.2 59 59 37.2

A
da
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ad

5e-03 56 56 11.3 24 25 35.9

1e-02 93 93 20.9 95 95 71.9
1e-04 51 47 9.9 20 13 35.6

A
M
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ra

d

1e-06 0 0 11.2 0 0 40.2

1e-02 75 90 16.4 74 87 51.8
1e-04 49 50 10.1 10 10 39.3

A
da

m
ax

1e-06 4 4 11.3 0 0 39.8

1e-02 95 95 26.9 97 97 78.6
1e-04 72 72 10.4 48 48 36.3

R
M

SP
ro

p

1e-06 29 29 10.9 0 0 40.6

CIFAR10 CIFAR100
% Sparsity Test % Sparsity Test

WD by Act by γ Error by Act by γ Error
1e-03 27 27 21.6 23 23 47.6
2e-04 0 0 13.3 0 0 39.4

SG
D

1e-04 0 0 12.4 0 0 37.7
5e-04 81 81 18.1 59 59 43.3
2e-04 60 60 13.4 16 16 37.3

A
da

m

1e-04 40 40 11.2 3 3 36.2

Table 2. Convolutional filter sparsity for BasicNet with leaky
ReLU with different negative slopes, trained on CIFAR-100 with
Adam and L2 regularization (1e-4). Average of 3 runs.

Neg. Train Val Val % Spar.
Slope Loss Loss Err. by γ
0.00 0.10 1.98 36.6 46
0.01 0.10 1.99 36.8 41
0.10 0.14 2.01 37.2 43

Figure 1. BasicNet: Structure of the basic convolution network
studied in this paper. We refer to the convolution layers as C1-7.

2. Observing Filter Sparsity
Preliminary Experiments: We use a 7-layer convolutional
network with 2 fully connected layers as shown in Figure 1.
We refer to this network as BasicNet in the rest of the docu-
ment. For the basic experiments on CIFAR-10/100, we use a
variety of gradient descent approaches, a mini-batch size of
40, with a method specific base learning rate for 250 epochs
which is scaled down by 10 for an additional 75 epochs.
The base learning rates and other hyperparameters are as
follows: Adam (1e-3, β1=0.9, β2=0.99, ε=1e-8), Adadelta
(1.0, ρ=0.9, ε=1e-6), SGD (0.1, mom.=0.9), Adagrad (1e-2),
AMSGrad (1e-3), AdaMax (2e-3), RMSProp (1e-3). We
study the effect of varying the amount and type of regular-
ization2 on the extent of sparsity and test error in Table 1. It
shows significant convolutional filter sparsity emerges with
adaptive gradient descent methods when combined with L2
regularization. The extent of sparsity is reduced when using
Weight Decay instead, and absent entirely in the case of
SGD with moderate levels of regularization. Table 2 shows
that using leaky ReLU does not prevent sparsification.

Sparsity Manifests Across Network Architectures and
Datasets: The emergence of sparsity is not an isolated
phenomenon specifc to CIFAR-10/100 and BasicNet. We
show in tables 3, 4, and 5 that sparsity manifests in VGG-
11/16 ((Simonyan & Zisserman, 2014)), and ResNet-50 ((He
et al., 2016)) on ImageNet and Tiny-ImageNet. ResNet-50
shows a significantly higher overall filter sparsity than non-
residual VGG networks.

Sparsity Increases with Decreasing Mini-Batch Size:
We see in Tables 6, 7, 3, 4, and 5 that decreasing the mini-
batch size (while maintaining the same number of iterations)
leads to increased sparsity across network architectures and
datasets.

3. Explaining Filter Sparsity
Feature Selectivity Hypothesis: From Figure 2 the differ-
ences between the nature of features learned by Adam and
SGD become clearer. For zero mean, unit variance Batch-

2Note that L2 regularization and weight decay are distinct. See
(Loshchilov & Hutter, 2017) for a detailed discussion.
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Table 3. Sparsity by γ on VGG-16, trained on TinyImageNet, and
on ImageNet. Also shown are the pre- and post-pruning top-1/top-
5 single crop validation errors. Pruning using |γ| < 10−3 criteria.

# Conv Pre-pruning Post-pruning
TinyImageNet Feat. Pruned top1 top5 top1 top5
L2: 1e-4, B: 20 3016 (71%) 45.1 21.4 45.1 21.4
L2: 1e-4, B: 40 2571 (61%) 46.7 24.4 46.7 24.4

ImageNet
L2: 1e-4, B: 40 292 29.93 10.41 29.91 10.41

Table 4. Effect of different mini-batch sizes on sparsity (by γ) in
VGG-11, trained on ImageNet. Same network structure employed
as (Liu et al., 2017). * indicates finetuning after pruning

# Conv Pre-pruning Post-pruning
Feat. Pruned top1 top5 top1 top5

Adam, L2: 1e-4, B: 90 71 30.50 10.65 30.47 10.64
Adam, L2: 1e-4, B: 60 140 31.76 11.53 31.73 11.51
(Liu et al., 2017) 85 29.16 31.38* -

Table 5. Convolutional filter sparsity for different levels of ResNet-
50 on ImageNet, with different batch sizes, using Adam and L2
regularization (1e-4).
Batch Train Test Top 1 Top 5 % Sparsity by γ
Size Loss Loss Val Err. Val Err. conv1 res2 res3 res4 res5 Total
32 1.3 1.1 27.7 9.2 0 0 1 17 46 26
64 1.0 1.0 25.2 7.7 0 0 1 3 42 19

Table 6. BasicNet sparsity variation on CIFAR10/100 trained with
Adam and L2 regularization.

CIFAR 10 CIFAR 100
Batch Train Test Test %Spar. Train Test Test %Spar.
Size Loss Loss Err by γ Loss Loss Err by γ
20 0.17 0.36 11.1 70 0.69 1.39 35.2 57
40 0.06 0.43 10.5 70 0.10 1.98 36.6 46
80 0.02 0.50 10.1 66 0.02 2.21 41.1 35

L
2:

1e
-4

160 0.01 0.55 10.6 61 0.01 2.32 44.3 29

Table 7. Convolutional filter sparsity for BasicNet trained on Tiny-
ImageNet, with different mini-batch sizes.

Batch Train Val Top 1 Top 5 % Spar.
Size Loss Loss Val Err. Val Err. by γ
20 1.05 2.13 47.7 22.8 63
40 0.16 2.96 48.4 24.7 48
120 0.01 2.48 48.8 27.4 26

Norm outputs {x̂i}Ni=1 of a particular convolutional kernel,
where N is the size of the training corpus, due to the use
of ReLU, a gradient is only seen for those datapoints for
which x̂i > −β/γ. Both SGD and Adam (L2: 1e-5) learn
positive γs for layer C6, however βs are negative for Adam,
while for SGD some of the biases are positive. This implies
that all features learned for Adam (L2: 1e-5) in this layer
activate for ≤ half the activations from the training corpus,
while SGD has a significant number of features activate
for more than half of the training corpus, i.e., Adam learns
more selective features in this layer. Features which activate
only for a small subset of the training corpus, and conse-
quently see gradient updates from the main objective less
frequently, continue to be acted upon by the regularizer. If

the regularization is strong enough (Adam with L2: 1e-4 in
Fig. 2), or the gradient updates infrequent enough (feature
too selective), the feature may be pruned away entirely. The
propensity of later layers to learn more selective features
with Adam would explain the higher degree of sparsity seen
for later layers as compared to SGD. Understanding the
reasons for emergence of higher feature selectivity in Adam
than SGD, and verifying if other adaptive gradient descent
flavours also exhibit higher feature selectivity remains open
for future investigation.

Quantifying Feature Selectivity: Similar to feature spar-
sity by activation, we apply max pooling to a feature’s abso-
lute activations over the entire feature plane. For a particular
feature, we consider these pooled activations over the entire
training corpus to quantify feature selectivity. See the origi-
nal paper (Mehta et al., 2019) for a detailed discussion. Un-
like the selectivity metrics employed in literature (Morcos
et al., 2018), ours is class agnostic, and provides preliminary
quantitative evidence that Adam (and perhaps other adaptive
gradient descent methods) learn more selective features than
(m)SGD, which consequently see a higher relative degree
of regularization.

Interaction of L2 Regularizer with Adam: Next, we con-
sider the role of the L2 regularizer vs. weight decay. In the
original paper we study the behaviour of L2 regularization
in the low gradient regime for different optimizers through
synthetic experiments and find that coupling of L2 regu-
larization with certain adaptive gradient update equations
yields a faster decay than weight decay, or L2 regularization
with SGD, even for smaller regularizer values. This is an
additional source of regularization disparity between pa-
rameters which see frequent updates and those which don’t
see frequent updates or see lower magnitude gradients. It
manifests for certain adaptive gradient descent approaches.

Task ‘Difficulty’ Dependence: As per the hypothesis de-
veloped thus far, as the task becomes more difficult, for a
given network capacity, we expect the fraction of features
pruned to decrease corresponding to a decrease in selectiv-
ity of the learned features (Zhou et al., 2018). Since the
task difficulty cannot be cleanly decoupled from the num-
ber of classes, we devise a synthetic experiment based on
grayscale renderings of 30 object classes from ObjectNet3D
(Xiang et al., 2016). We construct 2 identical sets of ≈ 50k
64×64 pixel renderings, one with a clean background (BG)
and the other with a cluttered BG. We train BasicNet with
a mini-batch size of 40, and see that as expected there is
a much higher sparsity (70%) with the clean BG set than
with the more difficult cluttered set (57%). See the original
paper (Mehta et al., 2019) for representative images and a
list of the object classes selected.



Emergence of Implicit Filter Sparsity in ConvNets

Figure 2. Emergence of Feature Selectivity with Adam The evolution of the learned scales (γ, top row) and biases (β, bottom row) for
layer C6 of BasicNet for Adam and SGD as training progresses. Adam has distinctly negative biases, while SGD sees both positive and
negative biases. For positive scale values, as seen for both Adam and SGD, this translates to greater feature selectivity in the case of
Adam, which translates to a higher degree of sparsification when stronger regularization is used.

4. Related Work
(Ye et al., 2018; Liu et al., 2017) employ explicit filter spar-
sification heuristics that make use of the learned scale pa-
rameter γ in Batch Norm for enforcing sparsity on the filters.
(Ye et al., 2018) argue that BatchNorm makes feature im-
portance less susceptible to scaling reparameterization, and
the learned scale parameters (γ) can be used as indicators
of feature importance. We thus adopt γ as the criterion for
studying implicit feature pruning.

Morcos et al. (Morcos et al., 2018) suggest based on ex-
tensive experimental evaluation that good generalization
ability is linked to reduced selectivity of learned features.
They further suggest that individual selective units do not
play a strong role in the overall performance on the task
as compared to the less selective ones. They connect the
ablation of selective features to the heuristics employed in
neural network feature pruning literature which prune fea-
tures whose removal does not impact the overall accuracy
significantly (Molchanov et al., 2017; Li et al., 2017). The
findings of Zhou et al. (Zhou et al., 2018) concur regarding
the link between emergence of feature selectivity and poor
generalization performance. They further show that abla-
tion of class specific features does not influence the overall
accuracy significantly, however the specific class may suffer
significantly. We show that the emergence of selective fea-
tures in Adam, and the increased propensity for pruning the
said selective features when using L2 regularization may
thus be helpful both for better generalization performance
and network speedup.

5. Discussion
Our findings would help practitioners and theoreticians be
aware that seemingly unrelated hyperparameters can in-
advertently affect the underlying network capacity, which
interplays with both the test accuracy and generalization
gap, and could partially explain the practical performance
gap between Adam and SGD. Our work opens up future
avenues of theoretical and practical exploration to further
validate our hypotheses, and attempt to understand the emer-
gence of feature selectivity in Adam and other adaptive SGD
methods.

As for network speed up due to sparsification, the penal-
ization of selective features can be seen as a greedy local
search heuristic for filter pruning. While the extent of im-
plicit filter sparsity is significant, it obviously does not match
up with some of the more recent explicit sparsification ap-
proaches (He et al., 2018; Lin et al., 2017) which utilize
more expensive model search and advanced heuristics such
as filter redundancy. Future work should reconsider the
selective-feature pruning criteria itself, and examine non-
selective features as well, which putatively have comparably
low discriminative information as selective features and
could also be pruned. These non-selective features are how-
ever not captured by greedy local search heuristics because
pruning them can have a significant impact on the accuracy.
Though the accuracy can presumably can be recouped after
fine-tuning.
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