
Under review as a conference paper at ICLR 2019

CONTEXT DEPENDENT MODULATION OF ACTIVATION
FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a modification to traditional Artificial Neural Networks (ANNs),
which provides the ANNs with new aptitudes motivated by biological neurons.
Biological neurons work far beyond linearly summing up synaptic inputs and then
transforming the integrated information. A biological neuron change firing modes
accordingly to peripheral factors (e.g., neuromodulators) as well as intrinsic ones.
Our modification connects a new type of ANN nodes, which mimic the function
of biological neuromodulators and are termed modulators, to enable other tradi-
tional ANN nodes to adjust their activation sensitivities in run-time based on their
input patterns. In this manner, we enable the slope of the activation function to be
context dependent. This modification produces statistically significant improve-
ments in comparison with traditional ANN nodes in the context of Convolutional
Neural Networks and Long Short-Term Memory networks.

1 INTRODUCTION

Artificial neural networks (ANNs), such as convolutional neural networks (CNNs) (LeCun et al.,
1998) and long short-term memory (LSTM) cells (Hochreiter & Schmidhuber, 1997), have incred-
ible capabilities and are applied in a variety of applications including computer vision, natural lan-
guage analysis, and speech recognition among others. Historically, the development of ANNs (e.g.,
network architectures and learning algorithms) has benefited significantly from collaborations with
Psych-Neuro communities (Churchland & Sejnowski, 1988; Hebb, 1949; Hinton et al., 1984; Hop-
field, 1982; McCulloch & Pitts, 1943; Turing, 1950; Hassabis et al., 2017; Elman, 1990; Hopfield
& Tank, 1986; Jordan, 1997; Hassabis et al., 2017). The information processing capabilities of
traditional ANN nodes are rather rigid when compared to the plasticity of real neurons. A typical
traditional ANN node linearly integrate its input signals and run the integration through a transfor-
mation called an activation function, which simply takes in a scalar value and outputs another. Of
the most popular Activation Functions are sigmoid (Mikolov et al., 2010), tanh (Kalman & Kwasny,
1992) and ReLU (Nair & Hinton, 2010).

Researchers have shown that it could be beneficial to deploy layer-/node- specific activation func-
tions in a deep ANN (Chen & Chang, 1996; Solazzi & Uncini, 2000; Goh & Mandic, 2003; He
et al., 2015; Agostinelli et al., 2014). However, each ANN node is traditionally stuck with a fixed
activation function once trained. Therefore, the same input integration will always produce the same
output. This fails to replicate the amazing capability of individual biological neurons to conduct
complex nonlinear mappings from inputs to outputs (Antic et al., 2010; Hassabis et al., 2017; Mar-
blestone et al., 2016). In this study, we propose one new modification to ANN architectures by
adding a new type of node, termed modulators, to modulate the activation sensitivity of the ANN
nodes targeted by modulators (see Figures 1-3 for examples). In one possible setting, a modulator
and its target ANN nodes share the same inputs. The modulator maps the input into a modulation
signal, which is fed into each target node. Each target node multiples its input integration by the
modulator signal prior to transformation by its traditional activation function. Examples of neu-
ronal principles that may be captured by our new modification include intrinsic excitability, diverse
firing modes, type 1 and type 2 forms of firing rate integration, activity dependent facilitation and
depression and, most notably, neuromodulation (Marder et al., 1996; Sherman, 2001; Ward, 2003;
Ringrose & Paro, 2004).

1



Under review as a conference paper at ICLR 2019

Our modulator is relevant to the attention mechanism (Larochelle & Hinton, 2010; Mnih et al.,
2014), which dynamically restricts information pathways and has been found to be very useful in
practice. Attention mechanisms apply the attention weights, which are calculated in run-time, to the
outputs of ANN nodes or LSTM cells. Notably, the gating mechanism in a Simple LSTM cell can
also be viewed as a dynamical information modifier. A gate takes the input of the LSTM cell and
outputs gating signals for filtering the outputs of its target ANN nodes in the same LSTM cell. A
similar gating mechanism was proposed in the Gated Linear Unit (Dauphin et al., 2016) for CNNs.
Different from the attention and gating mechanisms, which are applied to the outputs of the target
nodes, our modulation mechanism adjusts the sensitivities of the target ANN nodes in run-time by
changing the slopes of the corresponding activation functions. Hence, the modulator can also be
used as a complement to the attention and gate mechanisms.

Below we will explain our modulator mechanism in detail. Experimentation shows that the mod-
ulation mechanism can help achieve better test stability and higher test performance using easy to
implement and significantly simpler models. Finally, we conclude the paper with discussions on the
relevance to the properties of actual neurons.

2 METHODS

We designed two modulation mechanisms, one for CNNs and the other for LSTMs. In modulating
CNNs, our modulator (see Figure 1) is a layer-specific one that is best compared to the biologi-
cal phenomenon of neuromodulation. Each CNN layer before activation has one modulator, which
shares the input ~x with other CNN nodes in the same layer (Figure 1Left). The modulator (Figure
1Right) of the lth CNN layer calculates a scalar modulation signal as sl = τl(~w

T
l ~x), where τl(·)

is the activation function of the lth modulator, and feeds sl to every other CNN node in the same
layer. The kth modulated CNN node in the lth layer linearly integrates its inputs as a traditional
ANN nodes vl,k = ~wT

l,k~x and modulates the integration to get ul,k = sl · vl,k prior to its traditional
activation step ϕl,k(·). The final output is ol,k = ϕl,k(τl(~w

T
l ~x) · ~wT

l,k~x). The above modulation
mechanism is slightly modified to expand Densely Connected CNNs (Iandola et al., 2014)(see Fig-
ure 2). A modulator is added to each dense block layer to modulate the outputs of its convolution
nodes. Given a specific input, the modulator outputs a scalar modulation signal that is multiplied to
the scalar outputs of the target convolution nodes in the same layer.

In addition to the Cellgate, there are three modifying gates (Forget, Input, and Output) in a traditional
LSTM cell. Each gate is a full layer of ANN nodes. Each of ANN node in a gate uses sigmoid to
transform the integration of the input into regulation signals. The traditional LSTM cell transforms
the input integration to an intermediate output (i.e., C̃t in Figure 3). The Forget gate regulates what
is removed from the old cell state (i.e., t−1 in Figure 3), and the Input gate what in C̃t is added to
obtain the new cell state (i.e., t). The new cell state is transformed and then regulated by the output
gate to become part of the input of the next time point. In modulating LSTM (see Figure 3), for the
purpose of easier implementation, we create a new ”modulation gate” (the round dash rectangle in
Figure 3) for node-specific sensitivity-adjustment which is most analogous to neuronal facilitation
and depression. Different from a conventional LSTM that calculates C̃t = ϕ(Wc[~xt,~ht−1]), a
modulated LSTM calculates C̃t = ϕ(τ(WM [~xt,~ht−1]) · (Wc[~xt,~ht−1])).

In the above designs, both a multi-layer CNN and single-layer LSTM had multiple modulator nodes
within each model. A generalization to the above designs is to allow a modulator to take the outputs
from other CNN layers or those of the LSTM cell at other time points as the inputs.

2



Under review as a conference paper at ICLR 2019

Figure 1: Modulator expansion to CNN. Left: Each CNN layer before activation layer has a modu-
lator, whose input ~x is the same to that of other CNN nodes in the same layer. Right: The modulator
maps the input into a scalar modulation signal, which is fed to every other CNN node in the same
layer. Every modulated node multiples the integration of its inputs by the modulation signal prior to
traditional activation.

Figure 2: Modulator expansion to a dense block in a DenseNet. Left: A dense block example that
contains two dense block layers. Right: A dense block layer transforms its input element-wisely
before convolution. Hence, the modulation applied to the previous dense block layer affects the
transformation activity of the next dense block layer. Modulation is applied to the output of each
node in the target convolution layer. We ignore other steps (e.g, batch normalization and drop-out)
in a dense block layer for visualization purpose.

Figure 3: Modulator expansion to a Simple LSTM cell. A Simple LSTM cell wraps the Input
Integration and Activation steps in the orange box into one node. Our modification adds a modulator
(the green box) that maps [~xt,~ht−1], i.e., the concatenation of the input at time t and the LSTM
output at time t − 1, into modulation signals that are used to adjust the sensitivity of transforming
the integration of [~xt,~ht−1].

3



Under review as a conference paper at ICLR 2019

3 EXPERIMENTAL RESULTS

3.1 MODULATED CNNS

In our experiments with CNNs, the activation functions of the traditional CNN nodes was ReLU,
with our modulator nodes using a sigmoid. We tested six total settings: a vanilla CNN vs a mod-
ulated vanilla CNN, a vanilla DenseNet vs a modulated DenseNet, and a vanilla DenseNet-lite vs a
modulated DenseNet-lite. The vanilla CNN has 2 convolution blocks, each of which contains two
sequential convolution layers, a pooling layer, and a dropout layer. A fully connected layer of 512
nodes is appended at the very end of the model. The convolution layers in the first block have 32
filters with a size of 3x3 while the convolution layers in the second block have 64 filters with a size
of 3x3. We apply a dropout of 0.25 to each block. The vanilla DenseNet used the structure (40 in
depth and 12 in growth-rate) reported in the original DenseNet paper (Iandola et al., 2014) and a
dropout of 0.5 is used in our experiment. The vanilla DenseNet-lite has a similar structure to the
vanilla DenseNet, however, uses a smaller growth-rate of 10 instead of 12 in the original configu-
ration, which results in 28% fewer parameters. The modulators are added to the vanilla CNN, the
vanilla DenseNet, and the vanilla DenseNet-lite in the way described in Figures 1 and 2 to obtain
their modulated versions, respectively. Table 1 summarizes the numbers of the parameters in the
above models to indicate their complexities. The modulated networks have slightly more parame-
ters than their vanilla versions do. All the experiments were run for 150 epochs on 4 NVIDIA Titan
Xp GPUs with a mini-batch size of 128.

Table 1: Compare the numbers of parameters in the CNNs.

Model Total parameters

vanilla CNN 1.25 M
modulated CNN 1.25 M
vanilla DenseNet 1.00 M
modulated DenseNet 1.07 M
vanilla DenseNet-lite 0.71 M
modulated DenseNet-lite 0.77 M

CIFAR-10 dataset (Krizhevsky & Hinton, 2009) was used in this experiment. CIFAR-10 consists
of colored images at a resolution of 32x32 pixels. The training and test set are containing 50000
and 10000 images respectively. We held 20% of the training data for validation and applied data
augmentation of shifting and mirroring on the training data. All the CNN models are trained using
the Adam (Kingma & Ba, 2014) optimization method with a learning rate of 1e-3 and shrinks by a
factor of 10 at 50% and 80% of the training progress.

As shown in Figure 4, the vanilla CNN model begins to overfit after 80 training epochs. Although
the modulated CNN model is slightly more complex, it is less prone to overfitting and excels its
vanilla counterpart by a large margin (see Table 2). Modulation also significantly helps DenseNets
in training, validation, and test. The modulated DenseNet/DenseNet-lite models consistently out-
perform their vanilla counterparts by a noticeable margin (see Figures 5(a) and 5(b)) during training.
The validation and test results of the modulated DenseNet/DenseNet-lite models are also better than
those of their vanilla counterparts. It is not surprising that the vanilla DenseNet-lite model under-
performs the vanilla DenseNet model. Interestingly, despite having 28% fewer parameters than
the vanilla DenseNet model, the modulated DenseNet-lite model outperforms the vanilla DenseNet
model (see the dash orange curve vs the solid blue curve in Figure 5(b) and Table 2).

4



Under review as a conference paper at ICLR 2019

Figure 4: Modulation increases the robustness of CNNs. The x-axis is the validation epoch, and the
y-axis is the top-1 accuracy. The vanilla CNN begins to show sign of overfitting after 80 epochs,
while the modulated CNN keeps improving.

(a) Comparison of the training results of vanilla
DenseNet, moduldate DenseNet, vanilla DenseNet-lite,
and modulate DenseNet-lite. The x-axis is the training
epoch, and the y-axis is the top-1 accuracy.

(b) Comparison of the validation results of vanilla
DenseNet, modulate DenseNet, vanilla DenseNet-lite,
and modulate DenseNet-lite. The x-axis is the valida-
tion epoch, and the y-axis is the top-1 accuracy.

Figure 5: Modulation improves the performance of DenseNets. Both training and validation results
show that the modulated versions perform better than their vanilla versions. In addition, modulated
DenseNet-lite clearly outperforms vanilla DenseNet even though the former has 28% less parame-
ters than the latter.

Table 2: Test results (top-1 classification accuracy) of vanilla and modulated CNNs.

Model Training Validation Test

vanilla CNN 0.649 0.694 0.690
modulated CNN 0.775 0.782 0.782
vanilla DenseNet 0.889 0.888 0.889
modulated DenseNet 0.905 0.902 0.902
vanilla DenseNet-lite 0.881 0.885 0.885
modulated DenseNet-lite 0.894 0.893 0.894

3.2 MODULATED LSTM

Two datasets were used in the LSTM experiments. The first one is the NAMES dataset (Sean,
2016), in which the goal is to take a name as a string and classify its ethnicity or country of origin.
Approximately 10% of the data-set was reserved for testing. The second experiment used the SST2

5



Under review as a conference paper at ICLR 2019

data-set (Socher et al., 2013), which requires a trained model to classify whether a movie review is
positive or negative based on the raw text in the review. The SST2 is identical to the SST1 with the
exception of the neutral category removed (Socher et al., 2013), leaving only positive and negative
reviews. About 20% of the data-set was reserved for testing.

Since modulators noticeably increase the parameters in a modulated LSTM, to perform fair compar-
isons, we create three versions of vanilla LSTMs (see Controls 1, 2, & 3 in Figure 6). Control 1 has
an identical total LSTM cell size. Control 2 has the identical number of nodes per layer. Control 3
has an extra Input gate so that it has both an identical total number of nodes and identical nodes per
layer. The numbers of parameters in the modulated LSTM and control LSTMs are listed in Table 3
for comparison.

Figure 6: The configurations of the modulated LSTM and three control versions of the vanilla
LSTMs.

The hyper-parameters for the first experiment were set as following: the hidden dimension was set to
32, batch size to 32, embedding dimension to 128, initial learning rate to .01, learning rate decay to
1e-4, an SGD optimizer was used, with dropout of 0.2 applied to the last hidden state of the LSTM
and 100 epochs were collected. This condition was tested on the name categorization data-set. The
number of parameters in this model ranged from 4.1 K to 6.4 K, depending on the condition. We
repeated the experimental runs 30 times. Based on the simplicity of the data-set and the relative spar-
sity of parameters, this condition will be referred to as Simple-LSTM. As for the second experiment:
the hidden dimension was set to 150, he batch size was set to 5, the embedding dimension was set
to 300, the initial learning rate was set to 1e-3, there was no learning rate decay, an Adam optimizer
was used with no dropout and 100 epochs were collected. The number of parameters in this model
ranged from 57.6 K to 90 K, depending on the control setup. This experiment was repeated 100
times. Based on the complexity of the data-set and the relatively large amount of parameters, this
condition will be referred to as Advanced-LSTM. In all experiments, the models were trained for 100
epochs.

Table 3: The number of parameters in a LSTM cell.

Base Model Modulated Control 1 Control 2 Control 3

Simple-LSTM 5.1 K 6.4 K 4.1 K 5.1 K
Advanced-LSTM 72 K 90 K 57.6 K 72 K

6



Under review as a conference paper at ICLR 2019

Table 4: Modulation Performance Tests on LSTM

Model
Dataset

Modulator
Activation

Performance
Statistics Modulated Control 1 Control 2 Control 3

Simple-LSTM
NAMES Sigmoid mean

std
0.77898
0.00526

0.77490
0.00565

0.77516
0.00531

0.77602
0.00650

Hedge’s G
p-value

-
-

0.74778
p<.006

0.72173
p<.007

0.49924
p<.06

Advanced-LSTM
SST2 Tanhshrink mean

std
0.77482
0.01150

0.73629
0.04855

0.74327
0.04687

0.73628
0.04701

Hedge’s G
p-value

-
-

1.09182
p<.001

0.92435
p<.001

1.12593
p<.001

Table 5: LSTM node Activation function visualizations

7



Under review as a conference paper at ICLR 2019

We can observe from the results in Table 4 that, the mean test performance of both modulated
LSTMs outperformed all three control groups and achieved the highest validation performance. Sta-
tistical significance varied between the two LSTM models. In the Vanilla-LSTM (n = 30), with
τl(·) set to sigmoid, statistical significance ranged between p<.06 (Control 3) and P<.001 (Control
2). In the Advanced-LSTM (n = 100), with τl(·) set to tanhshrink, statistical significance was a
consistently P<.001 in all conditions. In all cases, variance was lowest in the modulated condition.
We further zoom in the activation data-flow and visualized the the effect of our modulation in Table
3.2. The control condition and modulated condition was compared side by side. On the left we can
observe the impact of the Ingate on the amplitude of the tanh activation function, on the right we
can observe our modulation adjust the slope as well. Each input generates a context dependent acti-
vation as shown in continuous lines and specific activations are represented by the blue dots which
corresponded to a point on a specific line. Our modulation modification provides new aptitudes for
the model to learn, generalize and appears to add a stabilizing feature to the dynamic input-output
relationship.

4 CONCLUSION

We propose a modulation mechanism addition to traditional ANNs so that the shape of the activation
function can be context dependent. Experimental results show that the modulated models consis-
tently outperform their original versions. Our experiment also implied adding modulator can reduce
overfitting. We demonstrated even with fewer parameters, the modulated model can still perform
on par with it vanilla version of a bigger size. This modulation idea can also be expanded to other
setting, such as, different modulator activation or different structure inside the modulator.

5 DISCUSSION

It was frequently observed in preliminary testing that arbitrarily increasing model parameters ac-
tually hurt network performance, so future studies will be aimed at investigating the relationship
between the number of model parameters and the performance of the network. Additionally, it will
be important to determine the interaction between specific network implementations and the ideal
Activation Function wrapping for slope-determining neurons. Lastly, it may be useful to investigate
layer-wide single-node modulation on models with parallel LSTM’s.

Epigenetics refers to the activation and inactivation of genes (Weinhold, 2006), often as a result of
environmental factors. These changes in gene-expression result in modifications to the generation
and regulation of cellular proteins, such as ion channels, that regulate how the cell controls the flow
of current through the cell membrane (Meadows et al., 2016). The modulation of these proteins
will strongly influence the tendency of a neuron to fire and hence affect the neurons function as a
single computational node. These proteins, in turn, can influence epigenetic expression in the form
of dynamic control (Kawasaki et al., 2004).

Regarding the effects of these signals, we can compare the output of neurons and nodes from a
variety of perspectives. First and foremost, intrinsic excitability refers to the ease with which a
neurons electrical potential can increase, and this feature has been found to impact plasticity itself
(Desai et al., 1999). From this view, the output of a node in an artificial neural network would
correspond to a neurons firing rate, which Intrinsic Excitability is a large contributor to, and our
extra gate would be setting the node’s intrinsic excitability. With the analogy of firing rate, another
phenomenon can be considered. Neurons may experience various modes of information integration,
typically labeled Type 1 and Type 2. Type 1 refers to continuous firing rate integration, while
Type 2 refers to discontinuous information (Tateno et al., 2004). This is computationally explained
as a function of interneuron communication resulting in neuron-activity nullclines with either heavy
overlap or discontinuous saddle points (Miller, 2016). In biology, a neuron may switch between Type
1 and Type 2 depending on the presence of neuromodulator (Stiefel & Gutkin, 2012). Controlling
the degree to which the tanh function encodes to a binary space, our modification may be conceived
as determining the form of information integration. The final possible firing rate equivalence refers
to the ability of real neurons to switch between different firing modes. While the common mode
of firing, Tonic firing, generally encodes information in rate frequency, neurons in a Bursting mode
(though there are many types of bursts) tend to encode information in a binary mode - either firing

8



Under review as a conference paper at ICLR 2019

bursts or not (Tateno et al., 2004). Here too, our modification encompasses a biological phenomenon
by enabling the switch between binary and continuous information.

Another analogy to an ANN nodes output would be the neurotransmitter released. With this view,
our modification is best expressed as an analogy to Activity Dependent Facilitation and Depression,
phenomena which cause neurons to release either more or less neurotransmitter. Facilitation and
depression occur in response to the same input: past activity (Reyes et al., 1998). Our modification
enables a network to use previous activity to determine its current sensitivity to input, allowing for
both Facilitation and Depression. On the topic of neurotransmitter release, neuromodulation is the
most relevant topic to the previously shown experiments. Once again, Marblestone et al. (2016)
explains the situation perfectly, expressing that research (Bargmann, 2012; Bargmann & Marder,
2013) has shown ”the same neuron or circuit can exhibit different input-output responses depending
on a global circuit state, as reflected by the concentrations of various neuromodulators”. Relating
to our modification, the slope of the activation function may be conceptualized as the mechanism of
neuromodulation, with the new gate acting analogously to a source of neuromodulator for all nodes
in the network.

Returning to a Machine Learning approach, the ability to adjust the slope of an Activation Function
has an immediate benefit in making the back-propagation gradient dynamic. For example, for Ac-
tivations near 0, where the tanh Function gradient is largest, the effect of our modification on node
output is minimal. However, at this point, our modification has the ability to decrease the gradient,
perhaps acting as pseudo-learning-rate. On the other hand, at activations near 1 and -1, where the
tanh Function gradient reaches 0, our modification causes the gradient to reappear, allowing for
information to be extracted from inputs outside of the standard range. Additionally, by implement-
ing a slope that is conditional on node input, the node has the ability to generate a wide range of
functional Activation Functions, including asymmetric functions. Lastly, injecting noise has been
found to help deep neural networks with noisy datasets (Zheng et al., 2016), which is noteworthy
since noise may act as a stabilizer for neuronal firing rates, (Touboul et al., 2012). With this in mind,
Table 3.2 demonstrates increased clustering in two-dimensional node-Activation space, when the
Activation Function slope is made to be dynamic. This indicates that noise may be a mediator of
our modification, improving network performance through stabilization, induced by increasing the
variability of the input-output relationship.

In summary, we have shown evidence that nodes in LSTMs and CNNs benefit from added com-
plexity to their input-output dynamic. Specifically, having a node that adjusts the slope of the main
layer’s nodes’ activation functions mimics the functionality of neuromodulators and is shown to
benefit the network. The exact mechanism by which this modification improves network perfor-
mance remains unknown, yet it is possible to support this approach from both a neuroscientific and
machine-learning perspective. We believe this demonstrates the need for further research into dis-
covering novel non-computationally-demanding methods of applying principles of neuroscience to
artificial networks.

REFERENCES

Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and Pierre Baldi. Learning activation func-
tions to improve deep neural networks. arXiv preprint arXiv:1412.6830, 2014.

Srdjan D Antic, Wen-Liang Zhou, Anna R Moore, Shaina M Short, and Katerina D Ikonomu. The
decade of the dendritic nmda spike. Journal of neuroscience research, 88(14):2991–3001, 2010.

Cornelia I Bargmann. Beyond the connectome: how neuromodulators shape neural circuits. Bioes-
says, 34(6):458–465, 2012.

Cornelia I Bargmann and Eve Marder. From the connectome to brain function. Nature methods, 10
(6):483, 2013.

Chyi-Tsong Chen and Wei-Der Chang. A feedforward neural network with function shape autotun-
ing. Neural networks, 9(4):627–641, 1996.

Patricia S Churchland and Terrence J Sejnowski. Perspectives on cognitive neuroscience. Science,
242(4879):741–745, 1988.

9



Under review as a conference paper at ICLR 2019

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. arXiv preprint arXiv:1612.08083, 2016.

Niraj S Desai, Lana C Rutherford, and Gina G Turrigiano. Plasticity in the intrinsic excitability of
cortical pyramidal neurons. Nature neuroscience, 2(6):515, 1999.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Su Lee Goh and Danilo P Mandic. Recurrent neural networks with trainable amplitude of activation
functions. Neural Networks, 16(8):1095–1100, 2003.

Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew Botvinick.
Neuroscience-inspired artificial intelligence. Neuron, 95(2):245–258, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Donald O Hebb. The organization of behavior: A neurophysiological approach, 1949.

Geoffrey E Hinton, James L McClelland, David E Rumelhart, et al. Distributed representations.
Carnegie-Mellon University Pittsburgh, PA, 1984.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

John J Hopfield and David W Tank. Computing with neural circuits: A model. Science, 233(4764):
625–633, 1986.

Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Darrell, and Kurt Keutzer.
Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869,
2014.

Michael I Jordan. Serial order: A parallel distributed processing approach. In Advances in psychol-
ogy, volume 121, pp. 471–495. Elsevier, 1997.

Barry L Kalman and Stan C Kwasny. Why tanh: choosing a sigmoidal function. In Neural Networks,
1992. IJCNN., International Joint Conference on, volume 4, pp. 578–581. IEEE, 1992.

Yasuhiko Kawasaki, Tatsuro Kohno, Zhi-Ye Zhuang, Gary J Brenner, Haibin Wang, Catrien Van
Der Meer, Katia Befort, Clifford J Woolf, and Ru-Rong Ji. Ionotropic and metabotropic recep-
tors, protein kinase a, protein kinase c, and src contribute to c-fiber-induced erk activation and
camp response element-binding protein phosphorylation in dorsal horn neurons, leading to cen-
tral sensitization. Journal of Neuroscience, 24(38):8310–8321, 2004.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, Citeseer, 2009.

Hugo Larochelle and Geoffrey E Hinton. Learning to combine foveal glimpses with a third-order
boltzmann machine. In Advances in neural information processing systems, pp. 1243–1251, 2010.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Adam H Marblestone, Greg Wayne, and Konrad P Kording. Toward an integration of deep learning
and neuroscience. Frontiers in computational neuroscience, 10:94, 2016.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

10



Under review as a conference paper at ICLR 2019

Eve Marder, LF Abbott, Gina G Turrigiano, Zheng Liu, and Jorge Golowasch. Memory from the
dynamics of intrinsic membrane currents. Proceedings of the national academy of sciences, 93
(24):13481–13486, 1996.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Jarrod P Meadows, Mikael C Guzman-Karlsson, Scott Phillips, Jordan A Brown, Sarah K Strange,
J David Sweatt, and John J Hablitz. Dynamic dna methylation regulates neuronal intrinsic mem-
brane excitability. Sci. Signal., 9(442):ra83–ra83, 2016.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and Optimizing LSTM
Language Models. arXiv preprint arXiv:1708.02182, 2017.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An Analysis of Neural Language Mod-
eling at Multiple Scales. arXiv preprint arXiv:1803.08240, 2018.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Eleventh Annual Conference of the International Speech
Communication Association, 2010.

Paul Miller. Dynamical systems, attractors, and neural circuits. F1000Research, 5, 2016.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In
Advances in neural information processing systems, pp. 2204–2212, 2014.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Alex Reyes, Rafael Lujan, Andrej Rozov, Nail Burnashev, Peter Somogyi, and Bert Sakmann.
Target-cell-specific facilitation and depression in neocortical circuits. Nature neuroscience, 1
(4):279, 1998.

Leonie Ringrose and Renato Paro. Epigenetic regulation of cellular memory by the polycomb and
trithorax group proteins. Annu. Rev. Genet., 38:413–443, 2004.

Robertson Sean. Names dataset. https://github.com/spro/practical-pytorch/
tree/master/data/names, 2016.

S Murray Sherman. Tonic and burst firing: dual modes of thalamocortical relay. Trends in neuro-
sciences, 24(2):122–126, 2001.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Mirko Solazzi and Aurelio Uncini. Artificial neural networks with adaptive multidimensional spline
activation functions. In Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-
ENNS International Joint Conference on, volume 3, pp. 471–476. IEEE, 2000.

Klaus M Stiefel and Boris S Gutkin. Cholinergic neuromodulation controls prc type in cortical
pyramidal neurons. In Phase response curves in neuroscience, pp. 279–305. Springer, 2012.

T Tateno, A Harsch, and HPC Robinson. Threshold firing frequency–current relationships of neu-
rons in rat somatosensory cortex: type 1 and type 2 dynamics. Journal of neurophysiology, 92(4):
2283–2294, 2004.

Jonathan Touboul, Geoffroy Hermann, and Olivier Faugeras. Noise-induced behaviors in neural
mean field dynamics. SIAM Journal on Applied Dynamical Systems, 11(1):49–81, 2012.

A. M. Turing. I.computing machinery and intelligence. Mind, LIX(236):433460, 1950. doi: 10.
1093/mind/lix.236.433.

11

https://github.com/spro/practical-pytorch/tree/master/data/names
https://github.com/spro/practical-pytorch/tree/master/data/names


Under review as a conference paper at ICLR 2019

Lawrence M Ward. Synchronous neural oscillations and cognitive processes. Trends in cognitive
sciences, 7(12):553–559, 2003.

Bob Weinhold. Epigenetics: the science of change. Environmental health perspectives, 114(3):
A160, 2006.

Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the robustness of deep
neural networks via stability training. In Proceedings of the ieee conference on computer vision
and pattern recognition, pp. 4480–4488, 2016.

12



Under review as a conference paper at ICLR 2019

6 APPENDIX

6.1 SUPPLEMENTARY DATA METHODOLOGY

Additionally we tested our modulator gate, with τl(·) set to sigmoid, on a much more compu-
tationally demanding three-layered LSTM network with weight drop method named awd-lstm-lm
(Merity et al., 2017; 2018). This model was equipped to handle the Penn-Treebank dataset (Marcus
et al., 1993) and was trained to minimize word perplexity. The network was trained for 500 epochs,
however, the sample size was limited due to extremely long training times.

Table 6: Network parameters per cell

Model Modulated Control

awd-lstm-lm 6.61 M 5.29 M

6.2 SUPPLEMENTARY DATA RESULTS

On the Penn-Treebank dataset with the awd-lstm-lm implementation, sample size was restricted to
2 per condition, due to long training times and limited resources. However on the data collected,
our model outperformed template perplexity, achieving an average of 58.4730 compared to the tem-
plate average 58.7115. Due to the lack of a control for model parameters, interpretation of these
results rests on the assumption that the author fine-tuned network parameters such that the template
parameters maximized performance.

7 SUPPLEMENTARY DATA FIGURES & TABLES

7.1 AWD-LSTM-LM ON PENN-TREEBANK

Table 7: Comparison of mean test Perplexities lower = better

Model Epochs Modulated Control Statistical Analysis

awd-lstm-lm
on Penn-Treebank 500 58.4730 58.7115

T: 1.842
DOF: 1.9
Hedges’s G: 1.853

Figure 7: Validation Perplexity progress (lower = better)

13



Under review as a conference paper at ICLR 2019

7.2 SUPPLEMENTAL LSTM DATA

Table 8: LSTM test performance histograms illustrating improved test-retest reliability

14


	Introduction
	Methods
	Experimental Results
	Modulated CNNs
	Modulated LSTM

	Conclusion
	Discussion
	Appendix
	Supplementary Data Methodology
	Supplementary Data Results

	Supplementary Data Figures & Tables
	awd-lstm-lm on Penn-Treebank
	Supplemental LSTM data


