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Introduction. 
 

Derived from the widespread use of the computer in most areas of work, research, 
business, etc.  As well as the creation of programs and parcels to make efficient and 
possible tasks that otherwise would be impossible or very laborious, it becomes a 
reality the possibility of handling large volumes of information for analysis and even 
the inference about their. From this tendency to make productive tasks more efficient 
with the use of computational techniques, the use of Machine Learning was born. 

     On the other hand, the use of statistical models that allow the prediction of 
variables is not something new; However, they have been enhanced on a large scale 
thanks to the collection of data, the generation of databases, and the advancement 
in technologies that make more powerful and robust models proposed.The use of 
these predictive models have allowed companies to make decisions based primarily 
on data; the calculation of the demand for goods and services, the forecast of sales 
and expenses, the relationship between the variables of interest with the 
macroeconomic environment, etc. 

     The purpose of the following text is to create a small guide that helps to forecast 
the time series using the STL model in R. This forecasting method was selected due 
to the robustness and the scope it has to efficiently forecast a wide range of series; 
and in turn, it facilitates decision-making based on the fact that it allows a series to 
be broken down into its components; tendency, seasonality and errors.The first step 
to start series is to first define what is a time series and what we mean when we talk 
about a forecast. A time series is a list of dates, each of which is associated with a 
value (a number). Time series are a structured way of representing data. Visually, it 
is a curve that evolves over time.  

     On the other hand, the forecast of the time series means that we extend the 
historical values to the future, where there are still no measurements available. The 
forecast is usually made to optimize areas such as inventory levels, production 
capacity or personnel levels.There are two main structural variables that define a 
time series forecast: 

● The period, which represents the level of aggregation. The most common 
periods are months, weeks and days. 



● The horizon, which represents the number of advance periods that must be 
predicted. 

     Data of a series of time can be broken down into individual components to 
facilitate their study which are explained below: the Trend and the Seasonality. The 
trend of a series of time is the long-term component that represents the growth or 
decrease in the series over a broad period. As you can see the trend is the propensity 
to increase or decrease in the values of the data of a series of time, which remains 
over a very extended period of time, that is, it will not change in the distant future 
until they have significant or radical changes in the environment in which it is 
immersed and that determines the behavior of the series of time under study, 
changes that could be originated as, for example, by scientific discoveries, 
technological advances, cultural, geopolitical, demographic, religious changes , etc. 

     The seasonal component is a pattern of change that repeats itself year after 
year.The pattern of change is usually an increase or a quantitative decrease in the 
observed values of a specific time series. It is worth mentioning that although in most 
cases the seasonal pattern is a phenomenon that occurs in periods of time of 
approximately one year; This phenomenon can also be manifested in periods of 
time, whether they are less than or greater than one year. 

     To best illustrate these phenomena, the wine sales database was selected, which 
is found as a test database of the forecast package. The series has a monthly 
periodicity, which facilitates the calculation of both a trend and the seasonal 
component (which in this case is monthly). First of all, we load the necessary 
packages to carry out the analysis and the forecast. It is necessary that these and 
the other used packages are installed before running the code. The code to install 
and load these packages is: 

 

install.packages(“dplyr”) 
install.packages(“ggplot2”) 
install.packages(“tidyquant”) 
install.packages(“forecast”) 
install.packages(“fANCOVA”) 
library(dplyr) 
library(ggplot2) 
library(tidyquant) 
library(forecast) 
library(fANCOVA) 

     Once installed and loaded the necessary packages, we proceed to load the series 
of the forecast package, created the dummy variable of period, which we will occupy 
later. In turn, as is customary in the analysis of data science, it is necessary to 
separate a training base and another test base, in order to measure the efficiency of 
the forecast. The code to perform all these steps is as follows: 



Sales<-data.frame(Sales=forecast::wineind, 
Period=1:nrow(as.matrix(forecast::wineind)))  

Train<- Sales %>% dplyr::filter(Period<165) 
Test<- Sales %>% dplyr::filter(Period<=176 & Period>=165) 

 
     An important difference that has the selection of the training set and test with the 
classification models is that in time series the order of the observations does matter, 
since it seeks to predict the behavior of a series in a period after the last one that 
has the Serie. To divide the dataset into training and testing we will use only the last 
12 observations of the series as a test, since most of the models used in Time Series 
usually perform efficient forecasting in short periods of time, that is, not more than 
12 observations. 

 

Data Explore. 
 

The exploration of our data is an essential step for any type of analysis that we wish 
to perform. If we do not know the structure of our data, its properties and peculiarities, 
then we can find problems to analyze, model and interpret results.No matter how 
sophisticated a statistical model or machine learning technique is, if we do not know 
what we are giving it to work, we will hardly know what we will get from them. 

     As a first approach to the series of interest, we will make a timeless graphic about 
the wine sales series. In a temporary graph, in the Y axis the variable of interest is 
selected (in our case, the wine sales series), and in the x-axis, the period variable 
that we create (which we will occupy as the variable of the weather). To make this 
graph, we will occupy the ggplot2 package, using the ggplot function, in the following 
way: 

Train %>% ggplot2::ggplot(aes(y=Sales,x=Period)) + 
  geom_line() + 
  labs(title='Sales of Wine.',  
       subtitle = "Time serie example.", 
       x = "Period.", y = "Dollars." 
       ,caption="Source: Own elaboration with data from forecast 
package.", color="Serie:")+ 
  theme_tq()+ 
  theme(plot.title = element_text(hjust = 0, size = 20),axis.text.x = 
element_blank()) 

The graphic result of the code is as follows: 



 

 

     At first glance we can observe several characteristics of the series: first, that it 
maintains a slightly similar behavior, without radical changes in the behavior of the 
trend; Secondly, it presents a strong seasonal behavior, which explains these ups 
and downs, far from the average of the series.  

     To better visualize both the average of the series in general and its deviations, 
the analysis of the histogram is usually used. Its function is to graphically display 
numbers, variables and figures so that the results are displayed more clearly and 
orderly. For our case in general, help us see how far is the average of the complete 
series with respect to other values. In other words, the possibility that the average 
can be an efficient indicator of the phenomenon in question.The code to generate 
the histogram of the series is: 

 

Train %>% dplyr::select(Sales) %>%  
 ggplot(aes(Sales)) +  
  geom_histogram(aes(y =..density..),  
                 col="red",  
                 fill="red",  
                 alpha = .4) +  
  geom_density(color="blue", fill="blue", alpha = .2) + 
  labs(title='Distribution of Sales of Wine.', x = "Sales.", y = "Count." 
       ,caption="Source: Own elaboration with data from forecast 
package.")+ 



  theme_tq()+ 
  theme(plot.title = element_text(hjust = 0, size = 20),axis.text.y = 
element_blank()) 

 

     When we perform the histogram and the graph of the series of the series, we can 
see the effects that, in effect, there is a medium that is between 20,000 and 30,000 
dollars, with a certain bias towards the left, that is, that the value of wine Sales of 
wine have more values at 20,000 and 30,000, and less at values higher than those 
said. Another important characteristic that the series has a bias towards the left is 
that, therefore, the mean of the series is different from the median, so the series 
does not present a normal distribution.This is common, since there are effects that 
allow to determine the behavior of the series, and therefore its value is influenced by 
other variables that prevent it from being distributed in a normal way. 

     The exploratory analysis allowed us to determine that the series needs to be 
modeled using a model that allows to consider the effects of the determinants that 
prevent the series from being distributed in a normal way. As mentioned at the 
beginning of the writing, it is proposed to develop an STL model due to the 
robustness and the effectiveness it has with the handling of time series that have a 
tendency and a seasonal effect. 

STL Model. 
 

As already mentioned at the beginning of the writing, a time series can be divided 
into 3 components: the trend, the seasonality and the error or residuals of the model. 



In such a way that to elaborate a forecast it is necessary to make the estimation of 
each component, either individually or jointly. On the other hand, there are two 
different approaches: the classical approach, which considers that each component 
should be calculated in a deterministic way, and the modern approach, which 
assumes that they exist but that they are stochastic (in other words, they are not 
calculable), so that only transformations can be made to eliminate the effect until 
reaching a series of white noise. 

   The STL model is a deterministic model that allows the components to be 
calculated separately using different methods. It estimates the behavior of the trend 
using a LOESS regression, and in turn, calculates the seasonal component by 
selecting one of more models, but it is usually selected only between 2: the seasonal 
ARIMA model, or the ETS model. The main difference that the STL model has with 
the others is that, when considering the trend as a LOESS estimation, it is extremely 
flexible to the changes in the trend of the series, unlike the linear regression, which 
assumes that the series maintains the same constant. 

 

Trend. 
 

As mentioned previously, the way to calculate the trend using the STL model is to 
calculate it from a LOESS regression. LOESS combines the simplicity of linear least 
squares regression with the flexibility of non-linear regression by fitting simple 
models on local subsets of data to create a function that describes the deterministic 
part of the variation in point-to-point data. In fact, one of the main attractions of this 
method is that it is not necessary to specify a global function to fit a model to the 
data. In return, a greater calculation power is necessary.  

     Because it is so computationally intensive, LOESS would have been practically 
impossible to use at the time when the least squares regression was developed. 
Most of the other modern methods for process modeling are similar to those of 
LOESS in this regard. These methods have been consciously designed to use our 
current calculation capacity to achieve objectives not easily achieved by traditional 
methods. 

     The key parameter for the estimation of the regression LOESS is the span. The 
span is the degree of smoothing of the series. Higher smoothing values (h) produce 
softer functions that move less in response to fluctuations in the data. The smaller 
the h, the closer the adjustment of the regression function to the data will be. Using 
too small a value of the smoothing parameter is not desirable because the regression 
function will begin to capture the random error in the data. The useful values of the 
smoothing parameter are generally in the range of 0.25 to 0.5 for most LOESS 
applications. As an example to this smoothing difference we will occupy different 
values of span for the same regression, in order to compare the results, using the 
following code: 



#Estimation: 
loessMod10 <- loess(Sales ~ Period, data=Train, span=0.10) # 10% 
smoothing span 
loessMod25 <- loess(Sales ~ Period, data=Train, span=0.25) # 25% 
smoothing span 
loessMod50 <- loess(Sales ~ Period, data=Train, span=0.50) # 50% 
smoothing span 
loessMod75 <- loess(Sales ~ Period, data=Train, span=0.75) # 75% 
smoothing span 
loessMod100 <- loess(Sales ~ Period, data=Train, span=1) # 100% smoothing 
span 

 

     We save the results of the predictions in Data frames that allow us to plot as a 
comparison each prediction along with the actual training base. It was necessary, to 
perform the LOESS regression estimation, to select an explanatory variable and an 
explained variable. As it is a series of time, we use as an explanatory variable the 
fictitious variable that we create with the name Period, and the variable to explain is 
the level of wine sales. A brief explanation of why these variables were selected in 
this order is due to the fact that we seek to find the relationship (or the effect, in this 
case) that the time has on the wine sales level. 

 

#Predictions: 
smoothed10 <- predict(loessMod10)  
smoothed25 <- predict(loessMod25)  
smoothed50 <- predict(loessMod50) 
smoothed75 <- predict(loessMod75)  
smoothed100 <- predict(loessMod100) 

plot(Train$Sales, x=Train$Period, type="l", main="Loess Smoothing and 
Prediction.", xlab="Date", ylab="Sales.") 
lines(smoothed10, x=Train$Period, col="red") 
lines(smoothed25, x=Train$Period, col="green") 
lines(smoothed50, x=Train$Period, col="blue") 
lines(smoothed75, x=Train$Period, col="grey") 
lines(smoothed100, x=Train$Period, col="darkblue") 

 

The graph resulting from the previous written code is: 



 

     We can observe the comparison between different span values separately. Part 
of the work of the data scientist is to find the value that helps to maximize the 
estimation of the different models, and in this way avoid problems of overfitting or 
underfitting. In such a way that we will seek to minimize the estimation error from 
different span values for the series. To achieve this result, we will use the loess.as 
function, from the fANCOVA package.  

     The loess.as function aims to select the optimal smoothing value from two 
methods:: bias-corrected Akaike information criterion (aicc); and generalized cross-
validation (gcv).The code to calculate the optimal span value is: 

LoessOptim<-fANCOVA::loess.as(Train$Period, Train$Sales, user.span = 
NULL,  
                              plot = FALSE) 
 
LoessOptim[["pars"]][["span"]] 

## [1] 0.7906048 

 

     We obtain that the value that minimizes the estimation error of the model is 
0.79. On the other hand, using the checkresiduals () function of the forecast 
package we can carry out a brief analysis of the residuals of the estimate, in order 
to contrast that the waste is distributed in a normal way, with a constant variance 
and an average equal to 0. 



forecast::checkresiduals(LoessOptim$residuals) 

 

 

     The analysis of the residuals helps us to contrast interesting and useful results 
for the general analysis of the series. In the first place, that the series presents a 
seasonal behavior, in such a way that the waste has fallen and lowered in specific 
periods of time; This is not surprising, since we are assuming that the series is only 
composed of the component of the trend.  

     Secondly, the series presents a different distribution to the normal, since there is 
an important peak in the Gauss campaign plotted. In such a way that, according to 
the results, it is necessary to estimate in turn the 

 

Trend + Seasonal. 
 

The STLF function allows the calculation of the seasonal component from selecting 
a model that meets this specific task. The most common options are usually the 
method by model ARIMA and mor model ETS. Both models have an important effect 
that facilitates the calculation of seasonality once the trend is already conceived 
(which was already calculated from LOESS). To be sure that the appropriate model 
was selected to model the behavior of the seasonal component, both the Akaike 
criterion and the RMSE of both models will be compared, and we will select the one 
that best suits us according to our purposes. 



     As a first step, it is necessary to define the training series as a time series, with a 
periodicity of 12 (since we are considering a monthly seasonality that is repeated 
year after year). For the forecast (12 months) of the series, we will need to select the 
s.window = 12, because we will look for the behavior of the seasonal component 
with a periodicity of 12 months. In turn, as the calculation of the optimal value of the 
span for the estimation of the trend was made, it will be added to the model from the 
criterion t.window. We will start by making the forecast with the ETS model. 

Ts<-ts(Train$Sales, freq=12) 
ForecastEts<-forecast::stlf(Ts, h = 12, s.window = 12, t.window = 
0.7906048,method = c("ets")) 
ForecastEts[["model"]][["aic"]] 

## [1] 3333.966 

      

     We can check that the Akaike information selection criterion tells us that the 
value is 3333. Now, we perform the same process that was done, but changing to 
an ARIMA model with the following code: 

 
ForecastArima<-forecast::stlf(Ts, h = 12, s.window = 12, t.window = 
0.7906048,method = c("arima")) 
ForecastArima[["model"]][["aic"]] 

## [1] 2944.866 

 

     Using the calculation of the selection criteria on the proposed ARIMA model, we 
contrasted that, according to the selection criteria, the ARIMA model is better to 
perform the forecast of the series than the model with ETS. Now, we will proceed to 
contrast with the RMSE and verify if the ARIMA model has a greater predictive power 
than the ETS model. For this we will use the following code: 

 

ForecastArima<-as.numeric(ForecastArima$mean) 
TestSales<-as.numeric(Test$Sales) 
A<-data.frame(forecast::accuracy(ForecastArima,TestSales)) 
 
ForecastEts<-as.numeric(ForecastEts$mean) 
B<-data.frame(forecast::accuracy(ForecastEts,TestSales)) 
Accuracy<- rbind(ARIMA=A,ETS=B) 
Accuracy 

##              ME     RMSE      MAE       MPE     MAPE 
## ARIMA -1156.386 2783.632 2035.860 -6.477117 9.782419 
## ETS    -923.317 2633.770 1973.445 -5.430143 9.304786 



      

     When calculating the Accuracy criteria for both forecasts, using the test database, 
we contrasted that, unlike the Akaike information criterion, the model with the best 
results was the model with the seasonal component calculated from the ETS. ., with 
an RMSE lower than that of the ARIMA model. In this way, we proceed to make the 
forecast of the series using only the ETS model as a seasonal component.  

     The comparison between the predictions of the series with the real data of the 
training set is made using the following code: 

ForecastEts<-forecast::stlf(Ts, h = 12, s.window = 12, t.window = 
0.7906048,method = c("ets")) 
plot(Train$Sales, x=Train$Period, type="l", main="Comparation between 
data train and prediction.", xlab="Date", ylab="Sales.") 
lines(ForecastEts$fitted, x=Train$Period, col="red") 

 

Residual Analysis for the final model. 
 

As mentioned previously, the analysis of waste is of the utmost importance because 
it allows us to observe what kind of behavior the series needs to model. In the 
previous analysis, for example, it was discovered that there was a seasonal pattern 
that the only estimate by LOESS could not capture. On the other hand, using the 
STLF function, we were able to estimate both the trend and the seasonal component 
estimate. We then perform again the analysis of the residuals of the new model, in 



order to know if the distribution of them follows a normal behavior, with constant and 
average variance equal to 0. 

     To perform the analysis of the waste we use, in the same way, the next code: 

 

forecast::checkresiduals(ForecastEts$residuals) 

 

 

     We can now observe that the residuals have a behavior closer to the normal than 
the previous proposed model, since there are no higher values than the Gaussian 
distribution in the graph. On the other hand, there are no significant problems of 
autocorrelation between the waste. As another important analysis, we proceed to 
calculate the Q-Q curve that helps us compare the normality of waste. A Cuantil-
Cuantil chart allows you to see how close the distribution of a data set to some ideal 
distribution or compare the distribution of two data sets. If it is interesting to compare 
with the Gaussian distribution, it is called normal probability graph. The data is sorted 
and graph the i-th data against the corresponding quantile Gaussian. The code to 
elaborate this graph is the following: 

qqnorm(ForecastEts$residuals, pch = 1, frame = FALSE); 
qqline(ForecastEts$residuals, col = "steelblue", lwd = 2) 



 

     As we can see in the Q-Q plot, there is a normal behavior of the waste series. 
The objective of the Temporary Series is to decompose the series observed in two 
parts: one is the dependent part of the past and the other the unpredictable part. The 
use of the ETS model allowed to capture, in an effective way, the behavior of the 
component of the trend, in such a way that the only thing that "remains" of the series 
is white noise, that is, random variations that can not be predicted. 

 

 

 

 

 

 

 

 

 



Conclusions. 
 

Once the almost normal behavior of the residuals is contrasted, and obtaining a 
model with a fairly acceptable RMSE, we can proceed to carry out the forecast of 
the series and make the comparison with the original test series. First, we can make 
the model forecast chart using the autoplot function, which is inside the ggplot2 
package. Note: it must be remembered that the autoplot function only works with 
time series, so that when we want to occupy the function the series must be 
established as a series of time using the ts function.  

     We make the forecast and graphing it using the following : 

autoplot(ForecastEts)+ 
  labs(subtitle = "Sales of Wine example..", 
       x = "Period.", y = "Dollars." 
       ,caption="Source: Own elaboration with data from forecast 
package.", color="Serie:")+ 
  theme_tq()+ 
  theme(plot.title = element_text(hjust = 0, size = 15),axis.text.x = 
element_blank()) 

 

     The resulting graph allows us to confirm that the behavior of the forecast is quite 
similar to the behavior of the series in general, this is a good indication since it means 
that the achievement model captures all the main effects that influence the behavior 



of the series in general. Note: within the predicted graph, we can observe the 
confidence intervals at a 90 and 95% level of significance, in which are the values 
within which the real values of the series will fall. 

      This is very important, since, as we have seen, the forecast will not always be 
exactly the same value as the real data, so the intervals help to have a greater 
margin of error that makes it easier for the decision maker to be aware of the possible 
deviations of a forecast. 

     In order to better demonstrate this characteristic, we will proceed to make a 
graph that serves as a comparison between the predicted value, the real value, 
and the confidence intervals of the same to which the forecast should fall. For that, 
we will use the ggplot function in the same way, and with the geom_errorbar 
command we will create the confidence intervals, in order to see how many of the 
real values of the training set fall within. 

Intervals<-data.frame(ForecastEts$upper,ForecastEts$lower) 

 
FinalData<-data.frame(Real=Sales$Sales, 
Prediction=c(as.numeric(ForecastEts$fitted),as.numeric(ForecastEts$mean))
,Upper=c(rep(NA,nrow(Train)),as.numeric(Intervals$X95.)), 
Lower=c(rep(NA,nrow(Train)),as.numeric(Intervals$X95..1))) 
 
FinalData$Date<- 1:nrow(FinalData) 

 
FinalData<-FinalData %>% dplyr::filter(Date>=155) 

 

ggplot(data=FinalData,aes(x = Date, y = Real,color="Real.")) +  
  geom_line() +   
  geom_point() + 
  geom_vline(aes(xintercept =165), lty = 2, size=1)+ 
  geom_line(aes(x = Date, y = Prediction, color="Prediccion.")) + 
  geom_point(aes(x = Date, y =Prediction ,color="Prediccion."))+ 
  geom_text(aes(x=164,y=38000,label="Forecast."),angle = 90, 
colour="black")+ 
  geom_errorbar(aes(ymin=Lower, ymax=Upper), width=0.3,color="red")+ 
  labs(title="Forecast: Sales of Wine to 12 months using STL.", 
       subtitle="Comparation between real data and prediction..", 
x='Period.',y='Dollars.', color='Data:')+ 
  theme_minimal()+ 
  theme(plot.title = element_text(size = 13, face = "bold"),axis.text.x = 
element_blank()) 

 

 



The resulting graph of the code elaborates is the following one: 

 

The resulting graph allows us to visualize several interesting things: first, that the 
model proposed for forecasting was efficient, since the predicted values are very 
close to the real test values. Second, that at least 10 of the 12 real values of the 
series are within the confidence interval of all predicted values, so it represents an 
important percentage of correct guesses in the forecast.  

     At the moment of elaborating a model to forecast time series, there is no reason 
to lose sight of the fact that the longer the period of time there is a greater probability 
that the forecast will not be efficient, due to the very nature of the series. 

 


