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ABSTRACT

Vanilla RNN with ReLU activation have a simple structure that is amenable to sys-
tematic dynamical systems analysis and interpretation, but they suffer from the ex-
ploding vs. vanishing gradients problem. Recent attempts to retain this simplicity
while alleviating the gradient problem are based on proper initialization schemes
or orthogonality/unitary constraints on the RNN’s recurrence matrix, which, how-
ever, comes with limitations to its expressive power with regards to dynamical
systems phenomena like chaos or multi-stability. Here, we instead suggest a reg-
ularization scheme that pushes part of the RNN’s latent subspace toward a line
attractor configuration that enables long short-term memory and arbitrarily slow
time scales. We show that our approach excels on a number of benchmarks like
the sequential MNIST or multiplication problems, and enables reconstruction of
dynamical systems which harbor widely different time scales.

1 INTRODUCTION

Theories of complex systems in biology and physics are often formulated in terms of sets of stochas-
tic differential or difference equations, i.e. as stochastic dynamical systems (DS). A long-standing
desire is to retrieve these generating dynamical equations directly from observed time series data
(Kantz & Schreiber, 2004). A variety of machine and deep learning methodologies toward this goal
have been introduced in recent years (Chen et al., 2017; Champion et al., 2019; Jordan et al., 2019;
Duncker et al., 2019; Ayed et al., 2019; Durstewitz, 2017; Koppe et al., 2019), many of them based
on recurrent neural networks (RNN) which can universally approximate any DS (i.e., its flow field)
under some mild conditions (Funahashi & Nakamura, 1993; Kimura & Nakano, 1998). However,
vanilla RNN as often used in this context are well known for their problems in capturing long-term
dependencies and slow time scales in the data (Hochreiter & Schmidhuber, 1997; Bengio et al.,
1994). In DS terms, this is generally due to the fact that flexible information maintenance over
long periods requires precise fine-tuning of model parameters toward ’line attractor’ configurations
(Fig. 1), a concept first propagated in computational neuroscience for addressing animal perfor-
mance in parametric working memory tasks (Seung, 1996; Seung et al., 2000; Durstewitz, 2003).
Line attractors introduce directions of zero-flow into the model’s state space that enable long-term
maintenance of arbitrary values (Fig. 1). Specially designed RNN architectures equipped with gat-
ing mechanisms and (linear) memory cells have been suggested for solving this issue (Hochreiter
& Schmidhuber, 1997; Cho et al., 2014). However, from a DS perspective, simpler models that
can more easily be analyzed and interpreted in DS terms, and for which more efficient inference
algorithms exist that emphasize approximation of the true underlying DS would be preferable.

Recent solutions to the vanishing vs. exploding gradient problem attempt to retain the simplicity of
vanilla RNN by initializing or constraining the recurrent weight matrix to be the identity (Le et al.,
2015), orthogonal (Henaff et al., 2016; Helfrich et al., 2018) or unitary (Arjovsky et al., 2016). In this
way, in a system including piecewise linear (PL) components like rectified-linear units (ReLU), line
attractor dimensions are established from the start by construction or ensured throughout training by
a specifically parameterized matrix decomposition. However, for many DS problems, line attractors
instantiated by mere initialization procedures may be unstable and quickly dissolve during training.
On the other hand, orthogonal or unitary constraints are too restrictive for reconstructing DS, and
more generally from a computational perspective as well (Kerg et al., 2019): For instance, neither
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Fig. 1: Line attractors for solving long-time-scale problems. A)–B): Illustration of the state space
of a 2-unit RNN (converted into a continuous time ODE, see Suppl. 7.1.2) with flow field (grey)
and nullclines (set of points at which the flow of one of the variables vanishes, in blue and red).
Insets: Time graphs of z1 for T = 30 000. A) Perfect line attractor. The flow converges to the
line attractor from all directions and is exactly zero on the line, thus retaining states indefinitely in
the absence of perturbations, as illustrated for 3 example trajectories (green) started from different
initial conditions. B) Slightly detuned line attractor (cf. Durstewitz (2003)). The system’s state
still converges toward the ’line attractor ghost’ (Strogatz, 2015), but then very slowly crawls up
within the ’attractor tunnel’ (green trajectory) until it hits the stable fixed point at the intersection of
nullclines. Within the tunnel, flow velocity is smoothly regulated by the gap between nullclines, thus
enabling arbitrary time constants. Note that along other, not illustrated dimensions of the system’s
state space the flow may still evolve freely in all directions. C) Simple 2-unit solution to the addition
problem exploiting the line attractor properties of ReLUs in the positive quadrant. The output unit
serves as a perfect integrator, while the input unit will only convey those input values to the output
unit that are accompanied by a ’1’ in the second input stream (see 7.1.1 for complete parameters).

chaotic behavior (that requires diverging directions) nor settings with multiple isolated fixed point
or limit cycle attractors are possible.

Here we therefore suggest a different solution to the problem, by pushing (but not strictly enforcing)
ReLU-based, piecewise-linear RNN (PLRNN) toward line attractor configurations along some (but
not all) directions in state space. We achieve this by adding special regularization terms for a subset
of RNN units to the loss function that promote such a configuration. We demonstrate that our
approach outperforms, or is en par with, LSTM and other, initialization-based, methods on a number
of ’classical’ machine learning benchmarks (Hochreiter & Schmidhuber, 1997). More importantly,
we demonstrate that while with previous methods it was difficult to capture slow behavior in a
DS that exhibits widely different time scales, our new regularization-supported inference efficiently
captures all relevant time scales.

2 RELATED WORK

Long-range dependency problems in RNN. Error gradients in vanilla RNN trained by some form
of gradient descent, like back-propagation through time (BPTT, Rumelhart et al. (1986)), tend to
either explode or vanish due to the large product of derivative terms that results from recursive
application of the chain rule over time steps (Hochreiter, 1991; Bengio et al., 1994; Hochreiter
& Schmidhuber, 1997). Formally, RNN zt = Fθ (zt−1, st) are discrete time dynamical systems
that tend to either converge, e.g. to fixed point or limit cycle attractors, or diverge (to infinity
or as in chaotic systems) over time, unless parameters of the system are precisely tuned to create
directions of zero-flow in the system’s state space (Fig. 1), called line attractors (Seung, 1996; Seung
et al., 2000; Durstewitz, 2003). Convergence of the RNN in general implies vanishing and global
divergence exploding gradients. To address this issue, RNN with gated memory cells have been
specifically designed (Hochreiter & Schmidhuber, 1997; Cho et al., 2014), but these are complicated
and tedious to analyze from a DS perspective. Recently, Le et al. (2015) observed that initialization
of the recurrent weight matrix W to the identity in ReLU-based RNN may yield performance en
par with LSTMs on standard machine learning benchmarks. For a ReLU with activity zt ≥ 0, zero
bias and unit slope, this results in the identity mapping, hence a line attractor configuration. Talathi
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& Vartak (2016) expanded on this idea by initializing the recurrence matrix such that its largest
absolute eigenvalue is 1, arguing that this would leave other directions in the system’s state space free
for computations other than memory maintenance. Later work enforced orthogonal (Henaff et al.,
2016; Helfrich et al., 2018; Jing et al., 2019) or unitary (Arjovsky et al., 2016) constraints on the
recurrent weight matrix during training. While this appears to yield long-term memory performance
superior to that of LSTMs, these networks are limited in their computational power (Kerg et al.,
2019). This may be a consequence of the fact that RNN with orthogonal recurrence matrix are quite
restricted in the range of dynamical phenomena they can produce, e.g. chaotic attractors are not
possible since diverging eigen-directions are disabled. Our approach therefore is to establish line
attractors only along some but not all directions in state space, and to only push the RNN toward
these configurations but not strictly enforce them, such that convergence or divergence of RNN
dynamics is still possible. We furthermore implement these concepts through regularization terms
in the loss functions, such that they are encouraged throughout training unlike when only established
through initialization.

Dynamical systems reconstruction. From a natural science perspective, the goal of reconstructing
the underlying DS fundamentally differs from building a system that ’merely’ yields good ahead pre-
dictions, as in DS reconstruction we require that the inferred model can freely reproduce (when no
longer guided by the data) the underlying attractor geometries and state space properties (see section
3.5, Fig. S2; Kantz & Schreiber (2004)). Earlier work using RNN for DS identification (Roweis &
Ghahramani, 2002; Yu et al., 2006) mainly focused on inferring the posterior over latent trajectories
Z = {z1, . . . ,zT } given time series data X = {x1, . . . ,xT }, p(Z|X), and on ahead predictions
(Lu et al., 2017), hence did not show that inferred models can generate the underlying attractor
geometries on their own. Others (Trischler & D’Eleuterio, 2016; Brunton et al., 2016) attempt to
approximate the flow field, obtained e.g. by numerical differentiation, directly through basis expan-
sions or neural networks, but numerical derivatives are problematic for their high variance and other
numerical issues (Raissi, 2018; Baydin et al., 2018; Chen et al., 2017). Some approaches assume
the form of the DS equations basically to be given (Raissi, 2018; Gorbach et al., 2017) and focus
on estimating the system’s latent states and parameters, rather than approximating an unknown DS
based on the observed time series information alone. In many biological systems like the brain the
intrinsic dynamics are highly stochastic with many noise sources, like probabilistic synaptic release
(Stevens, 2003), such that models that do not explicitly account for dynamical process noise (Cham-
pion et al., 2019; Rudy et al., 2019) may be less suitable. Finally, some fully probabilistic models for
DS reconstruction based on GRU (Fraccaro et al. (2016), cf. Jordan et al. (2019)), LSTM (Zheng
et al., 2017), or radial basis function (Zhao & Park, 2017) networks are not easily interpretable
and amenable to DS analysis. Most importantly, none of these previous approaches considers the
long-range dependency problem within more easily tractable RNN for DS reconstruction.

3 MODEL FORMULATION AND OPTIMIZATION APPROACHES

3.1 MODEL AND PRELIMINARIES

Assume we are given two multivariate time series S = {st} and X = {xt}, one we will denote
as ’inputs’ (S) and the other as ’outputs’ (X). We will first consider the ’classical’ (supervised)
machine learning setting where we wish to map S on X through a RNN with latent state equation
zt = Fθ (zt−1, st), as for instance in the ’addition problem’ (Hochreiter & Schmidhuber, 1997). In
DS reconstruction, in contrast, we usually have a dense time series X from which we wish to infer
(unsupervised) the underlying DS, where S may provide an additional forcing function or sparse
experimental inputs or perturbations.

The latent RNN we consider here takes the specific form

zt = Azt−1 +Wφ(zt−1) +Cst + h+ εt, εt ∼ N (0,Σ), (1)

where zt ∈ RM×1 is the hidden state (column) vector of dimensionM ,A ∈ RM×M a diagonal and
W ∈ RM×M an off-diagonal matrix, st ∈ RK×1 the external input of dimension K, C ∈ RM×K
the input mapping, h ∈ RM×1 a bias, and εt a Gaussian noise term with diagonal covariance ma-
trix diag(Σ) ∈ RM+ . The nonlinearity φ(z) is a ReLU, φ(z)i = max(0, zi), i ∈ {1, . . . ,M}.
This specific formulation is originally motivated by firing rate (population) models in computa-
tional neuroscience (Song et al., 2016; Durstewitz, 2017), where latent states zt may represent
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membrane voltages or currents, A the neurons’ passive time constants, W the synaptic coupling
among neurons, and φ(·) the voltage-to-rate transfer function. However, for a RNN in the form
zt = Wφ (zt−1) + h, note that the simple change of variables yt →W−1(zt − h) will yield the
more familiar form yt = φ (Wyt−1 + h) (Beer, 2006).

Besides its neuroscience motivation, note that by letting A = I , W = 0, h = 0, we get a strict
line attractor system across the variables’ whole support which we conjecture will be of advantage
for establishing long short-term memory properties. Also we can solve for all of the system’s fixed
points analytically by solving the equations z∗ = (I −A−WDΩ)

−1
h, with DΩ as defined in

Suppl. 7.1.2, and can determine their stability from the eigenvalues of matrixA+WDΩ. We could
do the same for limit cycles, in principle, which are fixed points of the r-times iterated map F rθ , al-
though practically the number of configurations to consider increases exponentially as 2M ·r. Finally,
we remark that a discrete piecewise-linear system can, under certain conditions, be transformed into
an equivalent continuous-time (ODE) piecewise-linear system ζ̇ = GΩ(ζ(t), s(t)) (Suppl. 7.1.2,
Ozaki (2012)), in the sense that if ζ(t) = zt, then ζ(t + ∆t) = zt+1 after a defined time step ∆t.
These are among the properties that make PLRNNs more amenable to rigorous DS analysis than
other RNN formulations.

We will assume that the latent RNN states zt are coupled to the actual observations xt through a
simple observation model of the form

xt = Bg(zt) + ηt, ηt ∼ N (0,Γ) (2)

in the case of real-valued observations xt ∈ RN×1, where B ∈ RN×M is a factor loading matrix
and diag(Γ) ∈ RN+ the diagonal covariance matrix of the Gaussian observation noise, or

p̂i,t := p̂t (xi,t = 1) =
(
eBi,:zt

) N∑
j=1

eBj,:zt

−1

, (3)

in the case of multi-categorical observations xi,t ∈ {0, 1},
∑
i xi,t = 1.

3.2 REGULARIZATION APPROACH

We start from a similar idea as Le et al. (2015), who initialized RNN parameters such that it performs
an identity mapping for zi,t ≥ 0. However, 1) we use a neuroscientifically motivated network
architecture (eq. 1) that enables the identity mapping across the variables whole support, zi,t ∈
[−∞,+∞], 2) we encourage this mapping only for a subset Mreg ≤ M of units (Fig. S1), leaving
others free to perform arbitrary computations, and 3) we stabilize this configuration throughout
training by introducing a specific L2 regularization for parametersA,W , and h in eq. 1.

That way, we divide the units into two types, where the regularized units serve as a memory that tends
to decay very slowly (depending on the size of the regularization term), while the remaining units
maintain the flexibility to approximate any underlying DS, yet retaining the simplicity of the original
RNN model (eq. 1). Specifically, the following penalty is added to the loss function (Fig. S1):

Lreg = τA

Mreg∑
i=1

(Ai,i − 1)
2

+ τW

Mreg∑
i=1

M∑
j=1
j 6=i

W 2
i,j + τh

Mreg∑
i=1

h2
i (4)

While this formulation allows us to trade off, for instance, the tendency toward a line attractor
(A→ I , h→ 0) vs. the sensitivity to other units’ inputs (W → 0), for all experiments performed
here a common value, τA = τW = τh = τ , was assumed for the three regularization factors.

3.3 OPTIMIZATION PROCEDURE FOR MACHINE LEARNING BENCHMARKS

For comparability with other approaches like LSTMs (Hochreiter & Schmidhuber, 1997) or iRNN
(Le et al., 2015), we will assume that the latent state dynamics eq. 1 are deterministic (i.e.,
Σ = 0), will take g(zt) = zt and Γ = IN in eq. 2 (leading to an implicit Gaussian assump-
tion with identity covariance matrix), and will use stochastic gradient descent (SGD) for training
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to minimize the squared-error loss across R samples, L =
∑R
n=1

(
x̂

(n)
T − x(n)

T

)2

, between esti-
mated and actual outputs for the addition and multiplication problems, and the cross entropy loss
L =

∑R
n=1

(
−
∑10
i=1 x

(n)
i,T log(p̂

(n)
i,T )
)

for sequential MNIST, to which penalty eq. 4 was added for
the regularized PLRNN (rPLRNN). We used the Adam algorithm (Kingma & Ba, 2014) from the
PyTorch package (Paszke et al., 2017) with a learning rate of 0.001, a gradient clip parameter of 10,
and batch size of 16. In all cases, SGD is stopped after 100 epochs and the fit with the lowest loss
across all epochs is chosen.

3.4 OPTIMIZATION PROCEDURE FOR DYNAMICAL SYSTEMS RECONSTRUCTION

For DS reconstruction we request that the latent RNN approximates the true generating system of
equations, which is a taller order than learning the mapping S →X or predicting future values in a
time series (cf. sect. 3.5). This point has important implications for the design of models, inference
algorithms and performance metrics if the primary goal is DS reconstruction rather than ’mere’ time
series forecasting. In this context we consider the fully probabilistic, generative RNN eq. 1.

Together with eq. 2 (where we take g(zt) = φ(zt)) this gives the typical form of a nonlinear state
space model (Durbin & Koopman, 2012) with observation and process noise. We solve for the pa-
rameters θ = {A,W ,C,h,Σ,B,Γ} by maximum likelihood, for which an efficient Expectation-
Maximization (EM) algorithm has recently been suggested (Durstewitz, 2017; Koppe et al., 2019),
which we will briefly summarize here. Since the involved integrals are not tractable, we start off
from the evidence-lower bound (ELBO) to the log-likelihood which can be rewritten in various
useful ways:

log p(X|θ) ≥ EZ∼q[log pθ(X,Z)] +H (q(Z|X))

= log p(X|θ)−DKL (q(Z|X)‖pθ(Z|X)) =: L (θ, q) (5)

In the E-step, given a current estimate θ∗ for the parameters, we seek to determine the posterior
pθ (Z|X) which we approximate by a global Gaussian q(Z|X) instantiated by the maximizer
(mode) Z∗ of pθ(Z|X) as an estimator of the mean, and the negative inverse Hessian around this
maximizer as an estimator of the state covariance, i.e.

E[Z|X] ≈ Z∗ = arg max
Z

log pθ(Z|X) = arg max
Z

[log pθ(X|Z) + log pθ(Z)− log pθ(X)]

= arg max
Z

[log pθ(X|Z) + log pθ(Z)] , (6)

since Z integrates out in pθ(X) (equivalently, this result can be derived from a Laplace approxima-
tion to the log-likelihood, log p(X|θ) ≈ log pθ(X|Z∗)+log pθ(Z∗)− 1

2 log |−L∗|+const, where
L∗ is the Hessian evaluated at the maximizer). We solve this optimization problem by a fixed-point
iteration scheme that efficiently exploits the model’s piecewise linear structure (see Suppl. 7.1.3,
Durstewitz (2017); Koppe et al. (2019)).

Using this approximate posterior for pθ(Z|X), based on the model’s piecewise-linear structure most
of the expectation values Ez∼q [φ(z)], Ez∼q [φ(z)zᵀ], and Ez∼q [φ(z)φ(z)ᵀ], could be solved for
(semi-)analytically (where z is the concatenated vector form of Z, as in Suppl. 7.1.3). In the M-
step, we seek θ∗ := arg max

θ
L(θ, q∗), assuming proposal density q∗ to be given from the E-step,

which for a Gaussian observation model amounts to a simple linear regression problem (see Suppl.
eq. 23). To force the PLRNN to really capture the underlying DS in its governing equations, we
use a previously suggested (Koppe et al. 2019) stepwise annealing protocol that gradually shifts
the burden of fitting the observations X from the observation model eq. 2 to the latent RNN model
eq. 1 during training, the idea of which is to establish a mapping from latent statesZ to observations
X first, fixing this, and then enforcing the temporal consistency constraints implied by eq. 1 while
accounting for the actual observations.

3.5 PERFORMANCE MEASURES

Measures of prediction error. For the machine learning benchmarks we employed the same criteria
as used for optimization (MSE or cross-entropy, sect. 3.3) as performance metrics, evaluated across
left-out test sets. In addition, we report the relative frequency Pcorrect of correctly predicted trials
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Fig. 2: Comparison of rPLRNN (τ = 5,
Mreg

M = 0.5, cf. Fig. S3) to other methods for A) addition
problem, B) multiplication problem and C) sequential MNIST. Top row gives loss as a function
of time series length T (error bars = SEM), bottom row shows relative frequency of correct trials.
Dashed lines indicate chance level, black dots in C indicate individual repetitions of the experiment.

across the test set. A correct trial in the addition and multiplication task is defined as an absolute
prediction error smaller than 0.04 (analogous to Talathi & Vartak (2016)), while a correct trial in
the sequential MNIST data set is defined as one for which the largest probability p̂i∗ = max

i
p̂i,T

indicated the correct class xi∗,T = 1.

Agreement in attractor geometries. From a DS perspective, it is not sufficient or even sensible to
judge a method’s ability to infer the underlying DS purely based on some form of (ahead-)prediction
error like the MSE defined on the time series itself (Ch.12 in Kantz & Schreiber (2004)). Rather,
we require that the inferred model can freely reproduce (when no longer guided by the data) the
underlying attractor geometries and state space properties. This is not automatically guaranteed for
a model that yields agreeable ahead predictions on a time series. Vice versa, if the underlying at-
tractor is chaotic, with a tiny bit of noise even trajectories starting from the same initial condition
will quickly diverge and ahead-prediction errors are not even meaningful as a performance metric
(Fig. S2A). To quantify how well an inferred PLRNN captured the underlying dynamics we there-
fore followed Koppe et al. (2019) and used the Kullback-Leibler divergence between the true and
reproduced probability distributions across states in state space, thus assessing the agreement in at-
tractor geometries (cf. Takens (1981); Sauer et al. (1991)) rather than in precise matching of time
series,

DKL (ptrue(x)‖pgen(x|z)) ≈
K∑
k=1

p̂
(k)
true(x) log

(
p̂

(k)
true(x)

p̂
(k)
gen(x|z)

)
, (7)

where ptrue(x) is the true distribution of observations across state space (not time!), pgen(x|z) is
the distribution of observations generated by running the inferred PLRNN, and the sum indicates a
spatial discretization (binning) of the observed state space (see Suppl. 7.1.4 for more details). We
emphasize that p̂(k)

gen(x|z) is obtained from freely simulated trajectories, i.e. drawn from the prior
p̂(z), not from the inferred posteriors p̂(z|xtrain). (The form of p̂(z) is given by the dynamical
model eq. 1 and has a ’mixture of piecewise-Gaussians’ structure, see Koppe et al. (2019).) In
addition, to assess reproduction of time scales by the inferred PLRNN, we computed the average
correlation between the power spectra of the true and generated time series.
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Table 1: Overview over the different models used for comparison

NAME DESCRIPTION
RNN Vanilla ReLU based RNN

L2RNN Vanilla ReLU RNN with standard L2 regularization on all weights

iRNN RNN with initializationW0 = I and h0 = 0 (Le et al., 2015)

npRNN RNN with weights initialized to a normalized positive definite matrix
with largest eigenvalue of 1 and biases initialized to zero (Talathi &
Vartak, 2016)

PLRNN PLRNN as given in eq. 1 (Koppe et al., 2019)

iPLRNN PLRNN with initializationA0 = I ,W0 = 0 and h0 = 0

rPLRNN PLRNN initialized as illustrated in Fig. S1, with additional regulariza-
tion term (eq. 4) during training

LSTM Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

4 NUMERICAL EXPERIMENTS

4.1 MACHINE LEARNING BENCHMARKS

We compared the performance of our rPLRNN to other models on the following three benchmarks
requiring long short-term maintenance of information (as in Talathi & Vartak (2016) and Hochreiter
& Schmidhuber (1997)): 1) The addition problem of time length T consists of 100 000 training and
10 000 test samples of 2 × T input series S = {s1, . . . , sT }, where entries s1,: ∈ [0, 1] are drawn
from a uniform random distribution and s2,: ∈ {0, 1} contains zeros except for two indicator bits
placed randomly at times t1 < 10 and t2 < T/2. Constraints on t1 and t2 are chosen such that every
trial requires a long memory of at least T/2 time steps. At the last time step T , the target output of the
network is the sum of the two inputs in s1,: indicated by the 1-entries in s2,:, x

target
T = s1,t1 + s1,t2 .

2) The multiplication problem is the same as the addition problem, only that the product instead of
the sum has to be produced by the RNN as an output at time T , xtarget

T = s1,t1 ·s1,t2 . 3) The MNIST
dataset (LeCun & Cortes, 2010) consists of 60 000 training and 10 000 28× 28 test images of hand
written digits. To make this a time series problem, in sequential MNIST the images are presented
sequentially, pixel-by-pixel, scanning lines from upper left to bottom-right, resulting in time series
of fixed length T = 784.

On all three benchmarks we compare the performance of the rPLRNN (eq. 1) to several other models
summarized in Table 1. To achieve a meaningful comparison, all models have the same number of
hidden states M , except for the LSTM, which requires three additional parameters for each hidden
state and hence has only M/4 hidden states, yielding the overall same number of trainable parame-
ters as for the other models. In all cases, M = 40, which initial numerical exploration suggested to
be a good compromise between model complexity (bias) and data fit (variance) (Fig. S3).

Fig. 2 summarizes the results for the machine learning benchmarks. As can be seen, on the addition
and multiplication tasks, and in terms of either the MSE or percentage correct, our rPLRNN outper-
forms all other tested methods, including LSTMs. Indeed, the LSTM performs even significantly
worse than the iRNN and the iPLRNN. The large error bars in Fig. 2 result from the fact that the
networks mostly learn these tasks in an all-or-none fashion, i.e. either learn the task and succeed in
almost 100 percent of the cases or fail completely. The results for the sequential MNIST problem are
summarized in Fig. 2C. While in this case the LSTM outperforms all other methods, the rPLRNN is
almost en par with it. In addition, the iPLRNN outperforms the iRNN. Similar results were obtained
for M = 100 units (M = 25, respectively, for LSTM; Fig. S6). While the rPLRNN in general
outperformed the pure initialization-based models (iRNN, npRNN, iPLRNN), confirming that a line
attractor subspace present at initialization may be lost throughout training, we conjecture that this
difference in performance will become even more pronounced as noise levels or task complexity
increase.
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Fig. 3: Reconstruction of a 2-time scale DS (biophysical bursting neuron model) in limit cycle
regime. A) KL divergence (DKL) between true and generated state space distributions as a func-
tion of τ . Unstable (globally diverging) system estimates were removed. B) Average MSE be-
tween power spectra of true and reconstructed DS. C) Average normalized MSE between power
spectra of true and reconstructed DS split according to low (≤ 50 Hz) and high (> 50 Hz) fre-
quency components. Error bars = SEM in all graphs. D) Example of (best) generated time series
(red=reconstruction with τ = 2

3 ).

4.2 NUMERICAL EXPERIMENTS ON A DYNAMICAL SYSTEM WITH DIFFERENT TIME SCALES

Here our goal was to examine whether our regularization approach would also help with the iden-
tification of DS that harbor widely different time scales. By tuning systems in the vicinity of
line attractors, multiple arbitrary time scales can be realized in theory (Durstewitz, 2003). To test
this, we used a biophysically motivated (highly nonlinear) bursting cortical neuron model with one
voltage and two conductance recovery variables (see Durstewitz (2009)), one slow and one fast
(Suppl. 7.1.5). Reproduction of this DS is challenging since it produces very fast spikes on top of
a slow nonlinear oscillation (Fig. 3D). Time series of standardized variables of length T = 1500
were generated from this model and provided as observations to the rPLRNN inference algorithm.
rPLRNNs with M = {8 . . . 18} states were estimated, with the regularization factor varied within
τ ∈ {0, 101, 102, 103, 104, 105}/1500.

Fig. 3A confirms our intuition that stronger regularization leads to better DS reconstruction as as-
sessed by the KL divergence between true and generated state distributions. This decrease in DKL

is accompanied by a likewise decrease in the MSE between the power spectra of true (Suppl. eq. 27)
and generated (rPLRNN) voltage traces as τ increased (Fig. 3B). Fig. 3D gives an example of volt-
age traces and gating variables freely simulated (i.e., sampled) from the generative rPLRNN trained
with τ = 2

3 , illustrating that our model is in principle capable of capturing both the stiff spike dy-
namics and the slower oscillations in the second gating variable at the same time. Fig. 3C provides
more insight into how the regularization worked: While the high frequency components (> 50 Hz)
related to the repetitive spiking activity hardly benefitted from increasing τ , there was a strong re-
duction in the MSE computed on the power spectrum for the lower frequency range (≤ 50 Hz),
suggesting that increased regularization helps to map slowly evolving components of the dynamics.

5 CONCLUSIONS

In this work we have introduced a simple solution to the long short-term memory problem in RNN
that on the one hand retains the simplicity and tractability of vanilla RNN, yet on the other hand
does not curtail the universal computational capabilities of RNN (Koiran et al., 1994; Siegelmann &
Sontag, 1995) and their ability to approximate arbitrary DS (Funahashi & Nakamura, 1993; Kimura
& Nakano, 1998; Trischler & D’Eleuterio, 2016). We achieved this by adding regularization terms
to the loss function that encourage the system to form a ’memory subspace’, that is, line attractor

8
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dimensions (Seung, 1996; Durstewitz, 2003) which would store arbitrary values for, if unperturbed,
arbitrarily long periods. At the same time we did not rigorously enforce this constraint which has
important implications for capturing slow time scales in the data: It allows the RNN to slightly
depart from a perfect line attractor, which has been shown to constitute a general dynamical mech-
anism for regulating the speed of flow and thus the learning of arbitrary time constants that are not
naturally included qua RNN design (Durstewitz, 2003; 2004). This is because as we come infinites-
imally close to a line attractor and thus a bifurcation in the system’s parameter space, the flow along
this direction becomes arbitrarily slow until it vanishes completely in the line attractor configuration
(Fig. 1). Moreover, part of the RNN’s latent space was not regularized at all, leaving the system
enough degrees of freedom for realizing arbitrary computations or dynamics. We showed that the
rPLRNN is en par with or outperforms initialization-based approaches and LSTMs on a number
of classical benchmarks, and, more importantly, that the regularization strongly facilitates the iden-
tification of challenging DS with widely different time scales in PLRNN-based algorithms for DS
reconstruction. Future work will explore a wider range of DS models and empirical data with diverse
temporal and dynamical phenomena. Another future direction may be to replace the EM algorithm
by black-box variational inference, using the re-parameterization trick for gradient descent (Kingma
& Welling, 2013; Rezende et al., 2014; Chung et al., 2015). While this would come with better
scaling in M , the number of latent states (the scaling in T is linear for EM as well, see Paninski
et al. (2010)), the EM used here efficiently exploits the model’s piecewise linear structure in finding
the posterior over latent states and computing the parameters (see Suppl. 7.1.3). It may thus be
more accurate and suitable for smaller-scale problems where high precision is required, as often
encountered in neuroscience or physics.
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7 SUPPLEMENTARY MATERIAL

7.1 SUPPLEMENTARY TEXT

7.1.1 Simple exact PLRNN solution for addition problem

The exact PLRNN parameter settings (cf. eq. 1) for solving the addition problem with 2 units (cf.
Fig. 1C) are as follows:

A =

(
1 0
0 0

)
,W =

(
0 1
0 0

)
,h =

(
0
−1

)
,C =

(
0 0
1 1

)
,B = (1 0) (8)

7.1.2 Conversion from discrete to continuous time PLRNN

Under some conditions we can translate the discrete into an equivalent continuous time PLRNN.
Using DΩ(t) as defined below (7.1.3) for a single time step t, we can rewrite (ignoring the noise
term and inputs) PLRNN eq. 1 in the form

zt+1 = F (zt) = WΩ(t)zt + h, withWΩ(t) := A+WDΩ(t), (9)

where Ω(t) := {m|zm,t > 0} is the set of all unit indices with activation larger 0 at time t. To convert
this into an equivalent (in the sense defined in eq. 11) system of (piecewise) ordinary differential
equations (ODE), we need to find parameters W̃Ω and h̃,

ζ̇ = G(ζ) = W̃Ωζ(t) + h̃, (10)

such that
z0 = ζ(0)⇒ z1 = F (z0) = ζ(∆t), (11)

where ∆t is the time step with which the empirically observed time series X was sampled. From
these conditions it follows that for each of the s ∈ {1, . . . , 2M} subregions (orthants) defined by
fixed index sets Ωs ⊆ {1, . . . ,M} we must have

(A+WDΩs − I) z0 + h =

∫ ∆t

0

W̃Ωsζ(t) + h̃ dt, (12)

where we assume that DΩs is constant for one time step, i.e. between 0 and ∆t. We approach this
by first solving the homogeneous system using the general ansatz for systems of linear ODEs,

(A+WDΩs − I) z0
!
=

∫ ∆t

0

W̃Ωs

∑
k

cke
λ̃ktṽk dt (13)

=
∑
k

ckW̃Ωsvk

∫ ∆t

0

eλ̃kt dt (14)

=
∑
k

ckλ̃kvk
1

λ̃k

(
eλ̃k∆t − 1

)
(15)

⇒WΩsz0
!
=
∑
k

ckvke
λ̃k∆t (16)

= V

e
λ̃1∆t . . . 0

...
. . .

...
0 . . . eλ̃M∆t


︸ ︷︷ ︸

:=Λ

c (17)

⇒WΩs = V ΛV −1. (18)

where we have used z0 =
∑
k ckvk on lines 15 and 16. Hence we can infer matrix W̃Ωs from the

eigendecomposition of matrix WΩs , by letting λ̃k = 1
∆t log λk, where λk are the eigenvalues of

WΩs , and reassembling

W̃Ωs = V
1

∆t
log(Λ)V −1. (19)
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We obtain the general solution for the inhomogeneous case by requiring that for all fixed points
z∗ = F (z∗) of the map eq. 9 we have G(z∗) = 0. Using this we obtain

h̃ = −W̃Ωs (I −WΩs)
−1
h (20)

Assuming inputs st to be constant across time step ∆t, we can apply the same transformation to
input matrix C. Fig. S5 illustrates the discrete to continuous PLRNN conversion for a nonlinear
oscillator.

Note that in the above derivations we have assumed that matrix WΩs can be diagonalized, and that
all its eigenvalues are nonzero (in fact, WΩs should not have any negative real eigenvalues). In
general, not every discrete-time PLRNN can be converted into a continuous-time ODE system in
the sense defined above. For instance, we can have chaos in a 1d nonlinear map, while we need at
least a 3d ODE system to create chaos (Strogatz, 2015).

7.1.3 More details on EM algorithm

Here we briefly outline the fixed-point-iteration algorithm for solving the maximization problem
in eq. 6 (for more details see Durstewitz (2017); Koppe et al. (2019)). Given a Gaussian latent
PLRNN and a Gaussian observation model, the joint density p(X,Z) will be piecewise Gaussian,
hence eq. 6 piecewise quadratic in Z. Let us concatenate all state variables across m and t into
one long column vector z = (z1,1, . . . , zM,1, . . . , z1,T , . . . , zM,T )

ᵀ, arrange matrices A, W into
large MT ×MT block tri-diagonal matrices, define dΩ :=

(
1z1,1>0,1z2,1>0, . . . ,1zM,T>0

)ᵀ
as an

indicator vector with a 1 for all states zm,t > 0 and zeros otherwise, and DΩ := diag(dΩ) as the
diagonal matrix formed from this vector. Collecting all terms quadratic, linear, or constant in z, we
can then write down the optimization criterion in the form

Q∗Ω(z) = −1

2
[zᵀ (U0 +DΩU1 +Uᵀ

1DΩ +DΩU2DΩ) z − zᵀ (v0 +DΩv1)

− (v0 +DΩv1)
ᵀ
z] + const. (21)

In essence, the algorithm now iterates between the two steps:

1. Given fixedDΩ, solve z∗ = (U0 +DΩU1 +Uᵀ
1DΩ +DΩU2DΩ)

−1
(v0 +DΩv1)

2. Given fixed z∗, recomputeDΩ

until either convergence or one of several stopping criteria (partly likelihood-based, partly to avoid
loops) is reached. The solution may afterwards be refined by one quadratic programming step.
Numerical experiments showed this algorithm to be very fast and efficient (Durstewitz, 2017; Koppe
et al., 2019). At z∗, an estimate of the state covariance is then obtained as the inverse negative
Hessian,

V = (U0 +DΩU1 +Uᵀ
1DΩ +DΩU2DΩ)

−1
. (22)

In the M-step, using the proposal density q∗ from the E-step, the solution to the maximization
problem θ∗ := arg max

θ
L(θ, q∗), can generally be expressed in the form

θ∗ =

(∑
t

E [αtβ
ᵀ
t ]

)(∑
t

E [βtβ
ᵀ
t ]

)−1

, (23)

where, for the latent model, eq. 1, αt = zt and βt :=
[
zᵀt−1, φ(zt−1)ᵀ, sᵀt , 1

]ᵀ ∈ R2M+K+1, and
for the observation model, eq. 2, αt = xt and βt = g (zt).

7.1.4 More details on DS performance measure

The measure DKL introduced in the main text for assessing the agreement in attractor geometries
only works for situations where the ground truth ptrue(X) is known. Following Koppe et al. (2019),
here we would like to briefly indicate how a proxy for DKL may be obtained in empirical situa-
tions where no ground truth is available. Reasoning that for a well reconstructed DS the inferred
posterior pinf(z|x) given the observations should be a good representative of the prior generative
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dynamics pgen(z), one may use the Kullback-Leibler divergence between the distribution over la-
tent states, obtained by sampling from the prior density pgen(z), and the (data-constrained) posterior
distribution pinf(z|x) (where z ∈ RM×1 and x ∈ RN×1), taken across the system’s state space:

DKL (pinf(z|x)‖pgen(z)) =

∫
z∈RM×1

pinf(z|x) log
pinf(z|x)

pgen(z)
dz (24)

As evaluating this integral is difficult, one could further approximate pinf(z|x) and pgen(z) by
Gaussian mixtures across trajectories, i.e. pinf(z|x) ≈ 1

T

∑T
t=1 p(zt|x1:T ) and pgen(z) ≈

1
L

∑L
l=1 p(zl|zl−1), where the mean and covariance of p(zt|x1:T ) and p(zl|zl−1) are obtained

by marginalizing over the multivariate distributions p(Z|X) and pgen(Z), respectively, yielding
E[zt|x1:T ], E[zl|zl−1], and covariance matrices Var(zt|x1:T ) and Var(zl|zl−1). Supplementary
eq. 24 may then be numerically approximated through Monte Carlo sampling (Hershey & Olsen,
2007) by

DKL (pinf(z|x)‖pgen(z)) ≈ 1

n

n∑
i=1

log
pinf(z

(i)|x)

pgen(z(i))
, z(i) ∼ pinf(z|x) (25)

For high-dimensional state spaces, for which MC sampling becomes challenging, there is luckily a
variational approximation of eq. 24 available (Hershey & Olsen, 2007):

Dvariational
KL (pinf(z|x)‖pgen(z)) ≈ 1

T

T∑
t=1

log

∑T
j=1 e

−DKL(p(zt|x1:T )‖p(zj |x1:T ))∑T
k=1 e

−DKL(p(zt|x1:T )‖p(zk|zk−1))
, (26)

where the KL divergences in the exponentials are among Gaussians for which we have an analytical
expression.

7.1.5 More details on single neuron model

The neuron model used in section 4.2 is described by

−CmV̇ = gL(V − EL) + gNam∞(V )(V − ENa) + gKn(V − EK)

+ gMh(V − EK) + gNMDAσ(V )(V − ENMDA) (27)

ḣ =
h∞(V )− h

τh
(28)

ṅ =
n∞(V )− n

τn
(29)

σ(V ) =
[
1 + .33e−.0625V

]−1
(30)

whereCm refers to the neuron’s membrane capacitance, the g• to different membrane conductances,
E• to the respective reversal potentials, and m, h, and n are gating variables with limiting values
given by

{m∞, n∞, h∞} =
[
1 + e({VhNa,VhK ,VhM}−V )/{kNa,kK ,kM}

]−1

(31)

Different parameter settings in this model lead to different dynamical phenomena, including regular
spiking, slow bursting or chaos (see Durstewitz (2009) for details). Parameter settings used here
were: Cm = 6 µF, gL = 8 mS, EL = −80 mV, gNa = 20 mS, ENa = 60 mV, VhNa = −20 mV,
kNa = 15, gK = 10 mS, EK = −90 mV, VhK = −25 mV, kK = 5, τn = 1 ms, gM = 25 mS,
VhM = −15 mV, kM = 5, τh = 200 ms, gNMDA = 10.2 mS.

16



Under review as a conference paper at ICLR 2020

7.2 SUPPLEMENTARY FIGURES

A W h

Fig. S1: Illustration of the L2-regularization for the PLRNN’s auto-regression matrix A, coupling
matrix W , and bias terms h. Regularized values are indicated in red, crosses mark arbitrary values
(all other values set to 0 as indicated).

Fig. S2: MSE evaluated between time series is not a good measure for DS reconstruction. A) Time
graph (top) and state space (bottom) for the single neuron model (see section 4.2 and Suppl. 7.1.5)
with parameters in the chaotic regime (blue curves) and with simple fixed point dynamics in the limit
(red line). Although the system has vastly different limiting behaviors (attractor geometries) in these
two cases, as visualized in the state space, the agreement in time series initially seems to indicate
a perfect fit. B) Same as in A) for two trajectories drawn from exactly the same DS (i.e., same
parameters) with slightly different initial conditions. Despite identical dynamics, the trajectories
immediately diverge, resulting in a high MSE. Dash-dotted grey lines in top graphs indicate the
point from which onward the state space trajectories were depicted.

17



Under review as a conference paper at ICLR 2020

Fig. S3: Performance of the rPLRNN on the addition problem for different A) numbers of latent
states M , B) values of τ and C) proportions Mreg/M . Dashed lines denote the values used for the
results reported in section 4.1

Fig. S4: Effect of regularization strength τ on rPLRNN network parameters (cf. eq. 1) (regularized
parameters for states m ≤ Mreg, eq. 1, in red). Note that some of the non-regularized network
parameters (in blue) appear to systematically change as well as τ is varied.

Fig. S5: Illustration of conversion of discrete into continuous time PLRNN for a PLRNN emula-
tion of the nonlinear van-der-Pol oscillator. Shown are the first two latent dimensions. Red lines:
continuous solution; blue circles: discrete solution; black bars: perturbations (external inputs).
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Fig. S6: Comparison of rPLRNN (τ = 5,
Mreg

M = 0.5, cf. Fig. S3) for M = 40 and M = 100 to
iRNN (M = 100) and LSTM (M = 100/4) for A) addition problem, B) multiplication problem and
C) sequential MNIST. Top row gives loss as a function of time series length T (error bars = SEM),
bottom row shows relative frequency of correct trials. Dashed lines indicate chance level, black dots
in C indicate individual repetitions of the experiment. Note that the rPLRNN does not improve for
M = 100 vs. M = 40.
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