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ABSTRACT
With the rapid proliferation of IoT devices, our cyberspace
is nowadays dominated by billions of low-cost computing
nodes, which are very heterogeneous to each other. Dynamic
analysis, one of the most effective approaches to finding
software bugs, has become paralyzed due to the lack of
a generic emulator capable of running diverse previously-
unseen firmware. In recent years, we have witnessed devas-
tating security breaches targeting low-end microcontroller-
based IoT devices. These security concerns have significantly
hamstrung further evolution of the IoT technology. In this
work, we present Laelaps, a device emulator specifically
designed to run diverse software of microcontroller devices.
We do not encode into our emulator any specific information
about a device. Instead, Laelaps infers the expected behav-
ior of firmware via symbolic-execution-assisted peripheral
emulation and generates proper inputs to steer concrete exe-
cution on the fly. This unique design feature makes Laelaps
capable of running diverse firmware with no a priori knowl-
edge about the target device. To demonstrate the capabilities
of Laelaps, we applied dynamic analysis techniques on top
of our emulator. We successfully identified both self-injected
and real-world vulnerabilities.

1 INTRODUCTION
Software-based emulation techniques [41] have demonstrated
their pivotal roles in dynamically analyzing binary code. Run-
ning a program inside an emulator allows analysts to gain
semantically insightful run-time information (e.g., execution
path and stack layout) and even dynamically instrument
the binaries [6, 30, 34, 36]. However, none of these capabili-
ties have been utilized to analyze the firmware of low-end
microcontroller-based IoT devices. A major obstacle of utiliz-
ing existing analysis capabilities is the absence of a versatile
emulator that could execute arbitrary firmware of different
microcontroller devices. Such an emulator has to deal with
the vast diversity of microcontroller firmware in terms of
hardware architecture (e.g., x86, ARM, MIPS, etc), integrated
peripherals (e.g., communication interface, DSP, etc.), and
the underlying operating system (e.g., bare-metal, mBed OS,
FreeRTOS, etc.). Customizing the emulator for every kind of
device is nearly impossible.

Dynamically analyzing embedded firmware has been stud-
ied for a while. Unfortunately, existing solutions are far from

mature in many ways. They are either ad-hoc, tightly cou-
pled with real devices, or for Linux-based firmware only.
Existing work [24, 27, 32, 42, 44] forwards peripheral signals
to real devices and run the rest of firmware in an emulator.
In this way, analysts could execute the firmware and inspect
into the inner state of firmware execution. However, this
approach is not affordable for testing large-scale firmware
images because for every firmware image a real device is
needed. Besides, frequent rebooting of the device and signal
forwarding are time-consuming. A recent work advances
this research direction by modeling the interactions between
the original hardware and the firmware [21]. This enables
the virtualized execution of any piece of firmware possi-
ble without writing a specific back-end peripheral emulator
for the hardware. However, this approach still requires the
real hardware to “learn” the peripheral interaction model.
Previous work also explores ways to emulate Linux-based
firmware [9, 46]. FIRMADYNE [9] extracts the file system of
the firmware and mounts it with a generic kernel executed
in QEMU [4]. FIRM-AFL [46] further proposes a grey-box
fuzzing mechanism. However, both of them only work for
Linux-based embedded firmware because the generality re-
lies upon on an abstract software layer – the Linux kernel. A
large number of real-world embedded systems run on micro-
controllers and only support lightweight RTOS or bare-metal
systems. On these devices, a solution has to gracefully handle
the diverse requirements from the hardware directly.

In this work, we demonstrate that the obstacles of device-
agnostic firmware execution are not insurmountable. We
present Laelaps, a generic emulator for ARM Cortex-M
based microcontroller units (MCUs). Instead of implement-
ing peripheral logic for every device, we leverage symbolic
execution and satisfiability modulo theories (SMT) [3] to
reason about the expected inputs from peripherals and feed
them to the being-emulated firmware on the fly. Therefore,
our approach aims to achieve the ambitious goal of executing
non-Linux firmware without relying on real devices. The
design of Laelaps combines concrete execution and sym-
bolic execution. Concrete execution runs in a full system
emulator, QEMU [4], to provide the inner state of execution
for dynamic analysis. However, the state-of-the-art whole
system emulators cannot emulate previously-unseen periph-
erals. If the firmware accesses unimplemented peripherals,
the emulation will become paralyzed. Symbolic execution
then kicks in to find a proper input for the current peripheral
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access operation and guides firmware execution. We found
that symbolic execution is particularly good at inferring pe-
ripheral inputs, because many of them are used in logical or
arithmetical calculations to decide a branch target.
In general, Laelaps’s concrete execution will be stuck

when accessing an unimplemented peripheral, and then it
switches to the symbolic execution to find proper inputs that
can guide QEMU to a path that is most likely to be identical
with a real execution. One significant practical challenge
for automatic test generation is how to effectively explore
program paths. Various search heuristics have been proposed
to mitigate the path explosion problem in PC software [29,
39, 43]. However, peripherals reveal many distinct features
that require special treatment, such as very common infinite
loops and interrupt requests. At the heart of our technique is
a tunable path selection strategy, called Context Preserving
Scanning Algorithm, or CPSA for short. CPSA contains a set
of peripheral-specific heuristics to prune the search space
and find the most promising path. Peripherals also interact
with the firmware through interrupts. In fact, embedded
systems are largely driven by interrupts. QEMU has built-in
support for interrupt delivering, but it has no knowledge
with regard to when to assert an interrupt—this logic should
be implemented by peripherals. We address this issue by
periodically raising interrupts which have been activated
by the firmware. Although our solution may not strictly
follow the designed firmware logic, we demonstrate that it
is able to steer the execution to properly initialized points
suitable for further analysis. This is particularly useful for
analyzing “cold” code regions that can only be reached with
the knowledge of real hardware behaviors.

We have developed Laelaps on top of angr [40] andQEMU [4].
Our prototype focuses on ARMCortex-MMCUs, which dom-
inate the low-end embedded device market, but the design
of Laelaps is applicable to other architectures as well. We
evaluate Laelaps by running 30 firmware images built for
4 development boards. The tested firmware spans a wide
spectrum of sophistication, including simple synthetic pro-
grams as well as real-world IoT programs running Amazon
FreeRTOS OS [1]. Laelaps takes a big step towards scalable,
dynamic IoT firmware analysis. It enables existing dynamic
analysis techniques to become directly applicable to analyz-
ing microcontroller firmware. Our work makes the following
main contributions:

• We abstract the system model of ARM Cortex-M based
embedded microcontroller devices and distill the miss-
ing but essential parts for full system emulation of
those devices.

• We fill the missing parts of full system device emu-
lation by designing a symbolically-guided emulator,

which is capable of running diverse firmware for ARM
MCUs with previously-unknown peripherals.

• We demonstrate the potential of Laelaps by using it
in combination with advanced dynamic analysis tools,
including boofuzz [35], angr [40], and PANDA [16].
Laelaps is an open-source tool. Its source code and
demonstration firmware samples are available at (URL
omitted for double-blind reviewing).

2 BACKGROUND
2.1 ARM Cortex-M Microcontroller
Previously, microcontroller units were often considered as
specialized computer systems that are embedded into some
other devices, as contrary to personal computers or mobile
SoC. With the emergence of IoT, now they has been central
to many of the innovations in the cost-sensitive and power-
constrained IoT space.
ARM Cortex-M family is the dominating product in the

microcontroller market. Cortex-M cores are based on the
32-bit ARMv6-M, ARMv7-M or ARMv8-M architectures. All
of them support Thumb instructions for the most efficient
code density. From the view point of a programmer, the most
remarkable difference between PC/mobile processors and
Cortex-M processors is that Cortex-M processors do not
support MMU. This means that the application code and the
OS code are mingled together in a flat memory address space.
For this reason, it does not support the popular Linux kernel.
ARM Cortex-M processors map everything into a single

address space, including the ROM, RAM and peripherals.
Therefore, peripheral functions are invoked by accessing
the corresponding registers in the system memory. For each
ARM core, ARM defines the basic functionality and the mem-
ory map for its core peripherals, such as the interrupt con-
troller (called Nested Vector Interrupt Controller or NVIC),
system timer, debugging facilities, etc. Then, ARM sells the
licenses of its core design as intellectual property (IP). The
licensees produce the physical cores. These participating
manufactures are free to customize their implementation as
long as it conforms to the design defined by Arm. As a result,
different manufactures optimize and customize their prod-
ucts in different ways, leading to a vast diversity of Cortex-M
processors.

2.2 Firmware Execution
Th MCU firmware execution can be roughly divided into
four phases: 1) device setup, 2) base system setup, 3) RTOS
initialization, and 4) task execution. In the device setup phase,
the hardware components, including RAM and peripherals,
are turned on and self-tested. In the base system setup phase,
standard libraries such as libc are initialized. That means
dynamic memory can be used, and static memory is allocated.
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Then the code of a RTOS (or bare-metal) image is copied into
the allocated memory regions, and core data structures are
initialized. If the firmware is powered RTOS, the scheduler
is also started. Finally, multiple tasks are executed on the
processor in a time-sharing fashion (in case of RTOS design)
or a single-purpose task monopolizes the processor (in case
of bare-metal design).
Firmware execution highly depends on the underlying

hardware, and such hardware uncertainties have become the
biggest barrier to the development of a generic emulator. An
improper emulation leads to failed bootstrap very early in
phase 1. We also note that there can be multiple valid execu-
tion paths in a firmware execution. In fact, manufacturers
often include multiple driver versions to normalize different
peripherals. All the valid paths can lead to a successful execu-
tion. In other words, the executed driver version, as long as it
is valid, does not influence the result of firmware analysis. This
fact grants us a certain level of fault tolerance in firmware
emulation. That is, a wrongly selected path can still lead to
a successful emulation for analysis.

2.3 Dynamic Symbolic Execution
Symbolic execution, first proposed by King [26], is a powerful
automated software testing technique. It treats program in-
puts as symbolic variables and simulates program execution
so that all variables are represented as symbolic expressions.
Together with theorem proving technique [18, 31], symbolic
execution is able to automatically generate concrete inputs
that cover new program paths. Notably, symbolic execution
has achieved encouraging results in testing closed-source de-
vice drivers [10, 28, 37]. Dynamic symbolic execution (a.k.a
concolic execution) [7, 8, 19, 38] performs symbolic execution
along a concrete execution path, and it combines static and
dynamic analysis in a manner that gains the advantages of
both. Dynamic symbolic execution has achieved remarkable
success in generating high-coverage test suites and finding
deep vulnerabilities in commercial software [5, 11, 20]. The
core of Laelaps is a concolic execution approach for pe-
ripheral emulation. One particular challenge for concrete
execution is the path explosion problem [29, 39, 43]. Our
study proposes a set of peripheral-specific search heuristics
to mitigate the path explosion.

3 OVERVIEW
3.1 Function Gap
QEMU [4], the most popular generic machine emulator, has
built-in support for almost all of the functions defined by
ARM. We call them core peripherals/functions in the remain-
der of this paper. However, chip manufacturers often inte-
grate custom-made peripherals that are also mapped into the
address space of the system. The logic of these peripherals,

Peripheral 1
……

Peripheral 0
……
MPU
NVIC

System Control Block
……
RAM
ROM

CPU

Gap 2: When to
request interrupt?

System Map

Gap 1: What
to respond?

Figure 1: Missing logic in QEMU (shaded memory re-
gions correspond to unimplemented peripherals).

together with the core peripherals, define the behavior of
an ARM MCU device. Therefore, to emulate a real device,
an emulator needs to support all the manufacturer-specific
peripherals. However, our source code review shows that
QEMU, the state-of-the-art emulator, only supports three
ARM-based microcontrollers (two TI Stellaris evaluation
boards and one Arm SSE-200 subsystem device). For unsup-
ported devices, QEMU only emulates the core peripherals
defined by ARM. Figure 1 shows the missing logics in QEMU.
When the processor interacts with an unimplemented

peripheral (shown as shaded in Figure 1), QEMU becomes
paralyzed due to two unfilled gaps. Gap 1: QEMU does not
know how to respond when the processor accesses an unim-
plemented peripheral register. Gap 2: QEMU lacks the logic
of unimplemented peripherals and therefore cannot know
when to send interrupt requests.

3.2 Motivating Observations
QEMU becomes paralyzed when the firmware access an
unimplemented peripheral, simply because it cannot provide
a suitable value to the firmware. If QEMU provides a random
value, the execution is very likely to be stuck indefinitely.
Our in-depth study on the usage of peripheral values leads
to three key observations. First, most peripheral accesses
are in fact not critical to firmware execution. As shown be-
low, this statement reads a value from peripheral register
base->PCR[pin] and assigns another value to the same reg-
ister after some logic calculations. This statement configures
the functionality of a pin on the board, but the values being
read and written do not influence the firmware emulation at
all.
base ->PCR[pin] = (base ->PCR[pin] & ~PORT_PCR_MUX_MASK) |

PORT_PCR_MUX(mux);

Second, excluding the non-critical peripheral accesses, many
of the rest are involved in firmware control flow logic so that
they have direct influence on the execution path. Third, if we
can find a value that drives the execution along a correct path,
then QEMU can usually execute the firmware as expected.
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To explain this, we list a code snippet for a UART driver
in Listing 1. It outputs a buffer through the UART interface.
In Line 3, it reads from a UART register (base->S1) in a
while loop. Only if the register has certain bits set would
the loop be terminated. Then the driver will send out a byte
by putting the byte on another register (base->D). It is clear
that executing line 4 is necessary for the firmware to move
forward. To obtain the input leading to line 4, we found
symbolic execution a perfect fit. Specifically, if we mark
the value in the unknown register (base->S1) as a symbol,
we can instantly deduce a satisfiable value to reach line 4.
Like this example, we found many peripheral drivers use
peripheral registers in simple logic or arithmetic calculations,
and then the results are used in control-flow decision making.
1 void UART_WriteBlocking(UART_Type *base , const uint8_t

*data , size_t length){

2 while (length --){

3 while (!(base ->S1 & UART_S1_TDRE_MASK)){}

4 base ->D = *(data ++);

5 }

6 }

Listing 1: Code snippet from real driver code.

3.3 Laelaps Overview
Laelaps combines concrete execution and symbolic execu-
tion, namely concolic execution [7, 8, 19, 38]. Neither of
them alone could achieve our goal because 1) concrete exe-
cution cannot deal with unimplemented peripherals; and 2)
pure symbolic execution faces the traditional path explosion
problem. We design our system based on concrete execution
but employ symbolic execution to run small code snippets
to calculate suitable values for unimplemented peripheral
inputs. In this way, a firmware image runs concretely and
symbolically by turns, gaining the advantages of both.

Laelaps only needs basic information of a device to ini-
tialize the execution environment. Specifically, it requires the
target architecture profile (e.g., ARMCotex-M0/3/4) and loca-
tions of ROM and RAM. Then it loads ARM core peripherals
into the system map. Next, memory regions used by chip-
specific peripherals are marked as unimplemented (e.g., the
0x40000000–0x400FFFFF region is used as peripheral mem-
ory map in NXP chips). Accesses to them are intercepted
and handled in the symbolic execution engine. All the other
memory regions are unmapped and should never be accessed.
An access to the unmapped memory indicates a potential
memory corruption, which can be used by a fuzzing tool
to capture crashes. QEMU translates and emulates each in-
struction of firmware until there is a read operation to an
unimplemented memory. Our goal is to predict a proper read
values. Peripheral write operations, on the other hand, are
ignored because they do not influence program status in any
way. As shown in Figure 2, when an unimplemented read

operation is detected, the processor context and memory are
then synchronized to the symbolic execution engine (S1).

During symbolic execution, every unimplemented periph-
eral access is symbolized (S2), resulting in a list of symbols.
Each time a branch is encountered, we run a path selection
algorithm (S3/4) that chooses the most promising path (see
§4.3). Symbolic execution advances along the path until one
of the following events is detected:
E1: Synchronous exception (e.g., software interrupt)
E2: Exception return
E3: Long loop (e.g., memcpy)
E4: Reaching the limit of executed branches
E5: User defined program points
E1 and E2 terminate symbolic execution because these

system level events cannot be easily modeled by existing
symbolic execution engines (§4.2). E3 could consume a lot of
time in symbolic execution. Therefore, whenever detected,
the execution should be transferred to the concrete engine
(§4.2.5).We do not allow emulation to stay in symbolic engine
forever due to the path explosion problem. Therefore, we
set a limit for the maximum branches to encounter in each
symbolic execution (§4.3). In Figure 2, we illustrate a case
in which we set this limit as two. Lastly, for E5, assuming
analysts have some prior knowledge about the firmware
via static analysis or Laelaps itself, we provide an interface
allowing them to configure some program points that should
terminate symbolical execution.
At the time when symbolic execution is terminated, we

evaluate the values of the list of symbols that navigate exe-
cution to the current path (S5) and feed the solved values to
QEMU (S6). Since these values are verified via the constraint
solver, they will guide the concrete execution to follow the
selected promising path. In this paper, we call each switch-
ing to symbolic engine a symbolic execution pass. Laelaps
pushes firmware execution forward by continuously switch-
ing between QEMU and symbolic execution passes. In this
way, we provide a platform that execute the firmware to a
state suitable for further dynamic analysis (e.g., examining a
hard-to-reach code logic that was only possible with a real
device previously). It leaves to analysts to decide the right
time to dig into firmware execution and perform further
analysis. How to dynamically analyze the firmware is out of
the scope in this paper. We expect many tools can be directly
benefited from Laelaps because our design is not specific
to a particular tool. Nevertheless, we showcase one of its
applications (fuzz testing) in §6.3.

4 LAELAPS SYSTEM DESIGN
This section details the design of core components of Laelaps.
We also discuss limitations of our design and the mitigation
in practice.
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Figure 2: Laelaps’s branch exploration with the depth of two. The red color branches are selected by Laelaps.

4.1 State Transfer
Whenever an unimplemented peripheral read is detected,
the program state is transferred to the symbolic execution
engine. In our current design, Laelaps synchronizes the pro-
cessor context (general purpose registers, system registers)
of the currect execution mode to the symbolic execution
engine. Since copying all RAM is expensive, we adopt a
copy-on-access strategy that only copies required pages on
demand. During symbolic execution, QEMU is suspended,
and symbolic execution engine works on its own RAM copy.

4.2 Symbolic Execution
4.2.1 Basic Rule #1. Since the symbolic execution engine is
invoked by unimplemented peripheral read operations, the
first instruction in the symbolic engine is always a peripheral
read.We generate a symbolic variable for this memory access.
Likewise, the following peripheral read operations are also
assigned with symbols. Note that even if a peripheral address
has been accessed earlier, we still assign a new symbol. This
is because of the volatile nature of peripheral memory – their
values change nondeterministically due to unforeseen events
generated externally. In this sense, we assign new symbols
spatially (different addresses get different symbols) and
temporally (different times get different symbols). This
peripheral model is very common as seen in timers and I/O
modules.

4.2.2 Basic Rule #2. Firmware may contain OS-level func-
tions that inevitably involve the interaction between tasks
and event handlers running in the separated privileged mode.
Our current symbolic execution cannot correctly handle com-
plex context switches due to exceptions. Therefore, in each
symbolic execution, we set a basic rule that the execution
should always stick to the original execution mode. To
meet this rule, for each explicit instruction that requires con-
text switch, we immediately terminate symbolic execution

and transfer the execution to QEMU. This includes synchro-
nous exception instruction such as supervisor calls (SVC)
and exception returns. In an exception return, the processor
encounters a specially encoded program counter (PC) value
and fetches the real PC and other to-be-restored registers
from the stack.

4.2.3 Basic Rule #3. As discussed in §3.3, Laelaps holds
multiple solved symbols to be replayed. In essence, Laelaps
expects QEMU to follow exactly the same path explored dur-
ing symbolic execution. This implies that QEMU should not
take any asymmetric exceptions when replying the buffered
symbol values. Otherwise, the QEMU execution is deviated
from the expected path, rendering the solved symbols useless.
We can certainly discard the remaining solved symbols on a
path deviation caused by exceptions. However, since sym-
bolic execution is expensive, we opt to adopt another practi-
cal approach. That is, we set a basic rule thatQEMU resumes
replaying without accepting any exceptions until all of
the solved symbols are consumed.

4.2.4 Unrecognized Instructions. Currently, state-of-the-art
symbolic execution engines cannot recognize system-level
ARM instructions. We take another two strategies to handle
this. First, for the unrecognized instructions that do not affect
program control flow, we replace them with NOP instruc-
tions. This includes many instructions without operands
(e.g., DMB, ISB), instruction updating system registers (e.g., MSR),
and breakpoint instruction BKPT. Second, for the unrecog-
nized instructions that directly change control flow (e.g., SVC)
or update general purpose registers (e.g., MRS), we immedi-
ately terminate symbolic execution and switch to QEMU for
concrete execution.

4.2.5 Long Loop Detection. Symbolic execution is much
slower than concrete execution. Therefore, we need to keep
the time spent on symbolic execution as little as possible
but at the same time yield similar predicted paths. When
encountering long loops controlled by concrete counters,
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Figure 3: The illustration of Laelaps’s path selection
strategy: Context Preserving Scanning Algorithm. Ex-
ecuted path is represented by red edges in the CFG. In
each sector, CPSA explores all possible paths within
Forward_Depth steps. At the node 0x424, two branches
are explored. Since the left-hand branch has the
most promising path, we choose the left-hand branch.
CPSA selects themost promising path on each branch-
ing. It avoids paths with infinite loops and avoids re-
executing old paths.

the loop would be executed symbolically until the loop is fin-
ished. Unfortunately, there are numerous such long loops in a
firmware. Examples include frequently used library functions
such as memcpy, memset, and strcpy. Since those functions
usually contain long loops, symbolically executing them is
extremely inefficient. Laelaps is able to automatically detect
long loops. If a long loop is detected, the execution is forced
to be transferred to QEMU. To detect long loops, Laelaps
maintains the execution trace based on recently executed
basic blocks and finds the longest repeated cycle. Whenever
the longest repeated cycle is longer than a threshold (say 5),
symbolic execution will be terminated.

4.3 Path Selection Strategy: Context
Preserving Scanning Algorithm

The goal of Laelaps’s symbolic execution is to find the most
promising path and direct QEMU towards this path. Since
we lack the high-level semantic information about data struc-
tures and control flow, it is particularly challenging. We start
with an overview of our path selection strategy – Context
Preserving Scanning Algorithm, or CPSA for short. Then we
interpret a representative SDK code snippet. It intuitively
explains our main search heuristics to prioritize a “right”
branch.

Figure 3 shows how CPSA works in general. There are two
parameters that can be used to adjust the performance and
accuracy of the algorithm. Context_Depth specifies number

of branches the symbolic engine has to accumulate before
invoking the constraint solver and returning to the QEMU.
Forward_Depth is the maximum number of basic blocks
that the symbolic engine can advance from a branch. With
Context_Depth set to two, each symbolic execution pass de-
cides the results for two branches (from 0x424 to 0x454 and
0x800 to 0x838). Note that before reaching a point to decide a
branch, theremight have beenmultiple basic blocks executed.
These intermediate basic blocks end with a single branch or
the corresponding conditions are determined by concrete
values. We call an execution leading to a branch selection as
a step, following the naming convention of angr [40]. With
Forward_Depth set to three, symbolic engine explores as
many as three future steps for each branch. When encoun-
tering a new branch in a step, both branches are explored. As
shown in the Figure 3, there are two branches at the end of ba-
sic block 0x424. The left-hand branch leads to three distinct
paths within Forward_Depth steps, while the right-hand
branch leads two. Our algorithm selects the most promising
one among all of the paths. In this figure, we choose a path
starting from the left-hand branch. Therefore, we pick the
0x454 branch to follow the 0x424 branch.

4.3.1 Explanatory Example. Listing 2 is a code snippet of
an Ethernet driver from the NXP device SDK. The func-
tion enet_init initializes the Ethernet interface, which calls
PHY_Init to configure the Network Interface Controller (NIC)
with a physical layer (PHY) address. If the invocation fails,
the execution will be suspended and lead to calling an assert
function in line 5, which is an infinite loop. Inside PHY_Init,
PHY_Write interacts with NIC for actual configuration. Lines
10 and 12 invoke PHY_Write twice. If either invocation fails,
PHY_Init returns with a failed result. If both of them re-
turns kStatus_Success, the program checks whether the
operations have been successful by reading back peripheral
memories using PHY_Read, as indicted in lines 16 and 18. Dif-
ferent from PHY_Write in lines 10 and 12, there are multiple
chances indicted by counter for the two PHY_Read func-
tions to obtain the expected result. If so (line 19), a short loop
is executed to wait until the state is stable (lines 21-24). In
a word, a correct execution trace is expected to follow “3-
10-11-12-13-15-16-17-18-19-(21-23-24)*-25-34-4-6”. In what
follows, we present our heuristics that automatically guide
the execution to this right path.

1 static void enet_init (...){

2 ...

3 status = PHY_Init (...);

4 if (kStatus_Success != status)

5 LWIP_ASSERT("\r\nCannot initialize PHY.\r\n", 0);

6 }
7
8 status_t PHY_Init (...){

9 ...

10 result = PHY_Write (...);
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11 if (result == kStatus_Success) {

12 result = PHY_Write (...);

13 if (result == kStatus_Success) {

14 /* Check auto negotiation complete. */

15 while (counter --) {

16 result = PHY_Read (..., &bssReg);

17 if ( result == kStatus_Success) {

18 PHY_Read (..., &ctlReg);

19 if ((( bssReg & ...) && (ctlReg & ...)

) {

20 /* Wait a moment for Phy status stable. */

21 for (timeDelay = 0; timeDelay <

PHY_TIMEOUT_COUNT; timeDelay ++) {

22 /* Must be here to succeed. */

23 __ASM("nop");

24 }

25 break;

26 }

27 }

28 if (! counter) {

29 return kStatus_PHY_AutoNegotiateFail;

30 }

31 }

32 }

33 }

34 return result;

35 }

Listing 2: Source code of a complex Ethernet driver.

4.3.2 Heuristic #1: Context Preservation. Laelaps steers firmware
execution forward by continuously switching betweenQEMU
and symbolic execution passes. Each symbolic execution pass
only makes decision based on the current context instead of
a holistic context. Therefore, it cannot make an optimal de-
cision globally. Lines 16-19 in Listing 2 clearly demonstrate
this. In line 16 and line 18, there are two PHY_Read invo-
cations that read a symbolic value to bssReg and ctlReg
respectively. In line 19, these two symbols are used to deter-
mine a branch. If we transfers execution to QEMU after line
16, the condition in line 19 might never be satisfied, because
at that time bssReg is already a concrete value, which might
equal to zero. The root reason is that we concretize bssReg
too early and it later affects the subsequent path to be taken.
We call this “over-constraining”.

Inspired by speculative symbolic execution [45], we do not
invoke the constraint solver when encountering bssReg. In-
stead, our symbolic execution advances along the path and
solves bssReg together with ctlReg in line 19. More gener-
ally, we allow analysts to configure a parameter Context_Depth,
which is the specified number of branches the symbolic en-
gine has to accumulate before invoking the constraint solver.
In this way, we preserve the possibilities of future paths and
thus yielding more accurate results. The downside is that
a larger Context_Depth leads more paths to be explored in
symbolic execution, and so it consumes more time. There-
fore, Context_Depth serves as an adjustable parameter for
a trade-off between fidelity and performance.

4.3.3 Heuristic #2: Avoiding Infinite Loop. Symbolic execu-
tion becomes entangled in an infinite loop. As shown in
Listing 2, any failed invocations to PHY_Write or PHY_Read
will trigger the execution of line 5, an infinite loop. We allow
analysts to specify a parameter Forward_Depth, which is the
maximum number of basic blocks that the symbolic engine
can advance from a branch. Within Forward_Depth steps,
a branch could lead to multiple paths. If all of these paths
have an infinite loop, this branch is discarded. If Laelaps
singles out a branch because all the other branches are elimi-
nated due to infinite loop detection, we say Laelaps chooses
this branch on the basis of infinite-loop-elimination. To
identify an infinite loop, we do not apply sophisticated fixed-
point theorems [23]. Instead, our symbolic engine maintains
the execution traces and states of explored paths, and it com-
pares execution states within each path. If any two states are
the same, we regard this path as an infinite loop.

The infinite-loop-elimination heuristicmight incorrectly
filter out a legitimate path which seems to be a infinite loop.
For example, a piece of code may constantly queries a flag
in the RAM, which is only changed by an interrupt handler.
Since the symbolic execution engine is not interrupt-aware
in our design, the legitimate path is filtered out. To address
this issue, CPSA chooses a path with infinite loop at the low-
est priority. When execution is switched back to the QEMU,
an interrupt can be raised and handled (§4.4), effectively
unlocking the infinite loop.

4.3.4 Heuristic #3: Prioritizing New Paths. Wemaintain a list
of previously executed basic blocks and calculate a similarity
measurement between the historical path and each of the
explored future path. We prioritize the candidate path with
the lowest similarity, implying that a new path is more likely
to be selected. To illustrate how this heuristic helps us find
the correct path of the code in Listing 2, consider howwe can
advance to line 21. As shown in line 15, there are counter
chances that Laelaps can try to solve the correct values
for bssReg and ctlReg. If an incorrect value is drawn from
angr due to under-constrained path selection, the execution
starts over from line 16. If our algorithm makes mistakes
continuously in the while loop, the same path pattern will
be recorded for many times. Eventually, this will activate
similarity checking so that a new path (line 21) is selected. If
Laelaps singles out a branch, we say Laelaps chooses this
branch on the basis of similarity.

4.3.5 Heuristic #4: Fall-back Path. After applying the above-
mentioned path selection mechanisms, if we still have mul-
tiple candidate paths, we choose the one with the highest
address. This is based on two observations. First, programs
are designed to execute sequentially. Second, the firmware
typically initializes each peripheral one by one. Therefore,
our algorithm tends to move forward quickly.
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Laelaps has to choose a fall-back branch if neither the
infinite-loop-elimination basis nor the similarity basis
can single out a branch. In this case, we say Laelaps chooses
this branch on the basis of fall-back.

4.4 Interrupt Injecting
So far, we have presented how Laelaps fills gap 1 shown in
Figure 1. That is, how to support firmware sequential execu-
tion even if the firmware access unimplemented peripherals.
On the other hand, in addition to generating data for the
firmware to fetch, peripherals also notify the firmware when
the data are ready through the interrupt mechanism. Typical,
a firmware for embedded application just waits in low-power
mode, and it only wakes up when receiving an interrupt re-
quest. Therefore, without being activated by interrupts (gap
2), most firmware logic remains dormant.

To fill gap 2, we implement a python interface that period-
ically delivers activated interrupts. This simple design works
fine for two reasons. First, in a real execution, firmware
only activates a limited number of interrupts. Therefore, de-
livering activated interrupts will not introduce too much
performance penalty. Second, an interrupt handler can of-
ten gracefully deal with unexpected events. Although addi-
tional code is executed, they will not cause great impacts on
firmware execution.

4.5 Limitations & Mitigations
Laelaps is designed to automatically reason about the ex-
pected peripheral inputs with only access to the binary code.
However, it is impossible to exactly follow the semantic of the
firmware in certain circumstances. If the peripheral inputs
do not influence control flow, the solution made by symbolic
execution would be random. We summarize common pitfalls
to complicate automatic firmware execution and how we
handle them.

4.5.1 Data Input. As discussed in §3.2, Laelaps works well
when the peripheral inputs only decide control flow. How-
ever, the firmware also interacts with the external world by
data exchange. From simple UART channels to complex Eth-
ernet channels, they are typically implemented by fetching
data from a particular data register at the agreed time slots.
Obviously, we cannot feed the randomly generated data to
the firmware. Fortunately, in many dynamic analyses, these
input channels are intercepted and fed with manually gen-
erated test-cases. In other words, Laelaps does not need to
generate the inputs anyway. In §6, we show how we use
Laelaps to hook network functions in FreeRTOS and ana-
lyze the TCP_IP stack of FreeRTOS to reproduce the vulner-
abilities disclosed by Zimperium zLabs in Dec 2018 [25].

4.5.2 Lack of Holistic Analysis. Laelaps preserves context
information by staying in the symbolic engine for up to
Context_Depth branches. However, Context_Depth cannot
be set too large as it will slow down performance signifi-
cantly. If a sub-optimal solution is generated under a low
Context_Depth, the execution could go wrong. To overcome
this limitation, we design several interfaces that analysts can
leverage to override the solution from the symbolic execu-
tion engine and thus avoid unwanted execution. Analysts
usually identify a false or unexpected execution when the
firmware goes into an infinite loop or a crash. Then based
on the execution trace, analysts override the solution accord-
ingly. In our evaluation, we demonstrate that with necessary
human inputs, Laelaps succeeds in dynamically running
very complex firmware images.

5 IMPLEMENTATION
We developed the prototype of Laelaps based on QEMU [4]
and angr [40], which are concrete execution engine and
symbolic execution engine, respectively. To facilitate state
transfer between the two execution engines, we integrate
Avatar [32, 44], a Python framework for seamlessly orches-
tratingmultiple dynamic analysis platforms, includingQEMU,
real device, angr, PANDA [16], etc. Our tool inherits the state
transfer interface of Avatar, enhances Avatar’s capability to
handle Cortex-M devices, implements a memory synchro-
nization mechanism between QEMU and angr, develops the
proposed CPSA on top of angr, and exports to firmware ana-
lysts an easy-to-use Python interface. Our tool emulates a
generic Cortex-M device on which firmware analysts can
load and execute the firmware that interacts with unimple-
mented peripherals. These are implemented by 854 lines of
Python code and 209 lines of C code (QEMU modification).

5.1 Configuration
Although Laelaps does not need prior knowledge about
peripherals, some essential information about the chip is
required. This information includes 1) the core being used
(e.g., Cortex-M0,M3 orM4), 2) themapping range of ROM/RAM,
3) the mapping ranges of chip-specific peripherals, and 4)
how the firmware should be loaded (i.e., how each section
of a firmware image corresponds to the memory map). The
chip information can be oftentimes obtained from the official
product description page, third-party forums, or the Federal
Communications Commission (FCC) ID webpage [17]. But
we acknowledge that there is a small portion of devices
that use custom chips or non-publicly documented micro-
controllers. To get information about how the firmware is
loaded, moderate static analysis is required. In the simplest
form, a raw firmware image as a whole is directly mapped
from the beginning of the address space. This kind of image
can be easily identified based on some characteristics (e.g., it
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starts with an initial stack pointer and an exception table) [2].
On the other hand, some firmware relies on another piece
of code (bootloader), in which case additional analysis is
required.

5.2 Peripheral Access Interception
When firmware accesses an unimplemented address speci-
fied in the configuration stage, the memory request is for-
warded to the angr for symbolic execution. Our implemen-
tation is largely inherited from Avatar. In particular, Avatar
implements a remote memory mechanism in which accesses
to an unmapped memory region in QEMU are forwarded to a
Python script. The Python script then emulates the behavior
of a real peripheral and feeds the result to QEMU. Note that
to symbolically execute the firmware, angr needs the current
processor status (i.e., register values) and memory contents.
Avatar fetches the processor status through a customized
inter-process protocol and memory contents through the
GDB interface. Unfortunately, in Laelaps, we cannot use
the GDB interface for memory synchronization, which we
explain in the next section. We made modifications to Avatar
so that additional Cortex-M specific registers (e.g., Program
Status Register (PSR)) are synchronized to angr, and we im-
plemented our own memory synchronization interface as
well.

5.3 Memory Synchronization
As mentioned earlier, Avatar uses the GDB interface to syn-
chronize memory. The Avatar authors demonstrate this fea-
ture by synchronizing the state of a Firefox process from
QEMU to angr and continuing executing it symbolically.
Note that to invoke GDB for memory access, the target must
be in the stopped state. However, in Laelaps, we cannot
predict the program counters that access unimplemented
peripherals and make breakpoints beforehand. An alterna-
tive to this issue is to invoke QEMU’s internal function to
stop the firmware execution at the time of unimplemented
peripheral access. Unfortunately, due to the design model
of QEMU, this idea cannot be achieved without significant
modifications to QEMU.
We address this problem by exporting all RAM regions

through IPC. Specifically, in QEMU, when a RAM region
is created, we create a POSIX shared memory object and
bind it with the RAM region using mmap. As a result, angr is
able to directly address the firmware RAM by reading the
exported shared memory object. Our solution significantly
outperforms Avatar in memory synchronization. As with
Avatar, the actual memory transfer is issued on demand at
page granularity. All memory modifications are kept locally
and never forwarded back to QEMU. By design, Laelaps for-
wards peripheral inputs to QEMU and lets QEMU re-execute

the explored path. Therefore, there is no need to transfer
memory back to QEMU.

5.4 Interrupt Injection
Laelaps randomly injects activated interrupts to QEMU.
This is implemented on top of QEMU Machine Protocol
(QMP) interface.We added three newQMP commands: active-irqs,
inject-irq, and inject-irq-all. They are able to get the
current activated interrupt numbers, inject an interrupt, and
inject all the activated interrupt numbers in one go, respec-
tively. QMP is a JSON based protocol. Laelaps connects to
the QMP port of the QEMU instance and randomly sends
QMP commands to inject interrupts. For example, to inject
an interrupt with number 10, Laelaps sends the following
QMP message.

{"execute": "inject -irq", "arguments": {"irq": 10}}

To assert an interrupt, the added QMP command emulates
a hardware interrupt assertion by setting the correspond-
ing bit of the interrupt status pending register (ISPR). It is
worth noting that the injected QMP commands can never be
executed in QEMU in our initial implementation. It turned
out the threads handling QMP commands and I/O cannot
be executed concurrently. In particular, QEMU listens for
QMP messages and handles I/O in separate threads. Each
thread must acquire a global lock by invoking the function
qemu_mutex_lock_iothread() to grab CPU. We observed
that QMP thread can never win in acquiring the lock when
I/O thread is actively invoked. In fact, the default Pthread
mutex does not implement FIFO protocol. Therefore, OS can-
not guarantee QMP can ever acquire the lock. We made a
workaround by delaying 100µs in each I/O loop.

6 EVALUATION
We conducted empirical evaluations to demonstrate how
Laelaps enables device-agnostic firmware emulation and
how such capability benefits firmware analysis.

6.1 Firmware Emulation
6.1.1 Firmware Collection. To test how Laelaps deals with
diverse firmware, we collected/built 30 firmware images
from/for four ARM Cortex-M based development boards.
They are NXP FRDM-K66F development board, NXP FRDM-
KW41Z development board, STMicroelectronics Nucleo-L152RE
development board, and STM32100E evaluation board. The
reason why we chose development boards is that we could
run the firmware on real devices. Therefore, the execution
traces captured on real devices (see §6.2) form a ground truth
for evaluating the fidelity of firmware execution in Laelaps.
All the evaluated firmware images were built from the SDKs
and demonstration programs provided by the corresponding
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Table 1: Emulation summary of 30 firmware images.

RTOS FW # w/o FW # w/ Failed #Human Intervention Human Intervention

NXP_FRDM-K66F FreeRTOS, Bare-metal 14 2 6

NXP_FRDM-KW41Z FreeRTOS, Bare-metal 3 0 1

STM32100E_EVAL FreeRTOS, Bare-metal 2 0 0

STM32 Nucleo-L152RE ChibiOS, Mbed OS 1 1 0

chip vendors. We note that chip vendors are investing sig-
nificant resources into the development of SDKs to attract
developers. Also, to reduce time to market, more develop-
ers are willing to adopt the low-level SDK codes from the
vendors.

In terms of software architecture, we tested three popular
open-source real-time operating systems (FreeRTOS, Mbed
OS, and ChibiOS/RT) as well as bare-metal firmware. In terms
of peripheral diversity, these firmware images contain drivers
for a large number of different peripherals, ranging from
basic sensors to complex network interfaces. Depending on
the sophistication of the SDK, the drivers work either in
polling mode or interrupt mode. Therefore, the collected
images resemble the functionality and complexity of real-
world firmware images. We put detailed information about
each firmware image in Appendix B.

6.1.2 Results. We tested each of the collected firmware im-
ages using Laelaps. The result is promising. As shown in
Table 1, among all 30 images, Laelaps is able to successfully
emulate 20 images without any human intervention. All the
emulations advance to the core logic of the tasks correctly.
At this point, the environment has been properly initialized,
allowing for close inspection of interesting code points. For
three very complex firmware images (Column 4), Laelaps
is able to emulate them with some human interventions.
Among these three images, two of them need data input. We
manually redirected the input stream, as demonstrated in
§6.3.2.

On the other hand, there exist seven images that Laelaps
cannot handle even with human efforts (Column 5). We ana-
lyzed the execution traces and attributed these failed emula-
tions to the following reasons. First, sometimes the firmware
reads a peripheral register and stores the value in a global
variable, but only uses that value after a long time. From
time to access to time to use, there could have been multiple
switches between symbolic execution engine and concrete
execution engine. It is obviously that the peripheral value
cannot stay symbolized at the time of use. As a result, sym-
bolic engine cannot execute CPSA algorithm holistically. Sec-
ond, some firmware depends on custom-made peripherals
to implement complex computations such as hash or cryp-
tographic operations, which anger failed to handle. All the
details, including the Context_depth and Forward_Depth

Table 2: Statistics on the three bases to choose
branches.

Forward_Depth Total Infinite Loop Similarity Fall-back TimeBranches Elimination

FW #12 3 36 6 (16.7%) 23 (63.9%) 7 (19.4%) 16m07s
5 37 6 (16.2%) 24 (64.9%) 7 (18.9%) 16m16s

FW #22 3 84 78 (92.8%) 1 (1.2%) 5 (6.0%) 17m26s
5 87 79 (90.8%) 1 (1.1%) 7 (8.0%) 28m50s

needed for successful emulations, can be found in the pro-
vided anonymous URL,

6.1.3 Dissecting the CPSA Algorithm. The CPSA algorithm
selects an optimal branch by going through three heuris-
tic rules. They are infinite-loop-elimination, similarity,
and fall-back. If anyone of them can determine a single
path, the rest of steps are skipped. To show how each rule
influences the decision making, we counted the number of
each rule that uniquely determined a branch. We also tuned
Forward_Depth, which influences the capability to foresee
an infinite loop. In Table 2, we show the results of the two
most significant cases (firmware images #12 and #22) that
all of these heuristic rules work. As shown in the table, the
proportion of each rule highly depends on the firmware im-
age and the value of Forward_Depth. This clearly signifies
the diversity nature of firmware, in particular, the peripheral
behaviors. However, when accumulating the rules together,
good results can be obtained (see §6.2). As Forward_Depth
increases, we also observed an increase in execution time,
meaning that more time is spent on inefficient symbolic ex-
ecution. Note that although the time required to complete
a firmware execution appears to be long, we argue that we
can save the fully booted instant as a snapshot and perform
analyses based on the snapshots at any time.

6.2 Fidelity Analysis
Although our experiments shows that Laelaps is able to
boot a variety of firmware images and reach a point suitable
for dynamic analysis, we have no idea as to whether the
execution traces in Laelaps resemble ones in real device
execution. Therefore, we collected two firmware execution
traces of the same firmware image on both Laelaps and real
devices, and compared the similarity between them. This
firmware simply boots the FreeRTOS kernel and prints out a
“hello world” message through the UART interface.

6.2.1 Trace Collection. We collected the firmware execution
trace on a real NXP FRDM-K66F development board using
the built-in hardware-based trace collection unit called Em-
bedded Trace Macrocel (ETM) [2]. ETM is an optional debug
component to trace instructions, and it enables the transpar-
ent reconstruction of program execution. We directly lever-
aged the on-board OpenSDA interface to enable the ETM and
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Figure 4: Bitmap of instruction traces collected on
Laelaps and the real device. Purple color represents
overlapped trace segments. • marks the end of device
setup (phase 1). ■marks the end of base system setup
(phase 2). ▲ marks the end of RTOS initialization and
the start of the first task (phase 3).

access the traced data in a buffer called ETB. We do not have
the ETM component in Laelaps to collect traces. However,
QEMU provides us with great logging facility which allows
us to transparently print out execution traces. In particular,
we passed the option "-d exec,nochain" to QEMU so that
it printed out the firmware address before each executed
translation block (a translation block is a basic block variant
used in QEMU). When mapping the start of each translation
block to the firmware code, we can recover the full execution
trace.

6.2.2 Execution Trace Comparison. Figure 4 shows a visual-
ized comparison between the traces of the same firmware
image collected on Laelaps and real device. We showed the
traces collected from system power-on to the start of the
first task, corresponding to a full system execution described
in §2.2. Figure 4 is a bitmap for the two instruction traces.
The top of the figure represents low addresses of the code,
while bottom represents high addresses. When an instruc-
tion is executed, the corresponding pixel is highlighted. In
the figure, the trace collected on Laelaps is in red, and the
trace collected on real device is in blue. We observed a large
number of overlapped regions labeled in purple, implying
that the two traces have similar path coverage. In the figure,
we also marked the end of the first three execution phases,
which are essential milestones during firmware execution.
The figure clearly shows that both traces reach all of them.

Note that having even exactly the same path coverage does
not mean the two execution traces are the same. For example,
a real device executionmay encounter a long loopwaiting for

Table 3: Jaccard indexes between the traces collected
on Laelaps and real devices when applying only the
fall-back path heuristic and all the heuristics.

FW #1 FW #2 FW #3 FW #4 FW #5 FW #6 FW #7

fall-back path 37.43 39.17 92.96 56.67 48.41 44.02 87.80
all 96.54 92.02 94.26 79.78 95.40 95.42 92.15

FW #8 FW #9 FW #10 FW #11 FW #12 FW #13 FW #14

fall-back path 35.85 45.34 46.26 51.79 40.54 32.74 45.47
all 96.54 92.02 94.26 79.78 95.40 95.42 92.15

Table 4: Jaccard indexes of a FreeRTOS trace broken
down by the bootstrap phases when only applying the
fall-back path heuristic and applying all the heuris-
tics.

Phase 1 Phase 2 Phase 3 Phase 4

fall-back path 26.77 00.00 00.00 00.00
all 99.39 96.31 100.0 91.12

a signal, while Laelaps can directly pass through the loop,
leading to different execution paths but the same coverage.
However, many of these deviations are not important. In
fact, our emulation does not need to faithfully honor the real
execution path in this case.

Coverage similarity measurement visualized in Figure 4 is
only an intuitive demonstration of the fidelity achieved by
Laelaps. To be able to quantitatively measure the similarity
of collected traces, we also calculated Jaccard index (i.e., the
number of common instructions between two traces divided
by the number of total instructions in the union of the two
traces) to measure the common instructions between the
collected traces. Since we cannot control the interrupts to
be delivered at exactly the same pace on two targets, we did
an alignment to the raw traces so that the comparison starts
from the same address. In particular, interrupt processing
intrusions are extracted and compared separately. Then the
results were combined together. Table 3 shows the Jaccard
indexes when only applying the fall-back path heuristic and
applying all the heuristics. We compare them because the
fall-back path heuristic is the most straightforward rule that
can be easily developed, while combining them all is only
possible with the proposed sophisticated symbolic guidance.
We only list the results of 14 firmware images out of 22
because these are the images that Laelaps is able to emulate
without any human interventions. When all the heuristics
are applied, the calculated Jaccard indexes are higher than
90% in most cases, which agrees with the visualized result.
We further compared a trace of a FreeRTOS firmware

image. The Jaccard indexes were calculated for each of the
four bootstrap phases, with the fall-back path heuristic and
all the heuristics applied respectively. As shown in Table 4,
when all the heuristics were applied, Laelaps achieved a
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Table 5: Corruption detection under different proba-
bilities for corrupting inputs.

Pc # of Test-cases # of Corruptions Detection Ratio

Test 1 0.10 840 88 10.48%

Test 2 0.05 936 47 5.02%

Test 3 0.01 939 9 0.96%
high level of similarity with the real device in all the phases.
However, if only heuristic 3 (fall-back path) was enabled,
the firmware image failed to boot, which is indicated by a
low similarity in phase 1 (26.77%) and zero similarity in the
following phases.

6.3 Application to Dynamic Analysis
Based on the positive results we got in firmware emulation,
we further explored the possibility of using Laelaps to per-
form actual dynamic analysis.

6.3.1 Fuzzing Mbed OS Firmware. Muench et al. observed
that the effectiveness of traditional dynamic testing tech-
niques on embedded devices is greatly jeopardized due to
the invisibility of memory bugs on embedded devices [33].
They came up with an idea that leverages six live analysis
heuristics to aid fuzzing test in QEMU. These heuristics help
make “silent” memory bugs to be easily observable. In their
proof-of-concept prototype, they used PANDA [16] which
is a dynamic analysis platform built on top of QEMU. Its
plug-in system facilitates efficient hooking of various system
events. To do the experiments, their approach relied on a real
device to initialize the memory and then used Avatar [44] to
transfer the initialized state from a real device to PANDA.
To demonstrate Laelaps’s device-agnostic property, we

ported Laelaps to PANDA and tested the same firmware
image used in the paper [33]. In addition, we reproduced the
same fuzzing experiments. We did not use the real device but
were still able to emulate the firmware. After the device was
booted, we took a snapshot. During fuzzing, if the device
crashed, the fuzzer instructed the emulator to restart from
the snapshot.
The firmware image is empowered by the Mbed OS and

integrates the Expat [13] library for parsing incoming XML
files. The used Expat library has five types of common mem-
ory corruption vulnerabilities. The firmware image took in-
put from the UART interface. As in the paper [33], we instru-
mented the fuzzer to forcefully generate inputs which trigger
one of the five kinds of memory corruption vulnerabilities
with a given probability Pc . We ran the experiment for 1 hour
under probabilities Pc = 0.1, Pc = 0.05 and Pc = 0.01, respec-
tively. The result is shown in Table 5. We can see that there
is roughly a linear relationship between Pc and detection
ratio. Also, the less corrupting inputs were given, the more
test-cases could be tested within one hour. This is because

the PANDA instance can persist on multiple valid inputs,
but it has to take time to restore when receiving malformed
inputs. This experiment proves that Laelaps is capable of
booting firmware to an analyzable state for repeatable dy-
namic analysis without relying on a real device.

6.3.2 Analyzing FreeRTOS Firmware. We also tested the ca-
pability of Laelaps in helping analyze real-world vulnera-
bilities in FreeRTOS-powered firmware. These vulnerabil-
ities locate in the FreeRTOS+TCP network stack, which
were reported in AWS FreeRTOS with version 1.3.1. With-
out Laelaps, the traditional dynamic analysis of these vul-
nerabilities is very expensive, as it has to rely on real de-
vices and hardware debuggers. We prepared our testing
in two steps. First, since the reported vulnerabilities occur
in the FreeRTOS+TCP TCP/IP stack, we replaced lwip, the
default TCP/IP implementation shipped with the SDK of
NXP FRDM-K66F, with FreeRTOS+TCP. Second, we iden-
tified the location of the network input buffer and wrote a
PANDA plugin to redirect the memory read operations from
the buffer to a file. We began our testing from the function
prvHandleEthernetPacket, which is the gateway function
processing incoming network packets. In the end, we suc-
ceeded in triggering four TCP and IP layer vulnerabilities
(CVE-2018-16601, CVE-2018-16603, CVE-2018-16523, and
CVE-2018-16524). Note that these vulnerabilities were all
caused by improper implementation at IP or TCP/UDP lay-
ers. We had not been able to identify vulnerabilities residing
at higher levels of network stack because triggering them
needs highly structured inputs.

7 RELATEDWORK
Several approaches have applied symbolic execution to ad-
dressing security problems in firmware [14, 15, 22]. Like
Laelaps, Inception [14] aims at testing a complete firmware
image. It builds an Inception Symbolic Virtual Machine on
top of KLEE [7], which symbolically executes LLVM-IRmerged
from source code, assembly, and binary libraries. To handle
peripherals, it either models read from peripheral as uncon-
strained symbolic values or redirects the read operation to a
real device. However, this approach relies on the availabilities
of source code to retain semantic information during LLVM
merging. FIE [15] modifies KLEE to target a specific kind
of device (MSP430). It requires source code and ignores the
interactions with peripheral. S2E is a concolic testing plat-
form based on full system emulation [12]. Combining QEMU
and KLEE, S2E enables symbolic variable tracking across
privilege boundary. Both S2E and Laelaps are concolic ex-
ecution platforms. However, “selective symbolic execution”
proposed by S2E only applies to applications that run on
top of a standard OS (e.g., Windows and Linux). By contrast,
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Laelaps works on lightweight RTOS and bare-metal sys-
tems. We offer a set of peripheral-specific search heuristics
to mitigate the path explosion for peripheral emulation.
To be able to execute firmware in an emulated environ-

ment, many previous work forwards the peripheral access
requests to the real hardware [24, 27, 32, 42, 44]. However, a
real device does not always have an interface for exchanging
data with the emulator. Furthermore, this approach is not
scalable for testing large-scale firmware images because for
every firmware image a real device is needed. Instead of
relying on real devices, our approach infers proper inputs
from peripherals on-the-fly using symbolic execution. Our
approach inherits many benefits of a traditional emulator.
For example, we can store a snapshot at any time and replay
it for repeated analyses.
A very related work [21] to ours was recently proposed

by Eric Gustafson et. al. The authors proposed to “learn” the
interactions between the original hardware and the firmware
from the real hardware. As a result, analysts do not need to
program a specific back-end peripheral emulator for every
target hardware. This approach achieves similar dynamic
analysis capability with ours, however, it still needs the real
hardware in the “learning” process.
Finally, previous work has made tremendous progress in

analyzing Linux-based firmware [9, 46]. The high-level idea
is to design a generic kernel for all the devices. This ap-
proach leverages the abstraction layer offered by the Linux
kernel. For example, the WiFi interface can be easily sup-
ported by providing a standard emulated Ethernet interface,
since the POSIX API is being used. However, for microcon-
troller firmware, there is no such a unified interface between
the tasks and the kernel. Even if someMCUOSs provide hard-
ware abstraction layer (HALs), the ecosystem is severely seg-
mented. Lastly, many MCU firmware images are bare-metal
and directly work on diverse hardware. Our work does not
rely on any abstraction layers and directly interacts with the
previously-unseen hardware. Therefore, our approach can
deal with more kinds of firmware.

8 CONCLUSION & FUTUREWORK
We present Laelaps, a device-agnostic emulator for ARM
microcontroller. The high-level idea is to leverage concolic
execution to generate proper peripheral inputs to steer de-
vice emulator on the fly. Dynamic symbolic execution is a
perfect fit for this task based on our observations and experi-
mental validations. To find a right input, the key is to identify
the most promising branch. We designed a path selection al-
gorithm based on a set of generally applicable heuristics. We
have implemented this idea on top of QEMU and angr, and
have conducted extensive experiments. Of all the collected
30 firmware images from different manufacturers, we found

that our prototype can successfully execute 20 of them with-
out any human intervention. We also tested fuzzing testing
on top of Laelaps. The results showed that Laelaps is able
to correctly boot the system into an analyzable state. As a re-
sult, Laelaps can identify both self-injected and real-world
bugs. In the future, we plan to extend our prototype to sup-
port a border spectrum of devices including ARM Cortex-A
and MIPS devices.

A IMPLEMENATION MISCELLANEOUS
In this section, we provide supplementary information about
implementation details for interested readers.

A.1 Precise PC in QEMU
When transferring processor state from QEMU to angr, we
found that the PC register always points to the start of the
current translated block, instead of the real PC. We borrow
the code from PANDA [16] to address this problem. In par-
ticular, we injected into the intermediate language some
instructions so that the PC can be updated together with
each translated guest instruction.

A.2 Extending Interrupt in QEMU
The official QEMU supports 16 system exceptions and 64
hardware interrupts. A real device often uses more interrupts.
Therefore, we extended the supported number of interrupt
to 140 in our prototype.

A.3 Bit-banding
Bit-banding is an optional feature in many ARM-based mi-
crocontrollers [2] . It maps a complete word of memory onto
a single bit in the corresponding bit-banding region. Writ-
ing to a word sets or clears the corresponding bit in the
bit-banding region. Therefore, it enables efficient atomic ac-
cess of a bit in memory. In particular, a read-modify-write
sequence can be replaced by a single write operation. QEMU
has already perfectly supported this feature while angr has
not. We extended the memory model of angr to honor the
defined behavior when writing to a bit-band region. This aug-
mentation has been used by Laelaps to successfully emulate
STM32 devices in our experiments.

A.4 CBZ/CBNZ Instruction
A CBZ instruction causes a branch if the operand is zero,
while CBNZ does the opposite. By definition, these instruc-
tions mark the end of basic blocks because they branch to
new basic blocks. However, in the default implementation
of angr, due to optimization, they are not treated as basic
block terminators. In fact, angr uses a basic block variant
called IRSB (Intermediate Representation Super-Block) which
can have multiple exits. This results in abnormal behaviors

13



Anonymous Submission to MobiCom, 2020 Anon.

when Laelaps selects a branch. Fortunately, angr provides
a configuration option that enables using strict basic blocks.
Therefore, we enable this option throughout the use of angr.

A.5 Memory Alias
Some STM32 boards heavily depend on memory alias during
booting. We extended the memory model of angr to redi-
rect memory accesses when encountering memory regions
configured to be an alias to others.

B DETATILS OF COLLECTED FIRMWARE
IMAGES

We briefly describe the functionality of each firmware image.
Also, we summarize the details of execution results of these
firmware images in Table 6.

(1) It sets up the RTC hardware block to trigger an alarm
after a user specified time period. The test will set the
current date and time to a predefined value. The alarm
will be set with reference to this predefined date and
time.

(2) User should indicate a channel to provide a voltage
signal (can be controlled by user) as the ADC16’s sam-
ple input. When running the project, typing any key
into debug console would trigger the conversion. The
execution would check the conversion completed flag
in loop until the flag is asserted, which means the con-
version is completed. Then read the conversion result
value and print it to debug console.

(3) It uses the systick interrupt to realize the function of
timing delay. The example takes turns to shine the
LED.

(4) It uses notification mechanism and prints the power
mode menu through the debug console, where the user
can set the MCU to a specific power mode. The user
can also set the wakeup source by following the debug
console prompts.

(5) It shows how to use DACmodule simply as the general
DAC converter.

(6) It sets up the PIT hardware block to trigger a periodic
interrupt every 1 second. When the PIT interrupt is
triggered a message a printed on the UART terminal
and an LED is toggled on the board.

(7) In the example, you can send characters to the console
back and theywill be printed out onto console instantly
using lpuart.

(8) The TPM project is a demonstration program of gener-
ating a combined PWM signal by the SDK TPM driver.

(9) User should indicate an input channel to capture a
voltage signal (can be controlled by user) as the CMP’s

positive channel input. On the negative side, the in-
ternal 6-bit DAC is used to generate the fixed voltage
about half value of reference voltage.

(10) EWM counter is continuously refreshed until button
is pressed. Once the button is pressed, EWM counter
will expire and interrupt will be generated. After the
first pressing, another interrupt can be triggered by
pressing button again.

(11) Quick test is first implemented to test the wdog. And
then after 10 times of refreshing the watchdog in None-
window mode, a timeout reset is generated.

(12) The CMT is worked as Time mode and used to modu-
lation 11 bit numbers of data. The CMT is configured
to generate a 40000hz carrier generator signal through
a modulator gate configured with different mark/space
time period to represent bit 1 and bit 0.

(13) It sets up the FTM hardware block to trigger an inter-
rupt every 1 millisecond. When the FTM interrupt is
triggered a message a printed on the UART terminal.

(14) It sets up the LPTMR hardware block to trigger a peri-
odic interrupt after every 1 second. When the LPTMR
interrupt is triggered a message a printed on the UART
terminal and an LED is toggled on the board.

(15) The example configures one FlexCAN Message Buffer
to Rx Message Buffer and the other FlexCAN message
buffer to Tx message buffer with same ID. After that,
the example will send a CAN message from the Tx
message buffer to the Rx message buffer through inter-
nal loopback interconnect and print out the Message
payload to terminal.

(16) It uses the RNGA to generate 32-bit random numbers
and prints them to the terminal.

(17) It excuates one shot transfer from source buffer to
destination buffer using the SDK EDMA drivers.

(18) One sai instance records the audio data from input and
playbacks the audio data.

(19) It uses the KSDK software to generate checksums for
an ASCII string.

(20) The SYSMPU example defines protected/unprotected
memory region for the core access and tested whether
memory protection interrupt events can be delivered
if memory violations are detected.

(21) The ENET example tests FreeRTOS+TCP network stack.
(22) This example introduces simple logging mechanism

based on message passing.
(23) It prints the "Hello World" string to the terminal using

the SDK UART drivers.
(24) The RTC demo application demonstrates the impor-

tant features of the RTC Module by using the RTC
Peripheral Driver. It tested the calendar, alarm and
seconds interrupt.
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(25) The bubble application demonstrates basic usage of the
on-board accelerometer to implement a bubble level.
It uses the FTM/TPM to modulate the duty cycle of
green and blue colors of onboard RGB LED to gradually
increase intensity of the colors as the board deviates
from a level state.

(26) It is a simple demonstration program that uses the SDK
UART driver in combination with FreeRTOS.

(27) It outputs the printf message on the Hyperterminal
using USARTx.

(28) It coordinates two tasks with the help of semaphore
in FreeRTOS.

(29) It flashes the board LED using a thread, by pressing
the button located on the board and output a string on
the serial port SD2 (USART2).

(30) It is the same image used in paper [33]. It reads XML
files from UART and uses expat to parse them.
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Table 6: Details of Firmware Samples
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3 GPIO 3 Y N 2 3 5.1
4 SMC 4 Y N 4 5 26.0
5 DAC 5 Y N 3 4 17.0
6 PIT 6 Y N 1 3 18.0
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8 TPM 8 Y N 1 3 20.0
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