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Abstract

In deep reinforcement learning, policy optimization methods need to deal with
issues such as function approximation and the reuse of off-policy data. Standard
policy gradient methods do not handle off-policy data well, leading to premature
convergence and instability. This paper introduces a method to stabilize policy
optimization when off-policy data are reused. The idea is to include a Bregman
divergence between the behavior policy that generates the data and the current
policy to ensure small and safe policy updates with off-policy data. The Bregman
divergence is calculated between the state distributions of two policies, instead of
only on the action probabilities, leading to a divergence augmentation formulation.
Empirical experiments on Atari games show that in the data-scarce scenario where
the reuse of off-policy data becomes necessary, our method can achieve better
performance than other state-of-the-art deep reinforcement learning algorithms.

1 Introduction

In recent years, many algorithms based on policy optimization have been proposed for deep reinforce-
ment learning (DRL), leading to great successes in Go, video games, and robotics (Silver et al., 2016;
Mnih et al., 2016; Schulman et al., 2015, 2017b). Real-world applications of policy-based methods
commonly involve function approximation and data reuse. Typically, the reused data are generated
with an earlier version of the policy, leading to off-policy learning. It is known that these issues may
cause premature convergence and instability for policy gradient methods (Sutton et al., 2000; Sutton
and Barto, 2017).

A standard technique that allows policy optimization methods to handle off-policy data is to use
importance sampling to correct trajectories from the behavior policy that generates the data to the
target policy (e.g. Retrace (Munos et al., 2016) and V-trace (Espeholt et al., 2018)). The efficiency of
these methods depends on the divergence between the behavior policy and the target policy. Moreover,
to improve stability of training, one may introduce a regularization term (e.g. Shannon-Gibbs entropy
in (Mnih et al., 2016)), or use a proximal objective of the original policy gradient loss (e.g. clipping
in (Schulman et al., 2017b; Wang et al., 2016a)). Although the well-adopted method of entropy
regularization can stabilize the optimization process (Mnih et al., 2016), this additional entropy
regularization alters the learning objective, and prevent the algorithm from converging to the optimal
action for each state. Even for the simple case of bandit problems, the monotonic diminishing
regularization may fail to converge to the best arm (Cesa-Bianchi et al., 2017).

In this work, we propose a method for policy optimization by adding a Bregman divergence term,
which leads to more stable and sample efficient off-policy learning. The Bregman divergence
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constraint is widely used to explore and exploit optimally in mirror descent methods (Nemirovsky
and Yudin, 1983), in which specific form of divergence can attain the optimal rate of regret (sample
efficiency) for bandit problems (Audibert et al., 2011; Bubeck and Cesa-Bianchi, 2012). In contrast
to the traditional approach of constraining the divergence between target policy and behavior policy
conditioned on each state (Schulman et al., 2015), we consider the divergence over the joint state-
action space. We show that the policy optimization problem with Bregman divergence on state-action
space is equivalent to the standard policy gradient method with divergence-augmented advantage.
Under this view, the divergence-augmented policy optimization method not only considers the
divergence on the current state but also takes into account the discrepancy of policies on future states,
thus can provide a better constraint on the change of policy and encourage “deeper” exploration.

We experiment with the proposed method on the commonly used Atari 2600 environment from
Arcade Learning Environment (ALE) (Bellemare et al., 2013). Empirical results show that divergence-
augmented policy optimization method performs better than the state-of-the-art algorithm under
data-scarce scenarios, i.e., when the sample generating speed is limited and samples in replay memory
are reused multiple times. We also conduct a comparative study for the major effect of improvement
on these games.

The article is organized as follows: we give the basic background and notations in Section 2. The main
method of divergence-augmented policy optimization is presented in Section 3, with connections to
previous works discussed in Section 4. Empirical results and studies can be found in Section 5. We
conclude this work with a short discussion in Section 6.

2 Preliminaries

In this section, we state the basic definition of the Markov decision process considered in this work,
as well as the Bregman divergence used in the following discussions.

2.1 Markov Decision Process

We consider a Markov decision process (MDP) with infinite-horizon and discounted reward, denoted
byM = (S,A, P, r, d0, γ), where S is the finite state space,A is the finite action space, P : S×A →
∆(S) is the transition function, where ∆(S) means the space of all probability distributions on S.
A reward function is denoted by r : S × A → R. The distribution of initial state s0 is denoted by
d0 ∈ ∆(S). And a discount factor is denoted by γ ∈ (0, 1).

A stochastic policy is denoted by π : S → ∆(A). The space of all policies is denoted by Π. We use the
following standard notation of state-value V π(st), action-value Qπ(st, at) and advantage Aπ(st, at),
defined as V π(st) = Eπ|st

∑∞
l=0 γ

lr(st+l, at+l), Qπ(st, at) = Eπ|st,at
∑∞
l=0 γ

lr(st+l, at+l), and
Aπ(st, at) = Qπ(st, at)− V π(st), where Eπ|st means al ∼ π(a|sl), sl+1 ∼ P (sl+1|sl, al), ∀l ≥ t,
and Eπ|st,at means sl+1 ∼ P (sl+1|sl, al), al+1 ∼ π(a|sl+1), ∀l ≥ t. We also define the space of
policy-induced state-action distributions underM as

∆Π = {µ ∈ ∆(S ×A) :
∑
a′

µ(s′, a′) = (1− γ)d0(s′) + γ
∑
s,a

P (s′|s, a)µ(s, a),∀s′ ∈ S} (1)

We use the notation µπ for the state-action distribution induced by π. On the other hand, for each
µ ∈ ∆Π, there also exists a unique policy πµ(a|s) = µ(s,a)∑

b µ(s,b) which induces µ. We define the state
distribution dπ as dπ(s) = (1− γ)Eτ |π

∑∞
t=0 γ

t1(st = s). Then we have µπ(s, a) = dπ(s)π(a|s).
We sometimes write πµt as πt and dπt as dt when there is no ambiguity.

In this paper, we mainly focus on the performance of a policy π defined as

J(π) = (1− γ)Eτ |π
∞∑
t=0

γtr(st, at) = Edπ,πr(s, a) (2)

where Eτ |π means s0 ∼ d0, at ∼ π(at|st), st+1 ∼ P (st+1|st, at), t ≥ 0. We use the notation
Ed,π = Es∼d(·),a∼π(·|s) for brevity.
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2.2 Bregman Divergence

We define Bregman divergence (Bregman, 1967) as follows (e.g. Definition 5.3 in (Bubeck and
Cesa-Bianchi, 2012)). For D ⊂ Rd an open convex set, the closure of D as D̄, we consider a
Legendre function F : D̄ → R defined as (1) F is strictly convex and admits continuous first
partial derivatives on D, and (2) limx→D̄\D‖∇F‖ = +∞. For function F , we define the Bregman
divergence DF : D̄ × D → R as

DF (x, y) = F (x)− F (y)− 〈∇F (y), x− y〉.
The inner product is defined as 〈x, y〉 =

∑
i xiyi. ForK ⊂ D̄ andK∩D 6= ∅, the Bregman projection

z = arg min
x∈K

DF (x, y)

exists uniquely for all y ∈ D. Specifically, for F (x) =
∑
i xi log(xi) −

∑
i xi, we recover the

Kullback-Leibler (KL) divergence as

DKL(µ′, µ) =
∑
s,a

µ′(s, a) log
µ′(s, a)

µ(s, a)

for µ, µ′ ∈ ∆(S×A) and π, π′ ∈ Π. To measure the distance between two policies π and π′, we also
use the symbol for conditional “Bregman divergence”2 associated with state distribution d denoted as

Dd
F (π′, π) =

∑
s

d(s)DF (π′(·|s), π(·|s)). (3)

3 Method

In this section, we present the proposed method from the motivation of mirror descent and then
discuss the parametrization and off-policy correction we employed in the practical learning algorithm.

3.1 Policy Optimization and Mirror Descent

The mirror descent (MD) method (Nemirovsky and Yudin, 1983) is a central topic in the optimization
and online learning research literature. As a first-order method for optimization, the mirror descent
method can recover several interesting algorithms discovered previously (Sutton et al., 2000; Kakade,
2002; Peters et al., 2010; Schulman et al., 2015). On the other hand, as an online learning method,
the online (stochastic) mirror descent method can achieve (near-)optimal sample efficiency for a wide
range of problems (Audibert and Bubeck, 2009; Audibert et al., 2011; Zimin and Neu, 2013). In this
work, following a series of previous works (Zimin and Neu, 2013; Neu et al., 2017), we investigate
the (online) mirror descent method for policy optimization. We denote the state-action distribution at
iteration t as µt, and `t(µ) = 〈gt, µ〉 as the linear loss function for µ at iteration t. Without otherwise
noted, we consider the negative reward as the loss objective `t(µ) = −〈r, µ〉, which also corresponds
to the policy performance `t(µ) ≡ −J(πµ) by Formula (2). We consider the mirror map method
associated with Legendre function F as

∇F (µ̃t+1) = ∇F (µt)− ηgt (4)
µt+1 ∈ Π∆Π(µ̃t+1), (5)

where µ̃t+1 ∈ ∆(S × A) and gt = ∇`t(µt). It is well-known (Beck and Teboulle, 2003) that an
equivalent formulation of mirror map (4) is

µt+1 = arg min
µ∈∆Π

DF (µ, µ̃t+1) (6)

= arg min
µ∈∆Π

DF (µ, µt) + η〈gt, µ〉, (7)

The former formulation (6) takes the view of non-linear sub-gradient projection in convex optimiza-
tion, while the later formulation (7) can be interpreted as a regularized optimization and is the usual
definition of mirror descent (Nemirovsky and Yudin, 1983; Beck and Teboulle, 2003; Bubeck, 2015).
In this work, we will mostly investigate the approximate algorithm in the later formulation (7).

2Note that Dd
F may not be a Bregman divergence.
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3.2 Parametric Policy-based Algorithm

In the mirror descent view for policy optimization on state-action space as in Formula (7), we need to
compute the projection of µ onto the space of ∆Π. For the special case of KL-divergence on µ, the
sub-problem of finding minimum in (7) can be done efficiently, assuming the knowledge of transition
function P (See Proposition 1 in (Zimin and Neu, 2013)). However, for a general divergence and real-
world problems with unknown transition matrices, the projection in (7) is non-trivial to implement.
In this section, we consider direct optimization in the (parametric) policy space without explicit
projection. Specifically, we consider µπ as a function of π, and π parametrized as πθ. The Formula
(7) can be written as

πt+1 = arg min
π

DF (µπ, µt) + η〈gt, µπ〉. (8)

Instead of solving globally, we approximate Formula (8) with gradient descent on π. From the
celebrated policy gradient theorem (Sutton et al., 2000), we have the following lemma:

Lemma 1. (Policy Gradient Theorem (Sutton et al., 2000)) For dπ and µπ defined previously, the
following equation holds for any state-action function f : S ×A → R:∑

s,a

f(s, a)∇θµπ(s, a) =
∑
s,a

dπ(s)Qπ(f)(s, a)∇θπ(a|s),

where Qπ is defined as an operator such that

Qπ(f)(s, a) = Eπ|st=s,at=a
∞∑
l=0

γlf(st+l, at+l).

Decomposing the loss and divergence in two parts (8), we have

∇θ 〈gt, µπ〉 = 〈dπQπ(gt),∇θπ(a|s)〉 , (9)

which is the usual policy gradient, and

∇θDF (µπ, µt) = 〈∇F (µπ)−∇F (µt),∇θµπ〉 = 〈dπQπ (∇F (µπ)−∇F (µt)) ,∇θπ(a|s)〉 .
(10)

Similarly, we have the policy gradient for the conditional divergence (3) as

∇θDdt
F (π, πt) = 〈dt(∇F (π)−∇F (πt)),∇θπ(a|s)〉 ,

which does not have a discounted sum, since dt is fixed and independent of π = πµ.

3.3 Off-policy Correction

In this section, we discuss the practical method for estimating Qπ(f) under a behavior policy πt. In
distributed reinforcement learning with asynchronous gradient update, the policy πt which generated
the trajectories may deviate from the policy πθ currently being optimized. Thus off-policy correction
is usually needed for the robustness of the algorithm (e.g. V-trace as in IMPALA (Espeholt et al.,
2018)). Consider∑

s,a

dπ(s)Qπ(f)(s, a)∇θπ(a|s) = E(s,a)∼πdπQ
π(f)(s, a)∇θ log π(a|s)

= E(s,a)∼πtdπt
dπ(s)

dπt(s)

π(a|s)
πt(a|s)

Qπ(f)(s, a)∇θ log π(a|s)

for f = gt or f = ∇F (µπ)−∇F (µt). We would like to have an accurate estimation of Qπ(gt) (9)
and Qπ(∇F (µπ)−∇F (µt)) (10), and correct the deviation from dπt to dπ and πt to π.

For the estimation of Qπ(f) under a behavior policy πt, possible methods include Retrace (Munos
et al., 2016) providing an estimator of state-action value Qπ(f), and V-trace (Espeholt et al., 2018)
providing an estimator of state value Ea∼πQπ(f)(s, a). In this work, we utilize the V-trace (Section
4.1 (Espeholt et al., 2018)) estimation vsi = vi along a trajectory starting at (si, ai = s, a) under πt.
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Details of multi-step Q-value estimation can be found in Appendix A. With the value estimation vs,
the Qπ(gt) is estimated with

Âs,a = ri + γvi+1 − Vθ(si). (11)

We subtract a baseline Vθ(si) to reduce variance in estimation, as Eπt,dt πθπt Vθ(s)∇θ log πθ = 0. For
the estimation of Qπ(∇F (µπ)−∇F (µt)), we use the n-steps truncated importance sampling as

D̂s,a = f(si, ai) +

n∑
j=1

γj(

j−1∏
k=0

ci+k)ρi+jf(si+j , ai+j). (12)

in which we use the notation cj = min(c̄D,
πθ(aj |sj)
πt(aj |sj) ) and ρj = min(ρ̄D,

πθ(aj |sj)
πt(aj |sj) ). The formula

also corresponds to V-trace under the condition V (·) ≡ 0. For RNN model trained on continuous
roll-out samples, we set n equals to the max-length till the end of roll-out.

For the correction of state distribution dπ(s)/dπt(s), previous solutions include the use of emphatic
algorithms as in (Sutton et al., 2016), or through an estimate of state density ratio as in (Liu et al.,
2018). However, in our experience, less than the optimal estimation of density ratio will lead to
additional error, causing instability. Therefore in this paper, we propose a different solution by
restricting our attention to the correction of πt to π via importance sampling and omitting the
difference of dπ/dπt in the algorithm. This introduces a bias in the gradient estimation, which we
propose a new method to handle in this paper. Specifically, we show that although the omission of
the state ratio introduces a bias in the gradient, the bias can be bounded by the regularization term
of conditional KL divergence (see Appendix B). Therefore by explicitly adding an KL divergence
regularization, we can effectively control the degree of off-policy bias caused by dπ/dπt in that small
regularization value implies a small bias. This approach naturally combines mirror descent with KL
divergence regularization, leading to a more stable algorithm that is robust to off-policy data, as we
will demonstrate by empirical experiments.

The final loss consists of the policy loss Lπ(θ) and the value loss Lv(θ). To be specific, the gradient
of policy loss is defined as

∇θLπ(θ) = Eπt,dt
π

πt
(D̂s,a − ηÂs,a)∇θ log π. (13)

We can also use proximal methods like PPO (Schulman et al., 2017b) in conjunction with divergence
augmentation. A practical implementation is elaborated later in Formula (19). In addition to the
policy loss, we also update Vθ with value gradient defined as

∇Lv(θ) = Eπt,dt
π

πt
(Vθ(s)− vs)∇θVθ(s), (14)

where vs = vsi is the multi-step value estimation with V-trace. The parameter θ is then updated with
a mixture of policy loss and value loss

θ ← θ − αt(∇θLπ(θ) + b∇θLv(θ)), (15)

in which αt is the current learning rate, and b is the loss scaling coefficient. The algorithm is
summarized in Algorithm 1.

4 Related Works

The policy performance in Equation (2) and the well-known policy difference lemma (Kakade and
Langford, 2002) serve a fundamental role in policy-based reinforcement learning (e.g TRPO, PPO
(Schulman et al., 2015, 2017b)). The gradient with respect to the policy performance and policy
difference provides a natural direction for policy optimization. And to restrict the changes in each
policy improvement step, as well as encouraging exploration at the early stage, the constraint-based
policy optimization methods try to limit the changes in the policy by constraining the divergence
between behavior policy and current policy. The use of entropy maximization in reinforcement
learning can be dated back to the work of Williams and Peng (1991). And methods with relative
entropy regularization include Peters et al. (2010); Schulman et al. (2015). The relationship between
these methods and the mirror descent method has been discussed in Neu et al. (2017). With
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Algorithm 1 Divergence-Augmented Policy Optimization (DAPO)

Input: DF (µ′, µ), total iteration T , batch size M , learning rate αt.
Initialize : randomly initiate θ0

for t = 0 to T do
(in parallel) Use πt = πθt to generate trajectories.
for m = 1 to M do

Sample (si, ai) ∈ S ×A w.p. dtπt.
Estimate state value vsi (e.g. by V-trace).
Calculate Q-value estimation Âs,a (11) and divergence estimation D̂s,a (12).
Âs,a = ri + γvi+1 − Vθ(si),
D̂s,a = f(si, ai) +

∑n
j=1 γ

j(
∏j−1
k=0 ci+k)ρi+jf(si+j , ai+j).

Update θ with respect of policy loss (13, optionally 19) and value loss (14)
θ ← θ − αt(∇θLπ(θ) + b∇θLv(θ)).

end for
Set θt+1 = θ.

end for

notations in this work, consider the natural choice of F as the negative Shannon entropy defined
as F (x) =

∑
i xi log(xi), the DF (·, ·) becomes the KL-divergence DKL(·, ·). By the equivalence

of sub-gradient projection (6) and mirror descent (7), the mirror descent policy optimization with
KL-divergence can be written as

µt+1 = arg min
µ∈∆Π

DKL(µ, µ̃t+1) = arg min
µ∈∆Π

DKL(µ, µt) + η〈gt, µ〉. (16)

Under slightly different settings, this learning objective is the regularized version of the constrained
optimization problem considered in Relative Entropy Policy Search (REPS) (Peters et al., 2010); And
for `t(µ) depending on t, the Equation (16) can also recover the O-REPS method considered in Zimin
and Neu (2013). On the other hand, as the KL-divergence (and Bregman divergence) is asymmetric,
we can also replace the DF (x, y) in either formulation (6, 7) with reverse KL DKL(y, x), which
will result in different iterative algorithms (as the reverse KL is no longer a Bregman divergence,
the equivalence of Formula (6) and (7) no longer holds). Consider replacing DF (µ, µ̃t+1) with
DKL(µ̃t+1, µ) in sub-gradient projection (6), we have the “mirror map” method with reverse KL as

µt+1 = arg min
µ∈∆Π

DKL(µ̃t+1, µ), (17)

which is essentially the MPO algorithm (Abdolmaleki et al., 2018) under a probabilistic inference
perspective, and MARWIL algorithm (Wang et al., 2018) when learning from off-policy data. Sim-
ilarly, consider the replacement of DF (µ, µt) with DKL(µt, µ) in mirror descent (7), we have the
“mirror descent” method with reverse KL as

µt+1 = arg min
µ∈∆Π

DKL(µt, µ) + η〈gt, µ〉, (18)

which can approximately recover the TRPO optimization objective (Schulman et al., 2015) (if
the relative entropy between two state-action distributions DKL(µt, µ) in (18) is replaced by the
conditional entropy Ddt

KL(πt, π), also see Section 5.1 of Neu et al. (2017)).

Besides, we note that there are other choices of constraint for policy optimization as well. For
example, in (Lee et al., 2018; Chow et al., 2018; Lee et al., 2019), a Tsallis entropy is used to promote
sparsity in the policy distribution. And in (Belousov and Peters, 2017), the authors generalize KL,
Hellinger distance, and reversed KL to the class of f -divergence. In preliminary results, we found
divergence based on 0-potential (Audibert et al., 2011; Bubeck and Cesa-Bianchi, 2012) is also
promising for policy optimization. We left this for future research.

For multi-step KL divergence regularized policy optimization, we note that the formulation also
corresponds to the KL-divergence-augmented return considered previously in several works (Fox
et al. (2015), Section 3 of Schulman et al. (2017a)), although in Schulman et al. (2017a) the authors
use a fixed behavior policy instead of πt as in ours. More often, the Shannon-entropy-augmented
return can be dated back to earlier works (Kappen, 2005; Todorov, 2007; Ziebart et al., 2008; Nachum
et al., 2017), and is a central topic in “soft” reinforcement learning (Haarnoja et al., 2017, 2018).
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Figure 1: Relative score improvement of PPO+DA compared with PPO on 58 Atari environments.
The relative performance is calculated as a proposed−baseline

max(human,baseline)−random (Wang et al., 2016b). The Atari
games are categorized according to Figure 4 of (Oh et al., 2018).

The mirror descent method is originally introduced by the seminal work of Nemirovsky and Yudin
(1983) as a convex optimization method. Also, the online stochastic mirror descent method has alter-
native views, e.g. Follow the Regularized Leader (McMahan, 2011), and Proximal Point Algorithm
(Rockafellar, 1976). For more discussions on mirror descent and online learning, we refer interested
readers to the work of Cesa-Bianchi and Lugosi (2006) and Bubeck and Cesa-Bianchi (2012).

5 Experiments

In the experiments, we test the exploratory effect of divergence augmentation comparing with
entropy augmentation, and the empirical difference between multi-step and 1-step divergence. For
the experiments, we mainly consider the DAPO algorithm (1) associated with the conditional KL
divergence (see RC and DC in (Neu et al., 2017)). For F (µ) =

∑
s,a µ(s, a) log µ(s,a)∑

b µ(s,b) , we have
the gradient in (10) as

∇F (µπ)−∇F (µt) = log
π

πt
.

The multi-step divergence augmentation term as in (12) is then calculated as

D̂KL
s,a = log

π(ai|si)
πt(ai|si)

+

n∑
j=1

γj(

j−1∏
k=1

ci+k)ρi+j log
π(ai+j |si+j)
πt(ai+j |si+j)

.

As a baseline, we also implement the PPO algorithm with a V-trace (Espeholt et al., 2018) estimation
of advantage function Aπ for target policy3. Specifically, we consider the policy loss as:

LPPO
π (θ) = Eπt,dt min(

πθ
πt
As,a, clip(

πθ
πt
, 1− ε, 1 + ε)As,a), (19)

where we choose ε = 0.2 and the advantage is estimated by Rs,a. We also tested the DAPO algorithm
with PPO, with the advantage estimation As,a in (19) replaced with Âs,a − 1

η D̂s,a defined in (11)
and (12). We will refer to this algorithm as PPO+DA in the following sections.

5.1 Algorithm Settings

The algorithm is implemented with TensorFlow (Abadi et al., 2016). For efficient training with deep
neural networks, we use the Adam (Kingma and Ba, 2014) method for optimization. The learning
rate is linearly scaled from 1e-3 to 0. The parameters are updated according to a mixture of policy
loss and value loss, with the loss scaling coefficient c = 0.5. In calculating multi-step λ-returns Rs,a

3In the original PPO (Schulman et al., 2017b) they use Â as the advantage estimation of behavior policy Aπt .
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Figure 2: Performance comparison of selected environments of Atari games. The performance of
PPO, PPO+DA, PPO+DA (1-step), and PPO+Entropy are plotted in different colors. The score for
each game is plotted on the y-axis with running time on the x-axis, as the algorithm is paralleled
asynchronously in a distributed environment. For each line in the plots, we run the experiment 5
times with the same parameters and environment settings. The median scores are plotted in solid
lines, while the regions between 25% and 75% quantiles are shaded with respective colors.

and divergence Ds,a, we use fixed λ = 0.9 and γ = 0.99. The batch size is set to 1024, with roll-out
length set to 32, resulting in 1024/32=32 roll-outs in a batch. The policy πt and value Vt is updated
every 100 iterations (M = 100 in Algorithm 1). With our implementation, the training speed is about
25k samples per second, and the data generating speed is about 220 samples per second for each
actor, resulting in about 3500 samples per second for a total of 16 actors. Note that the PPO results
may not be directly comparable with other works (Schulman et al., 2017b; Espeholt et al., 2018;
Xu et al., 2018), mainly due to the different number of actors used. Unless otherwise noted, each
experiment is allowed to run 16000 seconds (about 4.5 hours), corresponding a total of 60M samples
generated and 400M samples (with replacement) trained. Details of experimental settings can be
found in Appendix A.

5.2 Empirical Results

We test the algorithm on 58 Atari environments and calculate its relative performance with PPO
(Schulman et al., 2017b). The empirical performance is plotted in Figure 1. We run PPO and PPO+DA
with the same environmental settings and computational resources. The relative performance is
calculated as proposed−baseline

max(human,baseline)−random (Wang et al., 2016b). We also categorize the game environments
into easy exploration games and hard exploration games (Oh et al., 2018). We see that with a KL-
divergence-augmented return, the algorithm PPO+DA performs better than the baseline method,
especially for the games that may have local minimums and require deeper exploration. We plot the
learning curves of PPO+DA (in blue) comparing with PPO (in black) and other baseline methods on
6 typical environments in Figure 2. Detailed learning curves for PPO and PPO+DA for the complete
58 games can be found in Figure 3 in the Appendix.

5.2.1 Divergence augmentation vs Entropy augmentation

We test the effect of divergence augmentation in contrast to the entropy augmentation (plotted in
orange in Figure 2). Entropy augmentation can prevent premature convergence and encourage
exploration as well as stabilize policy during optimization. However, the additional entropy may
hinder the convergence to the optimal action, as it alters the original learning objective. We set f(s, a)
as log π(a|s) in Formula (12), and experiment the algorithm with 1

η = 0.5, 0.1, 0.01, 0.001, in which
we found that 1

η = 0.1 performs best. From the empirical results, we see that divergence-augmented
PPO works better, while the entropy-augmented version may be too conservative on policy changes,
resulting in inferior performance on these games.
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5.2.2 Multi-step divergence vs 1-step divergence

In Figure 2, we also test the PPO+DA algorithm with its 1-step divergence-augmented counterpart
(plotted in green). We rerun the experiments with the parameter c̄D (Formula (12)) set to 0, which
means we only aggregate the divergence on the current state and action f(si, ai), without summing
up future discounted divergence f(si+j , ai+j). This method also relates to the conditional diver-
gence defined in Formula (3), and shares more similarities with previous works on regularized and
constrained policy optimization methods (Schulman et al., 2015; Achiam et al., 2017). We see that
with multi-step divergence augmentation, the algorithm can achieve high scores, especially on games
requiring deeper exploration like Enduro and Qbert. We hypothesize that the accumulated divergence
on future states can encourage the policy to explore more efficiently.

6 Conclusion

In this paper, we proposed a divergence-augmented policy optimization method to improve the
stability of policy gradient methods when it is necessary to reuse off-policy data. We showed that
the proposed divergence augmentation technique can be viewed as imposing Bregman divergence
constraint on the state-action space, which is related to online mirror descent methods. Experiments
on Atari games showed that in the data-scarce scenario, the proposed method works better than
other state-of-the-art algorithms such as PPO. Our results showed that the technique of divergence
augmentation is effective when data generated by previous policies are reused in policy optimization.
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