Under review as a conference paper at ICLR 2019

HR-TD: A REGULARIZED TD METHOD TO AVOID
OVER-GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal Difference learning with function approximation has been widely used
recently and has led to several successful results. However, compared with the
original tabular-based methods, one major drawback of temporal difference learn-
ing with neural networks and other function approximators is that they tend to
over-generalize across temporally successive states, resulting in slow convergence
and even instability. In this work, we propose a novel TD learning method,
Hadamard product Regularized TD (HR-TD), to reduce over-generalization and
thus leads to faster convergence. This approach can be easily applied to both linear
and nonlinear function approximators. HR-TD is evaluated on several linear and
nonlinear benchmark domains, where we show improvement in learning behavior
and performance.

1 INTRODUCTION

Temporal Difference (TD) learning is one of the most important paradigms in Reinforcement Learn-
ing (Sutton and Barto, 1998). Techniques based on combining TD learning with nonlinear function
approximators and stochastic gradient descent, such as deep networks, have led to significant break-
throughs in large-scale problems to which these methods can be applied (Mnih et al., 2015; Silver
et al., 2016; Schulman et al., 2015).

At its heart, the TD learning update is straightforward. v(s) estimates the value of being in a state
s. After an action « that transitions the agent from s to next state s’, v(s) is altered to be closer to
the (discounted) estimated value of s’, v(s’) (plus any received reward, r). The difference between
these estimated values is called the temporal difference error (TD error) and is typically denoted as
d. Formally, 6 = r + yv(s’) — v(s), where - is the discount factor, and r + yv(s’) is known as the
TD target.

When states are represented individually (the rabular case), v(s) can be altered independently from
v(s") using the update rule v(s) < v(s) + «d, where « is the learning rate. In fully deterministic
environments, « can be set to 1, thus causing v(s) to change all the way to the TD target. Otherwise,
in a stochastic environment, « is set less than 1 so that v(s) only moves part of the way towards the
TD target, thus avoiding over-generalization from a single example. When, on the other hand, states
are represented with a function approximator, as is necessary in large or continuous environments,
v(s) can no longer be updated independently from v(s’). That is because s and s’ are likely to be
similar (assuming actions have local effects), any change to v(s) is likely to also alter v(s’). While
such generalization is desirable in principle, it also has the unintended consequence of changing the
TD target, which in turn can cause the TD update to lead to an increase in the TD error between s
and s’. This unintended consequence can be seen as a second form of over-generalization: one that
can be much more difficult to avoid.

Past work has identified this form of over-generalization in RL, has observed that it is particularly
relevant in methods that use neural network function approximators such as DQN (Mnih et al.,
2015), and has proposed initial solutions (Durugkar and Stone, 2017; Pohlen et al., 2018). In this
paper, we present a deeper analysis of the reasons for this form of over-generalization and introduce
a novel learning algorithm termed HR-TD, based on the recursive proximal mapping formulation of
TD learning (Bertsekas, 2011), which offers a mathematical framework for parameter regularization
that allows one to control for this form of over-generalization. Empirical results across multiple

Under review as a conference paper at ICLR 2019

domains demonstrate that our novel algorithm learns more efficiently (from fewer samples) than
prior approaches.

The rest of the paper is organized as follows. Section 2 offers a brief background on TD learning, the
over-generalization problem, and optimization techniques used in the derivation of our algorithm.
In Section 3, we discuss the state-of-the-art research in this direction. The motivation and the design
of our algorithm are presented in Section 4. Finally, the experimental results of Section 5 validate
the effectiveness of the proposed algorithm.

2 BACKGROUND

This section builds on the notation introduced in Section 1 to specify the problem of interest in full
detail. We introduce the background for TD learning, over-generalization, and proximal mapping,
which are instrumental in the problem formulation and algorithm design.

2.1 REINFORCEMENT LEARNING AND OVER-GENERALIZATION

Reinforcement Learning problems are generally defined as Markov Decision Processes (MDPs). We
use the definition and notation as used in Sutton and Barto (2017), unless otherwise specified. In this
paper, we focus on domains with large or continuous state spaces such that function approximation
is needed. We define the value estimate of state s with parameter § when following policy 7 as,
v (s|0) = Ex [Ry +YRi41 + ¥ Ri2 + ... |S; = s|. Here R, is the random variable associated
with a reward at time ¢, and r; is used as an instantiation of this random variable. The optimal (true)
value function v} satisfies the Bellman equation given as v%(s|0) = E, [R; + yvi(s'|0)]. During
TD learning, the estimated value function is altered to try to make this property hold. In effect, state
values are updated by bootstrapping off of the estimated value of the predicted next states.

We focus on 1-step TD methods, i.e., TD(0), that bootstrap from the value of the immediate next
state or states in the MDP to learn the value of the current state. The TD error d;(s;, $¢41|6) to be
minimized is as follows:

0¢(5¢, 5e4110) = (¢ + yr(5:4110)) — v (5:]0)

In the following, d;(s¢, s¢41/0) is written as d; for short. When using function approximation and
gradient descent to optimize the parameters, the loss to be minimized is the squared TD error. At the
t-th time-step, the objective function used in TD learning is L7p = ||rs +Yvx (s:41]0) — v (s¢]60) %

Similarly, the optimal action value function () satisfies the Bellman optimality equation
Q*(st,a]0) = Ry + ymaxQ*(si+1,alf). The objective used in Q-Learning is thus Lo =

e + v max, Q(se41,ald) — Q(sy, arl)|?.

The partial derivative of v(s¢|6) or Q(s:, at|6) with respect to 6 is the direction in which TD learning
methods update the parameters. We use ¢;(s;|0) and g; (s, a;|0) to refer to these vectors. In the
linear case, v(s¢|0) = 0, ¢(s;), where ¢(s;) are the features of state s;. In this case, g;(s¢, a;|0) is
the feature vector ¢(s, at), and in general, g;(s¢, at|0) = 9o Q(s¢, at|0). It is computed as:

9Q(s1, a¢|0)
06
0 < 0+ adrg(se, ar)6).

gi(st,a:10) =

We have already briefly alluded to the issue of over-generalization in Section 1. One of the reasons
we use function approximation is that we want the values we learn to generalize to similar states.
But one of these similar states is likely to be the target of our Bellman equation v(s;11|6). If the
weights that correspond to large or important features in ¢(s;11) are strengthened, then the TD error
might not decrease as much as it should, or it might even increase. We refer to parameter updates
that work against the objective of reducing the TD error as over-generalization.

2.2 PROXIMAL MAPPING FORMULATION OF TD LEARNING

In this section, we introduce the basics of proximal mapping, which provide the mathematical formu-
lation of our algorithm design. A proximal mapping (Parikh and Boyd, 2013) prox ; (w) associated

Under review as a conference paper at ICLR 2019

with a convex function f is defined as

prox ;(w) :argmmin <f(:c)—|—w—a:§) (1)

Such a proximal mapping is typically used after a parameter update step to incorporate constraints
on the parameters. Intuitively, the first term f(x) provides incentive to move z in the direction
that minimizes f, whereas the second term %|jw — z||3 provides pressure to keep = close to w.
If f(z) = 0, then prox,;(w) = w, the identity function. f can often be a regularization term to
help incorporate prior knowledge. For example, for learning sparse representations, the case of
f(x) = pB||z|1 is particularly important. In this case, the entry-wise proximal operator is:

proxs(w); = sign(w;)max(|w;|—25,0)

Proximal methods have been shown to be useful for various reinforcement learning problems, e.g.,
proximal gradient TD learning (Liu et al., 2015) integrates the proximal method with gradient TD
learning (Sutton et al., 2009) using the Legendre-Fenchel convex conjugate function (Boyd and Van-
denberghe, 2004), and projected natural actor-critic (Thomas et al., 2013) interprets natural gradient
as a special case of proximal mapping. We now introduce the recursive proximal mapping formu-
lation of TD learning algorithm (Bertsekas, 2011). At the ¢-th iteration, the TD update law solves a
recursive proximal mapping, i.e., 0,11 = 0; + «@;9:g:(s¢), which is equivalent to

. 1
buvs = argmin { (2, 51(50) + 51— lo 011} @
T t

It should be noted that Eq. (2) is different from Eq. (1) in that Eq. (1) has an explicit objective
function f to optimize. Eq. (2) does not have an explicit objective function, but rather corresponds
to a fixed-point equation. In fact, it has been proven that the TD update term d:g:(s:) does not
optimize any objective function (Maei, 2011). Discussing this in details goes beyond the scope of
the paper, and we refer interested readers to (Maei, 2011; Bertsekas, 2011) for a comprehensive
discussion of this topic.

3 RELATED WORK

To the best of our knowledge, the closest work to ours to address the over-generalization problem
is the Temporal Consistency loss (TC-loss) method (Pohlen et al., 2018) and the constrained TD
approach (Durugkar and Stone, 2017).

The TC-loss (Pohlen et al., 2018) aims to minimize the change to the target state by minimizing
explicitly a separate loss that measures change in the value of s/, i.e., £(Vy(s',a') — Vy,_, (', a)).
When used in conjunction with a TD loss, it guarantees that the updated estimates adhere to the
Bellman operator and thus are temporally consistent. However, there are some drawbacks to this
method. Firstly, the asymptotic solution of the TC-loss method is different from the TD solution
due to the two separate losses, and the solution property remains unclear. Secondly, each param-
eter component plays a different role in changing v(s’). For instance, if the component of 6 is or
close to 0, then this component does not have any impact on changing v(s’). Different parameter
components, therefore, should be treated differently according to their impact on the value function
changes (or action-value change in case of DQN).

Another recent work in this direction is the constrained TD (CTD) algorithm (Durugkar and
Stone, 2017). To avoid the over-generalization among similar sates, CTD tends to alleviate over-
generalization by using the vector rejection technique to diminish the update along the direction of
the gradient of the action-value function of the successive state. In other words, the real update is
made to be orthogonal to the gradient of the next state. However, the CTD method suffers from the
double-sampling problem, which is explained in detail in Appendix A. Moreover, since it mainly
uses vector rejection, this method is not straightforward to extend to nonlinear function approxi-
mation, such as the DQN network, where over-generalization can be severe. Lastly, if the state
representation of s; and s, are highly similar, as in case of visual environments like Atari games,
then the vector rejection causes the update to be almost orthogonal to the computed gradient.

Under review as a conference paper at ICLR 2019

4 HADAMARD PRODUCT REGULARIZED TD

In this section, we analyze the reason for over-generalization and propose a novel algorithm to
mitigate it.

4.1 ANALYSIS OF OVER-GENERALIZATION

Consider the update to the parameter 6; as follows, with TD error d;, learning rate « and a linear
function approximation v(s;|6;) with features ¢(s;) and gradient g(s¢|0;) = ¢(s¢).
Orr1 = 0 + d(st, Se+1|0:)D(s¢)
If we substitute the above value for 6;, 1, the TD error for the same transition after the update is
OS¢, S¢41]0141) = 10 — (915T+1¢(St) - 79tT+1¢(5t+1))
6(st, 5e41101) — ad(se, se41(604) (¢(5t)T¢(5t) - V¢(St)T¢(5t+1)))

and thus

O(st 5141100) — 0(e, Se41|0141) = (s, se4110¢) (B(5) T (1) — vB(s0) T P(s141)) -

We see above that the decrease in the TD error at ¢t depends on two factors, the inner product of the
gradient with features of s;, and its inner product with the features of s;; ;. This decrease will be
reduced if ¢(s;) and ¢(s;11) have a large inner product. If this inner product exceeds %gb(st)Tgb(st),
then in fact the error increases. Thus over-generalization is an effect of a large positive correlation
between the update and the features of s;4 1, especially when contrasted with the correlation of this
same update with the features of s;.

We are then left with the following question: what kind of weight update can maximize the reduction
in 0;? Merely minimizing the correlation of the update with ¢(s;+1) is insufficient, as it might lead to
minimizing the correlation with ¢(s;). This is the issue that Constrained TD (Durugkar and Stone,
2017) faces with its gradient projection approach. Hence, we must also maximize its correlation
with ¢(s¢).

To examine this effect, we consider the properties of parameters that we should avoid changing, to
the extent possible. Consider the linear value function approximation case: vg(s) = ¢(s)'6. For
example, consider s; and s;41 with the features ¢(s;) = [0,2,1], and ¢(s;41) = [2,0,1]. Then
for two different weights, 6; = [0,0,2] and 62 = [1, 1, 0], we have the same value for both these
parameter vectors at both s; and s;y1, i.e. ¢(s) 01 = @(s141) 01 = P(s¢) 02 = P(s¢41) 02 =
2. However, the results of the Hadamard product (o) of these parameters with the feature vectors are
different, i.e.

d(s¢) 0 b1 = ¢(s141) 061 =[0,0,2],

¢(St) 002 = [07270]7 ¢)(St+1) 002 - [27070}7
where the Hadamard products of 67 with ¢(s;) and ¢(s;1) are more correlated than those of 2. An
update to the last weight of 6, will cause the values of both s; and s;4 1 to change, but an update to the
second weight of 65 will affect only s;. In fact, unless both the first and the second weights change,
s¢ and sy1 do not change simultaneously. In this sense, 6, tends to cause aggressive generalization
across the values of s; and s 1, and thus the TD update to #; should be regularized more heavily.
The Hadamard product of the weights and the features allows us to distinguish between 6, and 65 in
this way.

Motivated by this observation, we aim to reduce the over-generalization by controlling the weighted
feature correlation between the current state g(s)of and the successive state g(s’)o8, i.e., Corr(g(s)o

6, g(s') 0 6).
4.2 ALGORITHM DESIGN
Given the constraint as shown above, the constrained Mean-Squares Error (MSE) is formulated as

1
0" = argmein §HV —wg||3, s.t. Corr(g(s) 08, g(s') 0 8) < p, 3)

Under review as a conference paper at ICLR 2019

Algorithm 1 Hadamard product Regularized TD (HR-TD) Learning

Require: 7', a;(learning rate), y(discount factor), n(initial regularization parameter).
Ensure: Initialize 6.
fort=1,2,3,--- ,T do
ne=n/t
Update 6,1, according to Eq. (5).
end for

where V is the true value function. Using the recursive proximal mapping with respect to the con-
strained objective function, the parameter update per-step of Eq. (3) can be written as

. 1
Or11 = argmgln{ —07 (E[(St}g(st)) + S0 |16 — 9t||§}, s.t. Corr(g(st) 00, g(s¢1)00:) < p.
t

Using Lagrangian duality, it can be reformulated as

. 1
0;41 = arg mem{ — HT(E[(St}g(St)) + o [16 — 91&”% + nCorr(g(st) 08, g(st+1) © 9t)},
t

where 7 is the factor that weights the constraint against the objective. The closed-form solution to
the weight update is

Orr1 = 0p + (E[ét]g(st) —n(g(st) o g(st41) 0 (975)) 4)

Using sample-based estimation, i.e., using g;(s) (resp. g:(s’)) to estimate g(s) (resp. g(s’)) , and
using d; to estimate E[d;], the Eq. (4) becomes

Or11 = 0r + vt (0ege (1) — n(ge(se) 0 ge(se11) © 0y)) o)

In the proposed algorithm, if the component of the weights helps decrease the Hadamard product
correlation, then it is not penalized. Now the algorithm for value function approximation is formu-
lated as in Algorithm 1, and the algorithm for control is formulated in Algorithm 2.

4.3 HADAMARD PRODUCT REGULARIZED DEEP Q NETWORK

In DQN, the value function is learned by minimizing the following squared Bellman error using
SGD and backpropagating the gradients through the parameter 60

1
LpoN = §H7"t +7Q(s141, ar410") — Q(s1, ar|0)||. (6)

Here, 0 are the parameter of the target network that is periodically updated to match the param-
eters being trained. The action a1 is chosen as argmax, Q(s:+1,a|0’) if we use DQN, and
arg max, Q(s¢+1, a|f) if we use Double DQN (DDQN) (Van Hasselt et al., 2016). We use DDQN
in experiments as DQN has been shown to over-estimate the target value.

Let ¢(s:|0) be the activations of the last hidden layer before the Q-value calculation and 6_
be the corresponding weights for this layer. The Correlation can be written as Leory =
Corr(¢(s:160)°0, @(st+1]6)°6:). We do not use the target network when calculating this loss. The
loss used in Hadamard regularized DDQN is then an 7-weighted mixture of Eq. (6) and this loss

Lur-1p = LpoN + NLcorr @)

4.4 THEORETICAL ANALYSIS

In this section, we conduct some initial analysis of Algorithm 1 with linear function approximation.
For simplicity, we only discuss the linear case, i.e., Jvg(s:) = ¢(s¢), Ovg(se+1) = d(Se41). If
Algorithm 1 converges, the update of the weights according to Eq. (5) should satisfy the following
condition

E[6:p(st) — n(@(se41) 0 0r 0 B(s¢))] = 0.

Under review as a conference paper at ICLR 2019

Approximator TD TD+TC HR-TD

Fourier Basis | 691.99 736.29 691.93
MLP 239.73 716.546 232.831

Table 1: Mean Square Error (MSE) averaged across 10 runs

Rewriting & and denoting Ad; = é(s¢) — 6 (se41), we have
E[p(se)re] = E[p(s0) A¢] +nM)oy,
where M = E[Diag(¢(s:) 0 ¢(s¢41))] = E[Diag(¢(s¢)é" (si+1))]. Thus we have
E[¢(se)(Ag(s:)) " +nM] = E[d(s:)¢ " (s:) = 70(56)¢" (5041) + nDiag(e(s:)d " (s141))]

If we set n — ~, we observe that the second and third terms in the RHS above cancel out in the
diagonal element. Consider the scheme where we initialize 7 = v and then reduce it as over the
training process. It is equivalent to slowly introducing the discount factor into the error computation.
It has been shown (Prokhorov and Wunsch, 1997) that instead of the discount factor v provided by
the MDP, a user-defined time-varying 7, can help accelerate the learning process of the original
MDP w.r.t y. This previous work suggests using a small discount factor v; < <y in the beginning,
and then increasing -y, gradually to v. HR-TD results in a similar effect without defining a separate
~¢ and its schedule.

5 EXPERIMENTS

We evaluate HR-TD on two classical control problems: Mountain Car and Acrobot using both lin-
ear function approximation with Fourier basis features and nonlinear function approximation using
Deep Neural Networks. We verify that this algorithm scales to complex domains such as the Atari
Learning Environment (Bellemare et al., 2013), by evaluating our approach on the game of Pong. We
utilize OpenAl gym (Brockman et al., 2016) to interface our agent with the environments. We com-
pare HR-TD to the baselines by using the following metrics: 1) Accumulated reward per episode.
2) Average change in the target Q value at s” after every parameter update. For comparison, we
consider Q learning and Q learning with TC loss (and DDQN for neural networks).

Based on our analysis, we expect HR-Q learning to begin improving the policy earlier in the learning
process, and we expect HR-TD to be able to evaluate the value of a policy just as well as TD. We
evaluate the change of the value of the next state as well, and consider whether HR-TD is able to
reduce this change as a consequence of the regularization. We note, however, that this quantity is
diagnostic in nature, rather than being the true objective. It would definitely be possible to minimize
this quantity by making no learning updates whatsoever, but then we would also observe no learning.

5.1 EVALUATION

Before we consider the effect of HR-Q on control tasks, we compare the purely evaluative property
of HR-TD. Here, we evaluate a trained policy on the Mountain Car domain. We run this experiment

Algorithm 2 Hadamard product Regularized Q (HR-Q) Network

Require: 7', a;(learning rate), y(discount factor), n(initial regularization parameter).
Ensure: Initialize 6.
repeat
ne=n/t
Choose a; using policy derived from Q) (e.g., e-greedy)
Take a;, observe 7y, S;4+1
Add s¢, as, 14, St41 to Replay Buffer
Sample batch from Buffer and Update 6,1 using backpropagation to minimize Eq. (7).
t—t+1
until training done

Under review as a conference paper at ICLR 2019

|
o
Q
3

Accumulated reward
Average change max Q

0 200 400 600 800 0 25000 50000 75000 100000 125000 150000 175000
Episode Number Iteration Number

(a) Score per episode (b) Change of @

Figure 1: Comparison of performance of HR-Q with a neural network on the Mountain Car domain.
Figure 1a shows the cumulative score in an episode on the y-axis, with the episode number depicted
on the x-axis. 1b compares how much the value of the TD target changed after an update. The x-axis
is number of iterations

10 times for each method. For each experiment, the policy is executed in the environment for 10000
steps, resetting the agent to one of the start states if it terminates. We learn the value function using
TD by sampling a batch of transitions from this dataset and take 10,000 learning steps per run.

The metric we compare is the MSE with the Monte Carlo estimate of the same run, taken over
300,000 transitions. The MSE value for each experiment is calculated by averaging the MSE of the
last 10 training steps, to reduce sampling error. Finally, we take the mean of these errors across the
10 runs and present them in Table 1. TD and HR-TD reach roughly the same value for all the runs.
TC, however, converges to a different minimum that leads to a very high MSE. This may be because
the competing TD and TC objectives in this method cause the learning to destabilize. If we lower the
learning rate for TC, then we avoid this behavior but also do not converge in the given max number
of training steps.

5.2 NEURAL NETWORKS

We now consider the performance of HR-Q learning when using Neural Networks for function
approximation. We consider two domains, Mountain Car and Acrobot, but we do not perform any
basis expansion and feed the state values directly into a neural network with a single hidden layer of
64 units.

We compare the performance of HR-Q in Figure 1 and 2, with Q-Learning and Q-learning with TC
loss. We use DDQN Van Hasselt et al. (2016) as the underlying algorithm for Q-learning. Details of

-100

—200 4

Accumulated reward
|
w
&
8

Average change max Q

—4001

—500 ==

o 25 50 75 100 125 150 175 20000 40000 60000 80000 100000
Episode Number Iteration Number

(a) Score per Episode (b) Change of Q

Figure 2: Comparison of performance of HR-Q with a neural network on the Acrobot domain

Under review as a conference paper at ICLR 2019

the network and hyperparameters are in Appendix B. We take 20 independent runs, with a different
seed in each run used to initialize Tensorflow, NumPy, and the OpenAI Gym environment. Each run
is taken over 1000 episodes. In both these experiments, we see HR-TD starts to learn a useful policy
behavior before either of the other techniques. Interesting to note is that in Fig. 1b, HR-TD learns
a state representation that causes the target value to change less than DQN but does not restrict it
as much as TC. But in Fig. 2b we see that HR-TD is able to find a representation that is better at
keeping the target value separate than TC is. However, in both these cases, the value function that is
learned seems to be quickly useful for learning a better policy.

5.3 ATARI

o °
S 2
S 3
& &

Average change max Q
°
5
g
4

Accumulated reward

°
2
3
M

0 20 100000 200000 300000 400000 500000 600000

40 60
Episode Number Iteration Number

(a) Pong Score comparisons (b) Pong Value change

Figure 3: Experimental Evaluation on Atari Pong domain

We also validate the applicability of this technique to a more complex domain and a more complex
network. We apply the HR-Q to DDQN on the Atari domain to verify that the technique is scalable
and that the findings and trends we see in the first two experiments carry forward to this challenging
task. We use the network architecture specified in Mnih et al. (2015), and the hyper-parameters for
TC as specified in Pohlen et al. (2018). Experimental details are specified in Appendix B. From the
results, we see that HR-TD does not interfere with learning on the complex network, and does about
as well as DDQN.

5.4 LINEAR FUNCTION APPROXIMATION

-120 4
—— Q-learning —— Q-learning
----- TC

- HR-Q

o
o
S

-140

o
o
5

i

o
=1
@

'?.ﬂé‘ ALl .

I‘.\"rw A Y . M"‘-ﬁ.f Ll
iy TS Yy

-180

Average change in value of next state
°
5
-

o
o
~

200

e
°
2

100 200 300 400 100 200 300 400
Episodes Episodes

(a) MC Score comparisons (b) MC Value change

Figure 4: Comparison on the Mountain Car domain.

Finally, we study HR-TD with the linear function approximation, we look at the Mountain Car
domain. We expand the feature space using Fourier basis functions (Konidaris et al., 2011). All
methods are trained with an order 6 Fourier basis expansion for Mountain Car Konidaris et al.
(2011), which leads to 36 features for Mountain Car. We use a constant learning rate « = 0.01 for
all three methods. For HR-TD we initialize the regularization factor = 0.3. Each episode is run

Under review as a conference paper at ICLR 2019

until we receive an episode termination signal from the Gym wrapper, which is a maximum of 200
steps if the goal is not reached. We show the learning curves for 1000 episodes, averaged over 20
independent runs. In Figure 4, we see that HR-Q and TC perform better than Q-learning. HR-Q also
shows a more stable updates (changes value of next state less) than Q learning, and comparable to
Q-learning with the added TC loss over the course of training.

6 CONCLUSION

In this paper, we analyze the problem of over-generalization in TD learning with function approx-
imation. This analysis points to the potential pitfalls of over-generalization in TD-learning. Based
on the analysis, we propose a novel regularization scheme based on the Hadamard product. We also
show that with the right weight on the regularization, the solution of this method is the same as
that of TD. Finally, we experimentally validate the effectiveness of our algorithm on benchmarks of
varying complexity.

Under review as a conference paper at ICLR 2019

REFERENCES

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279, 2013.

D. P. Bertsekas. Temporal difference methods for general projected equations. IEEE Transactions on Automatic
Control, 56(9):2128-2139, 2011.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

L. Durugkar and P. Stone. TD Learning with Constrained Gradients. In Deep Reinforcement Learning Sympo-
sium, NIPS, 2017.

G. Konidaris, S. Osentoski, and P. S. Thomas. Value function approximation in reinforcement learning using
the fourier basis. In Proceedings of the Twenty-Fifth Conference on Artificial Intelligence, 2011.

B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik. Finite-sample analysis of proximal gradient td
algorithms. In Conference on Uncertainty in Artificial Intelligence, 2015.

H. Maei. Gradient temporal-difference learning algorithms. PhD thesis, University of Alberta, 2011.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533, 2015.

N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):123-231, 2013.

Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden, Gabriel
Barth-Maron, Hado van Hasselt, John Quan, Mel Vecerik, et al. Observe and look further: Achieving
consistent performance on atari. 2018.

D. V Prokhorov and D. C Wunsch. Adaptive critic designs. IEEE transactions on Neural Networks, 8(5):
997-1007, 1997.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In International
Conference on Machine Learning, pages 1889-1897, 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

R. Sutton, H. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvari, and E. Wiewiora. Fast gradient-descent
methods for temporal-difference learning with linear function approximation. In International Conference
on Machine Learning, pages 993—1000, 2009.

R. S Sutton and A. G Barto. Reinforcement learning: An introduction, volume 1. 1998.
R. S Sutton and A. G Barto. Reinforcement learning: An introduction, volume 1. 2017.

P. S Thomas, W. C Dabney, S. Giguere, and S. Mahadevan. Projected natural actor-critic. In Advances in neural
information processing systems, pages 2337-2345, 2013.

H. Van Hasselt, A. Guez, and D. Silver. Deep Reinforcement Learning with Double Q-Learning. 2016.

10

Under review as a conference paper at ICLR 2019

Appendices

A PROBLEM WITH CTD: DOUBLE SAMPLING PROBLEM

Double sampling comes into effect whenever we need the product of two expectations. If an expres-
sion contains 3 expectations we will need three independent samples. Below we will first write out
why residual gradients have a double sampling problem and why TD doesn’t. Then we shall show
why CTD has this problem, and might actually suffer from a triple sampling problem. Note that the
double-sampling problem only exists in stochastic MDP problems. In a Deterministic MDP, double
sampling will not be an issue.

5(s) =r(s,a,8) +~4V(s']0) — V(s]|0)

£ = SB[l
Z—g =E[5(s)(g(s) — g(s"))] ... Residual Gradient
=E[5(s)[E[g(s) — g(s)]
% =Ed(s)g(s)...TD update
oL _ 8)g(s _ <9(5),9(5) > s onstraine update
89_E 5(s)g(s) EEIE g(s')| ...Constrained TD updat

In the constrained TD update, the first term is the regular TD update, which has no double-sampling

<g(8),9(s")>

issues. However, the second term, — PRl g(s"), involves computing s’ in multi-places, and
2

will need to sample multiple times to have an unbiased estimation, and thus have the double-
sampling problems.

B EXPERIMENT DETAILS

B.1 LINEAR FUNCTION APPROXIMATION

Mountain Car:

Basis Function: Fourier Basis, order 6
Max steps per episode: 200

Number of episodes: 500

B.2 MLP-DQN

Layers: [64], Activation: ReLU, Optimizer: Adam
Replay Memory size: 50000

batch size: 32

minimum e (for exploration) : 0.01

e is decayed over 5% of the episodes

7 is decayed as n; = 77, where T is the episode number

Technique DQN DQN+TC HR-Q

Learning Rate | 102 1072 1072
n - - 0.3

Table 2: Method specific hyper parameters for Mountain Car with linear FA

11

Under review as a conference paper at ICLR 2019

B.2.1 MOUNTAIN CAR

Max steps per episode: 200, Number of episodes: 1000

Technique DQN DQN+TC HR-Q
Learning Rate | 1072 1077 1073
Target update | 500 500 500

N - - 0.03

Table 3: Method specific hyper parameters for Mountain Car

B.2.2 ACROBOT

Max steps per episode: 500, Number of episodes: 200

Technique DQN DQN+TC HR-Q
Learning Rate | 1073 1071 1072
Target update | 500 500 500

n - - 0.01

Table 4: Method specific hyper parameters for Acrobot

B.3 DQN FOR ATARI

Network: DQN architecture from Mnih et al. (2015), Optimizer: Adam

Replay Memory size: 100000, minimum € : 0.01

¢ is decayed over 5% of the frames

Training Frames: 10M game frames, fed 4 at a time to network. (2.5 M agent steps)

. _ fr] . . t . . .
7 is decayed as 7, = 77, where T'is integer value of 55, and t is the iteration number.

Technique DQN DQN+TC HR-Q
Learning Rate | 107 5 x 107° 1071
Target update | 1000 2500 1000

n - - 3x 1072

Table 5: Method specific hyper parameters for Atari

C PoLicYy EVALUATION LEARNING CURVES

5000

4000

3000

MSE
RMSPBE

2000

1000

0 20000 40000 60000 80000 100000 0 5000 10000 15000 20000 25000 30000 35000 40000
Training Iteration Iteration

(a) Neural Net (b) Linear FA

Figure 5: Comparison of policy evaluation on the Mountain Car domain.

12

