
Workshop track - ICLR 2018

MORE SYSTEMATIC THAN CLAIMED: INSIGHTS ON
THE SCAN TASKS

Markus Kliegl & Wei Xu
Institute of Deep Learning
Baidu Research
Sunnyvale, CA 94089, USA
{klieglmarkus,wei.xu}@baidu.com

ABSTRACT

We show that some standard attention-based architectures widely used in Neural
Machine Translation as well as a pointer-based variant achieve results on some of
the compositional SCAN tasks that are far superior to those reported in Lake &
Baroni (2018). We next show that there is high variance in the test accuracy across
both random initialization and training duration. We show that ensembling can be
used to take advantage of this variance and improve results but that, for many
tasks, a large gap remains between ensemble performance and the performance of
an oracularly selected single best model. Based on these insights, we suggest some
possible directions for future research, emphasizing selection and regularization
over the need for more compositional architectures.

1 INTRODUCTION

In Lake & Baroni (2018), several synthetic machine translation tasks were designed to test compo-
sitionality of sequence-to-sequence models. For example, a model that has been trained to translate
“jump“ and “walk thrice and turn around left” would be expected to also be able to translate “jump
thrice and turn around left.” The authors suggest that modern sequence-to-sequence architectures
such as (attentional) encoder-decoder architectures do not behave systematically. We show in this
paper that several widely used architectures are more systematic than claimed and that it may be
more fruitful to focus on other issues highlighted by the SCAN tasks.

2 COMPARISON OF ATTENTION MECHANISMS

We compare two attention mechanisms, Bahdanau and Luong, that have been studied in Neural
Machine Translation (Britz et al., 2017). For both of these attention mechanisms, we further compare
the standard implementation with a pointer-based alternative, in which the attention mechanism is
used to extract vectors from the input embedding rather than the encoder output sequence. The
motivation for this is that the pointers should induce a positional inductive bias on the decoding that
we would expect to generalize better on the SCAN tasks. We describe the attention mechanisms and
the pointer architecture in more detail in Appendices C and D. All models were trained for 10,000
iterations at batch size 128. We test on the various SCAN tasks described in Appendix A. The full
implementation details and hyperparameter settings are given in Appendix B.

The results are shown in Table 1. Especially noteworthy is the increase from 1.2 % to 14 % accuracy
by the Ptr-Luong architecture on the addprim jump task, though this is still far from where we
could consider the task solved. The simplified length task is a modification of the original
length task that eliminates one particularly difficult pattern from the test data that occurred in
80.2 % of the examples there and not at all in the train set. Across all models, we see the accuracy
rise dramatically upon making this fix.

The Ptr-Bahdanau architecture overall appears to behave quite similarly to its non-pointer coun-
terpart, whereas the Ptr-Luong architecture exhibits vastly different behavior from the other three
attention-based architectures. To further explore this difference, we show in Figure 1 the perfor-

1

Workshop track - ICLR 2018

Table 1: Final test accuracy in percent after training for 10,000 iterations. Shown are the mean and
standard error of the mean (SEM) across 10 trials with different random initializations. The LB
results are from Lake & Baroni (2018). LB-OB stands for the “overall-best” architecture: a 2-layer
encoder-decoder LSTM with 200 hidden units and no attention. LB-Best is the best result reported
across all the architectures they tested on the given task. *For the simplified length task
introduced in this paper, we show the accuracy achieved by our own reimplementation of LB-OB.

Task LB-Best LB-OB Bahdanau Luong Ptr-Bahdanau Ptr-Luong

addprim turn left 90.3 90.0 91.7± 2.9 89.9± 6.5 91.7± 3.6 66.0± 5.6
addprim jump 1.2 0.08 3.7± 0.5 6.6± 1.4 3.3± 0.7 14.0± 2.8
length 20.8 13.8 15.7± 1.1 15.3± 0.7 13.4± 0.8 16.8± 0.9
simplified length - 83.9* 76.7± 1.2 79.1± 2.7 69.4± 5.4 88.7± 3.8
simple p1 - ∼5 81.3± 1.8 79.3± 1.0 84.1± 2.2 57.5± 1.9
simple p2 - ∼54 98.6± 0.3 95.0± 0.6 96.0± 1.6 92.0± 0.9

1% 2% 4% 8% 16% 32% 64%
Percent of commands used for training

0%

20%

40%

60%

80%

100%

Te
st

ac
cu

ra
cy

LB-OB Luong Ptr-Luong

1 2 4 8 16 32
Number of composed commands used for training

0%

20%

40%

60%

80%

100%

Te
st

ac
cu

ra
cy

LB-OB Luong Ptr-Luong

Figure 1: Test accuracy on left: simple pX and right: addprim complex jump numN tasks.
The LB-OB results are taken from Figures 3 and 5, respectively, in Lake & Baroni (2018).

mance of the baseline, Luong, and Ptr-Luong models on two sets of tasks that measure data ef-
ficiency. In the case of identical train and test distributions (left), the Luong architecture is more
data-efficient, especially at the very low end of using only 1 % of data for training. However, in
the case of learning a new verb jump from only a few examples (right), the Ptr-Luong architecture
performs much better when there are only very few samples.

The ambiguous benefit of Ptr-Luong versus Luong as well as the qualitatively different behavior
between the Luong and Bahdanau attention types were surprising to us and we hope to explore these
phenomena further in future work.

3 VARIANCE, ENSEMBLING, AND THE POTENTIAL OF IMPROVED SELECTION

To explore the variance due to the random initialization as well as the robustness of test accuracy
to the amount of training, we trained 100 Ptr-Luong models with different random seeds on the
addprim jump task, and examined the test set predictions after every 1,000 iterations. The results
are shown in Figure 2. The test accuracy shows extremely high variance across random seeds, peaks
after around 2k iterations, and then rapidly declines.

In some sense, the presence of so many high-performing outliers is promising. If we had a good
selection criterion, a viable strategy for achieving high performance on such tasks would be to
simply train a lot of identical models and select the best one. In this case, the best-performing model
at the best time achieved a remarkable 82.3 % accuracy.

Absent a selection criterion, we can still attempt to take advantage of this variance through ensem-
bling. We try two variants, in both of which we select the answer that received the most votes. In
the first variant, we fix a training amount (such as 3k iterations), and ensemble all the models at that

2

Workshop track - ICLR 2018

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
Train iterations

0%

20%

40%

60%

80%

Te
st

ac
cu

ra
cy

ensemble cumulative ensemble

Task Mean Ens. Best

addprim turn left 55.5 87.1 100.0
addprim jump 16.9 16.2 82.3
length 17.3 19.8 40.1
simplified length 84.6 86.7 100.0
simple p1 55.4 75.3 78.1
simple p2 90.7 95.6 97.3

Figure 2: Left: Box plot showing the distribution of test accuracy in percent by amount of training
for 100 Ptr-Luong models on the addprim jump task, as well as the accuracy for two ways of
ensembling these models. Right: Mean, ensemble, and best test accuracy for 100 Ptr-Luong models.

stage of training. In the second variant, cumulative ensembling, we again fix a training duration, but
ensemble all models up to and including at that training amount (e.g. the 100 models after they were
trained for 1k, 2k, and 3k iterations). The results are shown in the left of Figure 2. Especially the
cumulative ensembling is seen to greatly stabilize the test accuracy and is outperformed only by a
handful of outliers. However, this is very particular to this task. As shown in the right of Figure 2,
non-cumulative ensembling the fully trained models leads to above average performance on all the
other tasks, with gains of around 20 % on addprim turn left and simple p1. Still, there is
much room for improvement: On the tasks with train-test distribution mismatch, ensemble perfor-
mance is far below that of oracularly selected best single models with early stopping. Indeed, two
of the tasks were solved perfectly by such models.

4 DISCUSSION

Unsurprisingly, our findings indicate that architectural inductive bias can indeed have a large impact.
It could be interesting to take this further and train potentially even more compositional architectures
such as Neural Programmer Interpreters (Reed & De Freitas, 2016; Cai et al., 2017). However,
without extra supervision like execution traces, it seems unlikely that even these models would learn
rules perfectly the way a human programmer might.

Instead, we would argue that the architectures studied here are in many cases already more than
sufficiently compositional. When training many models with different random initializations, we
observe that a number of them already achieve very good results, sometimes even solving the tasks
perfectly. The problem is that (a) this does not happen consistently, and (b) even when it does,
we do not have a non-oracular means of knowing it. In that sense, rather than pursuing more sys-
tematic architectures, it may be more fruitful to research how to make standard architectures more
systematically achieve their full potential through selection or regularization:

• Selection: Traditional early-stopping and hyperparameter tuning methods based on
train/dev/test splits do not apply to many of the tasks due to the train and test distribution
mismatch. What can we substitute?

• Regularization: Can we regularize the train loss or the gradient descent procedure itself to
more consistently arrive at the more compositional models that generalize better? Can we
stabilize the test accuracy and avoid overfitting?

Overall, although the SCAN tasks are synthetic and small, we think they constitute a very useful
initial test bed for new research ideas that aim to improve selection in train and test distribution
mismatch scenarios or to improve generalization through encouraging pattern learning over memo-
rization.

3

Workshop track - ICLR 2018

ACKNOWLEDGMENTS

We thank Yuanpeng Li and Jianyu Wang for helpful discussions.

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. International Conference on Learning Representations, 2015.

Denny Britz, Anna Goldie, Thang Luong, and Quoc Le. Massive exploration of neural machine
translation architectures. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen, Denmark, September 7-11, 2017, pp. 1442–
1451, 2017.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize
via recursion. International Conference on Learning Representations, 2017.

Brenden Lake and Marco Baroni. Still not systematic after all these years: On the compositional
skills of sequence-to-sequence recurrent networks. International Conference on Learning Rep-
resentations, 2018. URL https://openreview.net/forum?id=H18WqugAb. rejected:
invited to workshop track.

Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. Neural machine translation (seq2seq) tutorial.
https://github.com/tensorflow/nmt, 2017.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pp. 1412–
1421, 2015. URL http://aclweb.org/anthology/D/D15/D15-1166.pdf.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2016, Austin, Texas, November 1-5, 2016, pp. 2383–
2392, 2016.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. International Conference on
Learning Representations, 2016.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, pp. 2692–2700, 2015.

Shuohang Wang and Jing Jiang. Machine comprehension using Match-LSTM and answer pointer.
International Conference on Learning Representations, 2016.

A THE SCAN TASKS

The SCAN tasks are synthetic translation tasks, where input commands from a finite language gen-
erated by a simple grammar are to be translated into output action sequences. This is best illustrated
by some examples:

jump thrice =⇒ JUMP JUMP JUMP
turn left after walk twice =⇒ WALK WALK LTURN
run around right and turn left thrice =⇒ RTURN RUN RTURN RUN RTURN RUN

RTURN RUN LTURN LTURN LTURN

For a full description of the SCAN language, we refer to Figures 6 and 7 in the appendix of Lake &
Baroni (2018). For our purposes, it is most important to note that the verbs jump, look, run,
walk behave in the same way, as do the directions left, right.

This small language is useful for testing whether models learn patterns or simply memorize data.
Thus, if a model has learned the translation rule X thrice =⇒ [X] [X] [X] and it has

4

https://openreview.net/forum?id=H18WqugAb
http://aclweb.org/anthology/D/D15/D15-1166.pdf

Workshop track - ICLR 2018

learned jump =⇒ JUMP, it should be able to compose this knowledge to correctly predict jump
thrice =⇒ JUMP JUMP JUMP.

We provide here a brief description of the tasks. Except for one task described below, we used
the exact datasets made available at https://github.com/brendenlake/SCAN. We also
follow the naming conventions for the tasks used in the website.

• addprim turn left: Among commands involving turn left, only the primitive
example turn left => LTURN is included in the training data. (Note that left
may still occur in combination with verbs other than turn. For example, walk left
thrice is still in the training data.) The test set consists of all the composite examples
involving turn left, such as walk around right and turn left twice .

• addprim jump: Among commands involving jump, only the primitive example jump
=> JUMP is included in the training data. The test set consists of the remaining commands
involving jump.
• addprim jump complex numN: Like addprim jump, but N randomly selected

composite commands involving jump are additionally included in the train set.
• length: Commands are split between train and test according to whether the output se-

quence has ≤ or > 22 tokens, respectively.
• simplified length: The train set is the same as for length, but we use a subset of

the test data described below.
• simple pX: Only X percent of the full dataset is used for training, the rest for testing.

The task simplified length is not part of the original paper. We created it ourselves as
we found that the pattern [walk | jump | run | look] around [left | right]
thrice was completely missing from the training data of the length task but occurred in 80.2 %
of the test commands. To test whether, aside from this particular pattern, models learn to properly
generalize from short to long output sequences, we kept the same train set, but removed those 80.2 %
of samples from the test set.

B MODEL DETAILS

We use the code base of Luong et al. (2017), which implements several state-of-the-art sequence-
to-sequence models for neural machine translation (NMT) in TensorFlow. The table below lists
the hyperparameter settings we used. (For hyperparameters not listed below, we used the default
setting.)

These choices were made based on some preliminary experiments. Some explanation:

Table 2: Hyperparameters used for the experiments.

Parameter Values

num layers 2
num units 768
unit type lstm
encoder type bi
attention architecture standard
attention scaled luong | bahdanau
pass hidden state false
optimizer adam
learning rate 1e-3
dropout 0.5
num train steps 10000
batch size 128
tgt max len infer 50

5

https://github.com/brendenlake/SCAN

Workshop track - ICLR 2018

• The chosen settings for pass hidden state, encoder type, and
attention architecture were found to matter a lot. Our selected settings
were far superior to other options.
• Among attention types, luong was found to behave similarly to scaled luong, and
normed bahdanau was found to behave similarly to bahdanau. So we picked only
one representative of each type for our experiments.
• We use the same optimization and dropout settings as Lake & Baroni (2018), but we do

not use teacher forcing and instead of 100,000 train steps of batch size 1, we use 10,000
train steps of batch size 128. The number 10,000 was a loose upper bound we observed for
various architectures to converge on all tasks in preliminary experiments.
• Due to computational constraints and the difficulty of creating good development sets for

these tasks, we did not tune the numerical parameters like num layers and num units.
We just picked reasonable values based on a few preliminary experiments. Some further
improvements could likely be obtained by tuning these, but we do not expect this to change
our qualitative conclusions.
• Setting tgt max len infer to 50 is just a technical fix. Without this, the code tries to

infer a maximum target sequence length based on the length of the source sentence. For
the SCAN tasks, this heuristic comes up with values that are too small.

C ATTENTION TYPES

Following Britz et al. (2017), we consider two attention mechanisms. In the Bahdanau variant (Bah-
danau et al., 2015), the unnormalized attention score between an attention key hj (an encoder output)
and an attention query si (a decoder state) is calculated as:

âij = 〈v, tanh(W1hj +W2si)〉 . (1)

where v,W1,W2 are trainable parameters. In the Luong variant (Luong et al., 2015), we instead use

âij = 〈W1hj ,W2si〉 . (2)

The context vector ci is obtained by first normalizing the attention scores across j, and then extract-
ing a weighted average from the values sequence:

ci =
∑
j

aijVj , (3)

aij = softmax
j

(âij) . (4)

In the case of regular attention, the values vectors are again the encoder output states, Vj = hj . In
the pointer variant, the values vectors are the input embedding vectors.

D POINTER NETWORKS

Pointer networks were first introduced in Vinyals et al. (2015) to solve sequence-to-sequence prob-
lems where the output vocabulary is unknown, but each output token occurs in the input sequence.
The idea is to use attention to select which of the input tokens to output at each time step. Originally
applied to more combinatorial problems like the Traveling Salesman Problem, variations of this
technique have since also proved useful on tasks like the Stanford Question Answering (SQuAD)
dataset (Rajpurkar et al., 2016; Wang & Jiang, 2016).

In our case, the output tokens do not correspond directly to the input tokens, but there is a fairly
simple mapping between them. To still be able to take advantage of the inductive bias of pointer
networks, we modify the usual attention mechanism to select values from the input embedding. The
decoder then uses these position-independent input embeddings to predict an output token.

The motivation for using pointers is as follows: If the model has learned the mapping X =⇒ [X],
then a pointer-based decoding of a pattern like X thrice would need only to point to the first
input position three times during decoding, independent of which particular token X is. Thus, using

6

Workshop track - ICLR 2018

pointers should help disentangle learning of the input to output token mapping from learning how
to decoding particular sentence patterns. Intuitively, we would expect this inductive bias to improve
data efficiency and generalization.

We implemented this in the code base of Luong et al. (2017) by modifying
attention mechanism. values to point to the input embedding rather than the encoder
outputs.

E EXAMPLES OF ENSEMBLE PREDICTIONS

We show here some examples of predictions by the cumulative ensemble of 1000 Ptr-Luong models
on the addprim jump task.

The following are some examples of inputs on which the ensemble makes correct predictions, sorted
by number of votes.

votes input

917 jump and turn opposite right twice
916 jump and turn left twice
915 jump and turn opposite left twice

...
...

908 turn opposite right twice after jump
...

...
680 jump opposite left after jump

...
...

36 jump opposite left thrice after jump around right thrice

In contrast, here are some examples of incorrect predictions, sorted by number of votes.

votes input prediction

1000 jump and jump twice JUMP
1000 jump thrice after jump JUMP
1000 jump and jump thrice JUMP

999 jump after jump JUMP
999 jump twice after jump JUMP

...
...

935 walk and jump thrice WALK
932 run and jump thrice RUN
932 jump after walk WALK

...
...

31 jump opposite right thrice after jump around right thrice RTURN repeated 18 times

One intuition for why ensembling could be so effective is that, when many models agree, they
do so because they have learned the same correct underlying rule, whereas when they disagree,
it is for more random reasons. As is evident from the examples above, that is not the case here.
The ensemble is also often systematically incorrect. For example, all 1,000 models agreed that the
command jump and jump twice should be mapped to simply JUMP. This pretty much rules
out a semi-supervised approach, at least in the naive form where we try to use the ensemble’s most
confident test set predictions to augment the train set.

7

	Introduction
	Comparison of attention mechanisms
	Variance, ensembling, and the potential of improved selection
	Discussion
	The SCAN tasks
	Model details
	Attention types
	Pointer networks
	Examples of ensemble predictions

