
Efficient Computation of Quantized Neural Networks
by {−1,+1} Encoding Decomposition

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep neural networks require extensive computing resources, and can not be ef-1

ficiently applied to embedded devices such as mobile phones, which seriously2

limits their applicability. To address this problem, we propose a novel encoding3

scheme by using {−1,+1} to decompose quantized neural networks (QNNs) into4

multi-branch binary networks, which can be efficiently implemented by bitwise5

operations (xnor and bitcount) to achieve model compression, computational ac-6

celeration and resource saving. Our method can achieve at most ∼ 59× speedup7

and ∼ 32× memory saving over its full-precision counterparts. Therefore, users8

can easily achieve different encoding precisions arbitrarily according to their re-9

quirements and hardware resources. Our mechanism is very suitable for the use10

of FPGA and ASIC in terms of data storage and computation, which provides a11

feasible idea for smart chips. We validate the effectiveness of our method on both12

large-scale image classification (e.g., ImageNet) and object detection tasks.13

1 Introduction14

Deep Neural Networks (DNNs) have been successfully applied in many fields, especially in image15

classification, object detection and natural language processing. Because of numerous parameters16

and complex model architectures, huge storage space and considerable power consumption are need-17

ed. However, for mobile phones and embedded platforms, whose resources are limited, it’s hard to18

achieve satisfactory performance for industrial applications. With the rapid development of DNNs,19

more and more computing resources are needed, and the requirements for hardware are becoming20

higher and higher.21

In order to improve the energy efficiency of hardware, achieve model compression or compu-22

tational acceleration, many solutions have been proposed, such as network sparse and pruning23

[7, 22, 12, 25, 21], low-rank approximation [5, 11, 23], architecture design [20, 10, 8, 19, 16],24

model quantization [1, 13, 3, 9, 18, 14], and so on. [17, 6, 28] constrain their weights to {−1,+1}25

or {−1, 0, 1} and achieve limited acceleration by using simple accumulation instead of complicated26

multiplication-accumulations. In particular, [2, 18, 4, 27, 24] quantize activation values and weights27

to bits and use bitwise logic operations to achieve extreme acceleration ratio in inference process but28

they are suffering from significant performance degradation. However, most models are proposed29

for fixed precision, and can not extend to other precision models. They easily fall into local optimal30

solutions and face slow convergence speed in training process. In order to bridge the gap between31

low-bit and full-precision and be applied to many cases, we propose a novel encoding scheme of32

using {−1,+1} to easily decompose trained QNNs into multi-branch binary networks. Therefore,33

the inference process can be efficiently implemented by bitwise operations to achieve model com-34

pression, computational acceleration and resource saving.35

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.

2 Model Decomposition36

As the basic computation in most neural network layers, matrix multiplication costs lots of resources37

and also is the most time consuming operation. Modern computers store and process data in bina-38

ry format, thus non-negative integers can be directly encoded by {0, 1}. We propose a novel de-39

composition method to accelerate matrix multiplication as follows: Let x = [x1, x2, ..., xN]T and40

w = [w1,w2, ...,wN]T be two vectors of non-negative integers, where xi,wi ∈ {0, 1, 2, ...} for41

i=1, 2, ..., N . The dot product of those two vectors can be represented as follows:42

xT · w = [x1, x2, ..., xN][w1,w2, ...,wN]T =

N∑
n=1

xn · wn. (1)

All of the above operations consist of N multiplications and (N−1) additions. Based on the above43

encoding scheme, the vector x can be encoded to binary form using M bits, i.e.,44

x=[
︷ ︸︸ ︷
x1M x1M−1...x

1
1,
︷ ︸︸ ︷
x2M x2M−1...x

2
1, ...,

︷ ︸︸ ︷
xNM xNM−1...x

N
1]T . (2)

Then we convert the right-hand side of (2) into the following form:45 
x1M x2M · · · xNM

x1M−1 x2M−1 · · · xNM−1

...
... · · ·

...
x11 x21 · · · xN1

 =


xM

xM−1

...
x1

 , (3)

where xj=
∑M

m=1 2
m−1 · xjm, xjm ∈ {0, 1}, xi=[x1i , x

2
i , ..., x

N
i].46

In such an encoding scheme, the number of represented states is not greater than 2M . In addition,47

we encode another vector w with K-bit numbers in the same way. Therefore, the dot product of the48

two vectors can be computed as follows:49

xT · w =
N∑

n=1

xn · wn =
N∑

n=1

(
M∑

m=1

2m−1 · xnm

)
·

(
K∑

k=1

2k−1 · wn
k

)
(4)

=
M∑

m=1

K∑
k=1

2m+k−2 · xm · wT
k . (5)

From the above formulas, the dot product is decomposed into M×K sub-operations, in which each50

element is 0 or 1. Because of the restriction of encoding and without using the sign bit, the above51

representation can only be used to encode non-negative integers. However, it’s impossible to limit52

the weights and the values of the activation functions to non-negative integers. In order to encode53

both positive and negative integers, we propose a novel encoding scheme, which uses {-1, +1} as54

the basic elements rather than {0, 1}. Then we can use multiple bitwise operations (i.e., xnor and55

bitcount) to effectively achieve the above vector multiplications. Our operation mechanism can be56

suitable for all vector/matrix multiplications. Besides fully connected layers, our mechanism is also57

suitable for convolution and deconvolution layers in deep neural networks.58

3 M-bit Encoding Functions59

As an important part in neural networks, activation function can enhance the nonlinear characteri-60

zation of the networks. In our proposed model decomposition method, encoding function plays a61

critical role and can encode input data to multi bits (-1 or +1). Those numbers represent the encod-62

ing of input data. Therefore, the dot product can be computed by the formula (6). Without other63

judgment and mapping calculation, we use trigonometric functions as the basic encoding functions.64

In the end, we use the sign function to hard divide to -1 or +1. The mathematical expression can be65

formulated as follows:66

MBitEncoder(x) =

{
φm
M (x) : sign(−sin(2

M−1
2m π · x)), m ∈ {1, 2, ...,M−1},

φM
M (x) : sign(sin(2

M−1
2M

π · x)), otherwise,
(6)

where φM
M (x) is the encoding function of the highest bit of MBitEncoder (i.e., m = M). The67

periodicity is obviously different from others because it needs to denote more states.68

2

4 Experiments69

In this section, we use the same network architecture described in [17, 2] for CIFAR-10 and choose70

ResNet-18 as the basic network for ImageNet. It is very hard to train on large-scale training sets (e.g.,71

ImageNet), and thus parameter initialization is particularly important. In particular, the well-trained72

full-precision model parameters activated by ReLU can be directly used as initialization parameters73

for our 8-bit quantized network. After fine-tuning dozens of epochs, 8-bit quantized networks can be74

well-trained. Similarly, we use the 8-bit model parameters as the initialization parameters to train 7-75

bit quantized networks, and so on. We use the loss computed by quantized parameters to update full76

precision parameters described as the straight-through estimator [26]. Table 1 lists the performance77

(e.g., accuracy, speedup ratio, memory saving ratio) of our method and several typical models men-78

tioned above. The accuracies were achieved after dozens of times fine-tuning. If continue training79

those networks, we can reach slightly better performance. We also use the trained ResNet-18 with80

the Single Shot MultiBox Detector (SSD) framework [15] to validate object detection tasks. We81

also use the trained model parameters in ImageNet classification to initialize SSD, and report the82

experimental results in Table 1 after dozens of times fine-tuning.83

We analyze the theoretical performance of our encoding scheme. The theoretical speedup and model84

compression ratios are given in the following table. Thus, our method can obtain at most ∼ 59×85

speedup and ∼32× memory saving over its full-precision counterparts. It can achieve ∼59/MK×86

speedup and ∼32/K× memory saving by constraining activation values to M -bit and the values of87

weights to K-bit, where M,K∈{1, 2, ..., 8}. In fact, our method can provide 64 available encoding88

choices, and hence our encoded network with different encoding precisions has different calculation89

speed, memory requirements and experimental precisions. Here, we use 64-bit binary operation90

in one clock cycle. If those decompositions are implemented in the FPGA or ASIC platform, the91

speedup ratios can be much higher.92

Table 1: Results of classification and object detection.
Method CIFAR-10 ImageNet ImageNet VOC Speedup MemorySave

(Top-1) (Top-5) (mAP)
BWN [17] 90.10% 60.80% 83.00% - ∼2x ∼32x
BNN [2] 88.60% 42.20% 67.10% - ∼64x ∼32x
TWN [6] 92.56% 61.80% 84.20% - ∼2x ∼16x

XNOR-Net [18] - 51.20% 73.20% - ∼58x ∼32x
ABC-Net [14] - 65.00% 85.90% - - ∼6.4x
Full-Precision 91.40% 68.60% 88.70% 0.6392 1x 1x

Encoded activations and weights
M=K=1 90.39% 47.10% 71.70% - ∼59.00x ∼32x
M=K=2 91.06% 56.30% 79.48% - ∼14.75x ∼16x
M=K=3 91.27% 58.69% 81.84% - ∼6.56x ∼10.7x
M=K=4 91.15% 59.57% 82.35% - ∼3.69x ∼8x
M=K=5 90.92% 65.09% 86.42% 0.5423 ∼2.36x ∼6.4x
M=K=6 91.01% 67.04% 87.69% 0.6131 ∼1.64x ∼5.3x
M=K=7 90.20% 68.37% 88.47% - ∼1.20x ∼4.6x
M=K=8 90.43% 68.63% 88.70% 0.6351 ∼0.92x ∼4x

5 Conclusions93

In this paper, we proposed a novel encoding scheme of using {-1, +1} to decompose QNNs into94

multi-branch binary networks, in which we used bitwise operations (xnor and bitcount) to achieve95

model compression, computational acceleration and resource saving. In particular, we can use the96

high-bit model parameters to initialize a low-bit model and achieve good results in various appli-97

cations. Thus, users can easily achieve different encoding precisions arbitrarily according to their98

requirements (e.g., accuracy and speed) and hardware resources (e.g., memory). This special mech-99

anism of data storage and calculation can yield great performance in FPGA and ASIC, and thus our100

mechanism is a feasible idea for smart chips. Future works will focus on improving the hardware101

implementation and chip technology, and exploring some ways to automatically select proper bits102

for various network architectures (e.g., VGG and ResNet).103

3

References104

[1] Matthieu Courbariaux, Yoshua Bengio, and Jean Pierre David. Training deep neural networks105

with low precision multiplications. Computer Science, 2014.106

[2] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bina-107

rized neural networks: Training deep neural networks with weights and activations constrained108

to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.109

[3] Lin Darryl, Talathi Sachin, and Annapureddy Sreekanth. Fixed point quantization of deep110

convolutional networks. Computer Science, 2015.111

[4] Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, and Guoqi Li. Gated xnor networks: deep neural112

networks with ternary weights and activations under a unified discretization framework. arXiv113

preprint arXiv:1705.09283, 2017.114

[5] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting115

linear structure within convolutional networks for efficient evaluation. In NIPS, pages 1269–116

1277, 2014.117

[6] Li Fengfu, Zhang Bo, and Liu Bin. Ternary weight networks. In NIPS Workshop on EMDNN,118

2016.119

[7] Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal120

brain surgeon. In NIPS, pages 164–171, 1993.121

[8] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias122

Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural123

networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.124

[9] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quan-125

tized neural networks: Training neural networks with low precision weights and activations.126

Journal of Machine Learning Research, 18:187–1, 2017.127

[10] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and128

Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb129

model size. arXiv preprint arXiv:1602.07360, 2016.130

[11] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural131

networks with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.132

[12] Michael James, Jack Lindsey, and Ilya Sharapov. Adaptive weight sparsity for training deep133

neural networks. In ICLR, 2018.134

[13] Wu Jiaxiang, Cong Leng, Wang Yuhang, Hu Qinghao, and Cheng Jian. Quantized convolu-135

tional neural networks for mobile devices. In CVPR, pages 4820–4828, 2016.136

[14] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network.137

In NIPS, pages 345–353, 2017.138

[15] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,139

and Alexander C Berg. SSD: Single shot multibox detector. In ECCV, pages 21–37. Springer,140

2016.141

[16] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie, Jianxin Wu, and Weiyao Lin.142

ThiNet: Pruning cnn filters for a thinner net. IEEE Transactions on Pattern Analysis and143

Machine Intelligence, 2018.144

[17] Courbariaux Matthieu, Bengio Yoshua, and David Jean Pierre. BinaryConnect: training deep145

neural networks with binary weights during propagations. In NIPS, pages 3123–3131, 2015.146

[18] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: Im-147

agenet classification using binary convolutional neural networks. In ECCV, pages 525–542.148

Springer, 2016.149

4

[19] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.150

Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, pages 4510–4520, 2018.151

[20] Ioffe Sergey and Szegedy Christian. Batch normalization: accelerating deep network training152

by reducing internal covariate shift. In ICML, pages 448–456, 2015.153

[21] Han Song, Pool Jeff, Tran John, and Dally William J. Learning both weights and connections154

for efficient neural networks. In NIPS, pages 1135–1143, 2015.155

[22] Srinivas Suraj and Babu R. Venkatesh. Data-free parameter pruning for deep neural networks.156

Computer Science, pages 2830–2838, 2015.157

[23] Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural networks with158

low-rank regularization. arXiv preprint arXiv:1511.06067, 2015.159

[24] Diwen Wan, Fumin Shen, Li Liu, Fan Zhu, Jie Qin, Ling Shao, and Heng Tao Shen. TBN:160

Convolutional neural network with ternary inputs and binary weights. In ECCV, pages 315–161

332, 2018.162

[25] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity163

in deep neural networks. In NIPS, pages 2074–2082, 2016.164

[26] Bengio Yoshua, Leonard Nicholas, and Courville Aaron. Estimating or propagating gradients165

through stochastic neurons for conditional computation. Computer Science, 2013.166

[27] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. DoReFa-167

Net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv168

preprint arXiv:1606.06160, 2016.169

[28] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. In170

ICLR, 2017.171

5

