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Abstract

Deep neural networks require extensive computing resources, and can not be ef-1

ficiently applied to embedded devices such as mobile phones, which seriously2

limits their applicability. To address this problem, we propose a novel encoding3

scheme by using {−1,+1} to decompose quantized neural networks (QNNs) into4

multi-branch binary networks, which can be efficiently implemented by bitwise5

operations (xnor and bitcount) to achieve model compression, computational ac-6

celeration and resource saving. Our method can achieve at most ∼ 59× speedup7

and ∼ 32× memory saving over its full-precision counterparts. Therefore, users8

can easily achieve different encoding precisions arbitrarily according to their re-9

quirements and hardware resources. Our mechanism is very suitable for the use10

of FPGA and ASIC in terms of data storage and computation, which provides a11

feasible idea for smart chips. We validate the effectiveness of our method on both12

large-scale image classification (e.g., ImageNet) and object detection tasks.13

1 Introduction14

Deep Neural Networks (DNNs) have been successfully applied in many fields, especially in image15

classification, object detection and natural language processing. Because of numerous parameters16

and complex model architectures, huge storage space and considerable power consumption are need-17

ed. However, for mobile phones and embedded platforms, whose resources are limited, it’s hard to18

achieve satisfactory performance for industrial applications. With the rapid development of DNNs,19

more and more computing resources are needed, and the requirements for hardware are becoming20

higher and higher.21

In order to improve the energy efficiency of hardware, achieve model compression or compu-22

tational acceleration, many solutions have been proposed, such as network sparse and pruning23

[7, 22, 12, 25, 21], low-rank approximation [5, 11, 23], architecture design [20, 10, 8, 19, 16],24

model quantization [1, 13, 3, 9, 18, 14], and so on. [17, 6, 28] constrain their weights to {−1,+1}25

or {−1, 0, 1} and achieve limited acceleration by using simple accumulation instead of complicated26

multiplication-accumulations. In particular, [2, 18, 4, 27, 24] quantize activation values and weights27

to bits and use bitwise logic operations to achieve extreme acceleration ratio in inference process but28

they are suffering from significant performance degradation. However, most models are proposed29

for fixed precision, and can not extend to other precision models. They easily fall into local optimal30

solutions and face slow convergence speed in training process. In order to bridge the gap between31

low-bit and full-precision and be applied to many cases, we propose a novel encoding scheme of32

using {−1,+1} to easily decompose trained QNNs into multi-branch binary networks. Therefore,33

the inference process can be efficiently implemented by bitwise operations to achieve model com-34

pression, computational acceleration and resource saving.35
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2 Model Decomposition36

As the basic computation in most neural network layers, matrix multiplication costs lots of resources37

and also is the most time consuming operation. Modern computers store and process data in bina-38

ry format, thus non-negative integers can be directly encoded by {0, 1}. We propose a novel de-39

composition method to accelerate matrix multiplication as follows: Let x = [x1, x2, ..., xN ]T and40

w = [w1,w2, ...,wN ]T be two vectors of non-negative integers, where xi,wi ∈ {0, 1, 2, ...} for41

i=1, 2, ..., N . The dot product of those two vectors can be represented as follows:42

xT · w = [x1, x2, ..., xN ][w1,w2, ...,wN ]T =

N∑
n=1

xn · wn. (1)

All of the above operations consist of N multiplications and (N−1) additions. Based on the above43

encoding scheme, the vector x can be encoded to binary form using M bits, i.e.,44

x=[
︷ ︸︸ ︷
x1M x1M−1...x

1
1,
︷ ︸︸ ︷
x2M x2M−1...x

2
1, ...,

︷ ︸︸ ︷
xNM xNM−1...x

N
1 ]T . (2)

Then we convert the right-hand side of (2) into the following form:45 
x1M x2M · · · xNM

x1M−1 x2M−1 · · · xNM−1

...
... · · ·

...
x11 x21 · · · xN1

 =


xM

xM−1

...
x1

 , (3)

where xj=
∑M

m=1 2
m−1 · xjm, xjm ∈ {0, 1}, xi=[x1i , x

2
i , ..., x

N
i ].46

In such an encoding scheme, the number of represented states is not greater than 2M . In addition,47

we encode another vector w with K-bit numbers in the same way. Therefore, the dot product of the48

two vectors can be computed as follows:49

xT · w =
N∑

n=1

xn · wn =
N∑

n=1

(
M∑

m=1

2m−1 · xnm

)
·

(
K∑

k=1

2k−1 · wn
k

)
(4)

=
M∑

m=1

K∑
k=1

2m+k−2 · xm · wT
k . (5)

From the above formulas, the dot product is decomposed into M×K sub-operations, in which each50

element is 0 or 1. Because of the restriction of encoding and without using the sign bit, the above51

representation can only be used to encode non-negative integers. However, it’s impossible to limit52

the weights and the values of the activation functions to non-negative integers. In order to encode53

both positive and negative integers, we propose a novel encoding scheme, which uses {-1, +1} as54

the basic elements rather than {0, 1}. Then we can use multiple bitwise operations (i.e., xnor and55

bitcount) to effectively achieve the above vector multiplications. Our operation mechanism can be56

suitable for all vector/matrix multiplications. Besides fully connected layers, our mechanism is also57

suitable for convolution and deconvolution layers in deep neural networks.58

3 M-bit Encoding Functions59

As an important part in neural networks, activation function can enhance the nonlinear characteri-60

zation of the networks. In our proposed model decomposition method, encoding function plays a61

critical role and can encode input data to multi bits (-1 or +1). Those numbers represent the encod-62

ing of input data. Therefore, the dot product can be computed by the formula (6). Without other63

judgment and mapping calculation, we use trigonometric functions as the basic encoding functions.64

In the end, we use the sign function to hard divide to -1 or +1. The mathematical expression can be65

formulated as follows:66

MBitEncoder(x) =

{
φm
M (x) : sign(−sin( 2

M−1
2m π · x)), m ∈ {1, 2, ...,M−1},

φM
M (x) : sign(sin( 2

M−1
2M

π · x)), otherwise,
(6)

where φM
M (x) is the encoding function of the highest bit of MBitEncoder (i.e., m = M ). The67

periodicity is obviously different from others because it needs to denote more states.68
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4 Experiments69

In this section, we use the same network architecture described in [17, 2] for CIFAR-10 and choose70

ResNet-18 as the basic network for ImageNet. It is very hard to train on large-scale training sets (e.g.,71

ImageNet), and thus parameter initialization is particularly important. In particular, the well-trained72

full-precision model parameters activated by ReLU can be directly used as initialization parameters73

for our 8-bit quantized network. After fine-tuning dozens of epochs, 8-bit quantized networks can be74

well-trained. Similarly, we use the 8-bit model parameters as the initialization parameters to train 7-75

bit quantized networks, and so on. We use the loss computed by quantized parameters to update full76

precision parameters described as the straight-through estimator [26]. Table 1 lists the performance77

(e.g., accuracy, speedup ratio, memory saving ratio) of our method and several typical models men-78

tioned above. The accuracies were achieved after dozens of times fine-tuning. If continue training79

those networks, we can reach slightly better performance. We also use the trained ResNet-18 with80

the Single Shot MultiBox Detector (SSD) framework [15] to validate object detection tasks. We81

also use the trained model parameters in ImageNet classification to initialize SSD, and report the82

experimental results in Table 1 after dozens of times fine-tuning.83

We analyze the theoretical performance of our encoding scheme. The theoretical speedup and model84

compression ratios are given in the following table. Thus, our method can obtain at most ∼ 59×85

speedup and ∼32× memory saving over its full-precision counterparts. It can achieve ∼59/MK×86

speedup and ∼32/K× memory saving by constraining activation values to M -bit and the values of87

weights to K-bit, where M,K∈{1, 2, ..., 8}. In fact, our method can provide 64 available encoding88

choices, and hence our encoded network with different encoding precisions has different calculation89

speed, memory requirements and experimental precisions. Here, we use 64-bit binary operation90

in one clock cycle. If those decompositions are implemented in the FPGA or ASIC platform, the91

speedup ratios can be much higher.92

Table 1: Results of classification and object detection.
Method CIFAR-10 ImageNet ImageNet VOC Speedup MemorySave

(Top-1) (Top-5) (mAP)
BWN [17] 90.10% 60.80% 83.00% - ∼2x ∼32x
BNN [2] 88.60% 42.20% 67.10% - ∼64x ∼32x
TWN [6] 92.56% 61.80% 84.20% - ∼2x ∼16x

XNOR-Net [18] - 51.20% 73.20% - ∼58x ∼32x
ABC-Net [14] - 65.00% 85.90% - - ∼6.4x
Full-Precision 91.40% 68.60% 88.70% 0.6392 1x 1x

Encoded activations and weights
M=K=1 90.39% 47.10% 71.70% - ∼59.00x ∼32x
M=K=2 91.06% 56.30% 79.48% - ∼14.75x ∼16x
M=K=3 91.27% 58.69% 81.84% - ∼6.56x ∼10.7x
M=K=4 91.15% 59.57% 82.35% - ∼3.69x ∼8x
M=K=5 90.92% 65.09% 86.42% 0.5423 ∼2.36x ∼6.4x
M=K=6 91.01% 67.04% 87.69% 0.6131 ∼1.64x ∼5.3x
M=K=7 90.20% 68.37% 88.47% - ∼1.20x ∼4.6x
M=K=8 90.43% 68.63% 88.70% 0.6351 ∼0.92x ∼4x

5 Conclusions93

In this paper, we proposed a novel encoding scheme of using {-1, +1} to decompose QNNs into94

multi-branch binary networks, in which we used bitwise operations (xnor and bitcount) to achieve95

model compression, computational acceleration and resource saving. In particular, we can use the96

high-bit model parameters to initialize a low-bit model and achieve good results in various appli-97

cations. Thus, users can easily achieve different encoding precisions arbitrarily according to their98

requirements (e.g., accuracy and speed) and hardware resources (e.g., memory). This special mech-99

anism of data storage and calculation can yield great performance in FPGA and ASIC, and thus our100

mechanism is a feasible idea for smart chips. Future works will focus on improving the hardware101

implementation and chip technology, and exploring some ways to automatically select proper bits102

for various network architectures (e.g., VGG and ResNet).103
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