
Under review as a conference paper at ICLR 2018

ANTICIPATORY ASYNCHRONOUS ADVANTAGE
ACTOR-CRITIC (A4C): THE POWER OF ANTICIPA-
TION IN DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose to extend existing deep reinforcement learning (Deep RL) algorithms
by allowing them to additionally choose sequences of actions as a part of their
policy. This modification forces the network to anticipate the reward of action
sequences, which, as we show, improves the exploration leading to better conver-
gence. Our proposal is simple, flexible, and can be easily incorporated into any
Deep RL framework. We show the power of our scheme by consistently outper-
forming the state-of-the-art GA3C algorithm on several popular Atari Games.

1 INTRODUCTION

Basic reinforcement learning has an environment and an agent. The agent interacts with the envi-
ronment by taking some actions and observing some states and rewards. At each time step t, the
agent observes a state st and performs an action at based on a policy π(at|st; θ). In return to the
action, the environment provides a reward rt and the next state st+1. This process goes on until the
agent reaches a terminal state. The learning goal is to find a policy that gives the best overall reward.
The main challenges here are that the agent does not have information about the reward and the next
state until the action is performed. Also, a certain action may yield low instant reward, but it may
pave the way for a good reward in the future.

Deep Reinforcement Learning (Mnih et al., 2016)has taken the success of deep supervised learning
a step further. Prior work on reinforcement learning suffered from myopic handcrafted designs. The
introduction of Deep Q-Learning Networks (DQN) was the major advancement in showing that
Deep Neural Networks (DNNs) can approximate value and policy functions. By storing the agent’s
data in an experience replay memory, the data can be batched (Riedmiller; Schulman et al., 2015) or
randomly sampled (Mnih et al., 2013; 2015; Van Hasselt et al., 2016) from different time-steps and
learning the deep network becomes a standard supervised learning task with several input-output
pairs to train the parameters. As a consequence, several video games could be played by directly
observing raw image pixels (Bellemare et al., 2016) and demonstrating super-human performance
on the ancient board game Go (Silver et al., 2016).

In order to solve the problem of heavy computational requirements in training DQN, several follow-
ups have emerged leading to useful changes in training formulations and DNN architectures. Meth-
ods that increase parallelism while decreasing the computational cost and memory footprint were
also proposed (Nair et al., 2015; Mnih et al., 2016), which showed impressive performance.

A breakthrough was shown in (Mnih et al., 2016), where the authors propose a novel lightweight
and parallel method called Asynchronous Advantage Actor-Critic (A3C). A3C achieves the state-
of-the-art results on many gaming tasks. When the proper learning rate is used, A3C learns to play
an Atari game from raw screen inputs more quickly and efficiently than previous methods. In a
remarkable followup to A3C, (Babaeizadeh et al., 2016) proposed a careful implementation of A3C
on GPUs(called GA3C) and showed the A3C can accelerated significantly over GPUs, leading to
the best publicly available Deep RL implementation, known till date.

Slow Progress with Deep RL: However, even for very simple Atari games, existing methods take
several hours to reach good performance. There is still a major fundamental barrier in the current
Deep RL algorithms, which is slow progress due to poor exploration. During the early phases,

1

Under review as a conference paper at ICLR 2018

when the network is just initialized, the policy is nearly random. Thus, the initial experience are
primarily several random sequences of actions with very low rewards. Once, we observe sequences
which gives high rewards, the network starts to observe actions and associate them with positive
rewards and starts learning. Unfortunately, finding a good sequence via network exploration can
take a significantly long time, especially when the network is far from convergence and the taken
actions are near random. The problem becomes more severe if there are only very rare sequence of
actions which gives high rewards, while most others give on low or zero rewards. The exploration
can take a significantly long time to hit on those rare combinations of good moves.

In this work, we show that there is an unusual, and surprising, opportunity of improving the con-
vergence of deep reinforcement learning. In particular, we show that instead of learning to map
the reward over a basic action space A for each state, we should force the network to anticipate
the rewards over an enlarged action space A+ =

⋃K
k=1Ak which contains sequential actions like

(a1, a2, ..., ak). Our proposal is a strict generalization of existing Deep RL framework where we
allow to take a premeditated sequence of action at a given state st, rather than only taking a single
action and re-deciding the next action based on the outcome of the first action and so on. Thus
the algorithm can pre-decide on a sequence of actions, instead of just the next best action, if the
anticipated reward of the sequence is good enough.

Our experiments shows that by simply making the network anticipate the reward for a sequence
of action, instead of just the next best actions, the network shows significantly better convergence
behavior consistently. We even outperform the fastest known implementation, the GPU accelerated
version of A3C (GA3C). The most exciting part is that that anticipation can be naturally incorporated
in any existing implementation, including Deep Q Network and A3C. We simply have to extend the
action set to also include extra sequences of actions and calculate rewards with them for training,
which is quite straightforward.

2 BACKGROUND

Methods for reinforcement learning can be classified into three broad classes of solutions: Value-
based, Policy-based and Actor-Critic.

2.1 VALUE-BASED METHODS

The main idea in Value based methods is to define a function called Q-function (Q stands for Qual-
ity) which estimates the future reward for a given state-action pair. One popular way to construct
and learn a Q-function is called Deep-Q learning (Mnih et al., 2015). The Q-function is iteratively
learned by minimizing the following loss function

L(θ) = (r + γmaxa′Q(s′, a′; θ)−Q(a, s; θ))2

Here, s is the current state, a is the action, r is the reward earned for action a and s′ is next state that
we end up. The recursive definition

Q(s, a) = r + γmaxa′Q(s′, a′; θ)

comes from the Bellman equation in Dynamic Programming. This is called 1-step Q-Learning as
we only perform one action and observe the reward. If we instead observe a sequence of k actions
and the states resulting from those actions, we can define the Q function as follows

Q(s, a) = rt + γrt+1 + γ2rt+2 + ...+ γk−1rt+k−1 + γkmaxa′Q(st+k, a
′; θ)

2.2 POLICY-BASED METHODS

In policy-based model-free methods, a function approximator such as a neural network computes
the policy π(at|st;), where θ is the set of parameters of the function. θ is updated by maximizing
the cumulative reward as per Bellman Equation given by

R[t] =

∞∑
k=0

γkrt+k

2

Under review as a conference paper at ICLR 2018

One of the popular approaches in policy-based methods is REINFORCE (Williams, 1992). REIN-
FORCE uses the gradient of∇θlogπ(at|st; θ)R[t] which is an unbiased estimator of∇θE[Rt]. But
the rewards are highly variant, and we would like to discount them with a baseline which suggests
whether the current reward is good or not. The baseline is denoted by bt and the new loss function is
∇θlogπ(at|st; θ)(R[t]− bt). An intuitive baseline is the mean of all previous rewards. If the current
reward is higher than the mean of all previous rewards, then the current action is ‘good’. Otherwise,
it is ‘bad’. That is encapsulated in the loss function directly.

2.3 ACTOR-CRITIC METHODS

Baseline bt being independent of current state st is not the beneficial because it has no context
of the current state. Hence, we would like to redefine it as bt(st). One such popular function is
bt(st) = V π(st) = E[Rt|st]. Here, V π is the Value function. This approach marks the transition
from pure Policy-Based Methods to a blend of Policy-based and Value-based methods. Here, the
policy function acts as an actor because it is responsible for taking actions and the Value function
is called the critic because it evaluates the actions taken by the actor. This approach is called the
Actor-Critic Framework (Sutton & Barto). We still solve the parameters for policy function but use
a Value function to decide on the ‘goodness’ of a reward.

2.4 ASYNCHRONOUS ADVANTAGE ACTOR CRITIC(A3C)

A3C (Mnih et al., 2016) is currently the state-of-the-art algorithm on several popular games. It
uses an Asynchronous framework in which multiple agents access a common policy, called central
policy, and play simultaneously. They communicate the gradients after atmost tmax actions. All the
communicated gradients from multiple agents are then used to update the central policy. Once the
policy parameters are updated, they are communicated back to all the agents playing. The framework
uses a shared neural network which gives 2 outputs, one is the policy distribution, and the other is
the Value function. Policy π(at|st, θ) is the output of softmax(because it is a distribution) and Value
function V (st, θ) is the output of a linear layer.

The objective function for policy update of A3C is as follows(note that we maximize the policy
objective)

Lπ(θ) = logπ(at|st; θ)(Rt − V (st; θ)) + βH(π(st; θ))

Here, the first part is typical actor-critic framework except that the Value function now shares pa-
rameters θ. The second part is the entropy over the policy distribution of actions. From information
theory, we know that entropy is maximum when all actions are equally likely. Hence, this term
favors exploration of new actions by enforcing some probability to unlikely actions. The weight β
decides how much priority we give to exploration. Please note that A3C pseudocode in the original
paper doesn’t mention anything about entropy, but we include it here as it is discussed in various
other references. Since, V (st; θ) is also a function of θ, we also get value-function-gradients from
V by minimizing the DQN-type loss function

fv(θ) = (Rt − V (st; θ))
2

Both the gradients are calculated and stored by each agent until they terminate or perform tmax
actions. The collection of gradients is then communicated, and the updated central network is now
available for all agents.

The major concern with A3C is that it relies on sequential training. More generally, all Reinforce-
ment Learning paradigms are plagued by the fact that we do not have a pre-decided training and
testing data and we have to leverage information while training. That renders GPUs and other par-
allelizations useless for implementing RL algorithms, particularly A3C.

2.5 GPU ENABLED A3C(GA3C)

GA3C (Babaeizadeh et al., 2016) was proposed as a follow-up and an alternative framework for
A3C that enables the usage of GPU. The broad idea of GA3C is to use larger batches of input-
output(output in our case refers to reward) pairs to facilitate better usage of GPUs like usual super-
vised learning. Since we need to perform actions and observe rewards, every agent GA3C maintains

3

Under review as a conference paper at ICLR 2018

two queues called PredictionQueue and TrainingQueue. Every Agent queues up Policy requests
in PredictionQueue and submits a batch of input-reward pairs to the TrainingQueue.

Instead of having a central policy that every agent uses to predict, GA3C has a predictor that takes
PredictionQueues from as many agents as possible and sends an inference query to GPU(this is
where the batch size increases thereby making use of GPU). Predictor then sends updated policy
to all agents that sent their PredictionQueues. On the other hand, there’s a trainer component of
GA3C which takes the input-reward batches from as many agents as possible and updates model
parameters by sending the batches to a GPU.

GA3C presents new challenges as it has to deal with trade-offs like size of data trasfer vs number of
data transfers to GPU, number of predictors NP vs size of prediction batches etc. While we build
our idea on GA3C, we set most of these parameters to their defaults.

3 OUR PROPOSAL: A4C

Our proposal is an unusually straightforward extension, and a strict generalization of the existing
deep reinforcement learning algorithms. At high level, by anticipation we extend the basic action
set A to an enlarged action space A+ =

⋃K
k=1Ak, which also includes sequences of actions up to

length K. As an illustration, let us say A = {L,R} and we allow 2-step anticipation, therefore our
new action space is A+ = A ∪ A2 = {L,R,LL,LR,RL,RR}. Each element a+ belonging to
A+ is called a meta-action, which could be a single basic action or a sequence of actions. Typical
deep reinforcement learning algorithms have a DNN to output the estimated Q values or policy
distributions according to basic action setA. In our algorithm, we instead let the DNN output values
for each meta-action in the enlarged action setA+. Overall, we are forcing the network to anticipate
the “goodness” of meta-actions a little further, and have a better vision of the possibilities earlier in
the exploration phase.

3.1 INTUITION

From human observations and experiences in both sports and video games, we know the importance
of “Combo” actions. Sometimes single actions individually do not have much power, but several of
common actions could become very powerful while performed in a sequential order. For example,
in the popular game CounterStrike, jump-shoot combo would be a very good action sequence. This
kind of observation inspires us to explore the potential of “Combos”, i.e. multi-step anticipatory
actions in reinforcement learning. Moreover, the advantage of anticipatory actions over the standard
ones for improving exploration is analogous to how higher n-grams statistics help in better modeling
compared to just unigrams in NLP.

Another subtle advantage of anticipating rewards for sequence of actions is better parameter sharing
which is linked with multi-task learning and generalization.

Parameter Sharing: Back in 1997, (Caruana, 1998) showed the advantage of parameter sharing.
In particular, it showed that a single representation for several dependent tasks is better for gener-
alization of neural networks than only learning from one task. With the addition of meta-action (or
extra actions sequences), we are forcing the network layers to learn a representation which is not
only useful in predicting the best actions but also predicts the suitability of meta-actions, which is a
related task. A forced multi-task learning is intrinsically happening here. As illustrated in Figure 1,
the black box parameters are a shared representation which is simultaneously learned from the gra-
dients of basic actions as well as meta-actions. This additional constraint on the network to predict
more observable behaviors regularizes the representation, especially in the early stages.

Anticipatory Deep Q Network: Although our main proposal is A4C which improves the current
state-of-the-art A3C algorithm, to illustrate the generality of our idea, we start with a simpler algo-
rithm – Anticipatory Deep Q Network (ADQN). DQN is a value-based algorithm whose network
approximates Q values for each action. If we see each gradient update as a training sample sent to
the network, DQN generates 1 training sample for each action-reward frame. We believe one frame
could provide more information than that. With meta-action, i.e., ADQN algorithm, instead we
force the network to output Q values for each meta-action in the enlarged action space. For exam-
ple, in CartPole game, the basic actions are L, R. In ADQN, we let the output values be over A+ =

4

Under review as a conference paper at ICLR 2018

{L,R,LL,LR,RL,RR}. For an experience sequence (..., si, ai, ri, si+1, ai+1, ri+1, si+2, ...), we
will get two updates for state si:

Li(θi) = (ri + γ max
a′∈A+

Q(si+1, a
′|θi)−Q(si, ai|θi))2

Li(θi) = (ri + γri+1 + γ2 max
a′∈A+

Q(si+2, a
′|θi)−Q(si, ai|θi))2

In this way, we could abtain two gradient updates for each state. This update improves the inter-
mediate representaion (parameter sharing) aggresively leading to superior convergence. In practice,
we could organize them into one single training vector, as illustrated in the Figure 1. This algorithm
performs very well on CartPole game (see Section 4.1).

Figure 1: A toy example for ADQN with an enlarged action set {L,R,LL,LR,RL,RR}. For input
s0, we have 2 gradients, one for action L and other for action LR.

3.2 ANTICIPATORY ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC (A4C)

In the previous section, we have shown that anticipation can be used on value-based reinforcement
methods like DQN. However, DQN is not the state-of-art algorithm, and it converges relatively
slowly on more complex tasks like Atari games. Due to the simplicity and generality of our method
of anticipation, it is also directly applicable to - Asynchronous Advantage Actor-Critic (A3C) algo-
rithm.

As mentioned earlier, A3C uses a single deep neural network with |A| policy nodes and 1 value
node.To enforce anticipation, we can just enlarge the number of policy nodes in the layer without
changing other network architecture. Generally, if we want to support up to K steps of action
sequences, we need |A+| policy nodes for the output layer, where A+ =

⋃K
i=1Ak. The new action

space A+ contains both basic single actions and sequences of actions. This improved algorithm is
called Anticipatory asynchronous advantage actor-critic (A4C).

In A4C algorithm, the neural network is used for two parts: prediction and training. In the prediction
part, A4C lets the neural network output a distribution of actions fromA+. For each state, we choose
a meta-action a+ according to the output distribution. If a+ contains only one action, this single
action will be executed. If a+ corresponds to an action sequence (a1, a2, ..., ak), these actions will
be executed one by one in order.

A4C is a strict generalization of A3C, and it allows for three kinds of gradient updates for given
action-reward frame: dependent updating (DU), independent updating (IU), and switching.

3.2.1 DEPENDENT UPDATING(DU)

A meta-action a+ can be viewed as a combination of single actions. On the other hand, several
basic actions taken sequentially could be viewed as a meta-action. From here comes our intuition

5

Under review as a conference paper at ICLR 2018

of dependent updating, where each meta-action has its dependent basic actions. When we take a
meta-action and get rewards, we not only calculate the gradients for this meta-action, but also for its
corresponding basic actions. And for a sequence of basic actions, even if they were not taken as a
meta-action, we also update the network as it takes the corresponding meta-action. For example, in
a 2-step anticipation setting, we get an experience queue of (s0, a0, r0, s1, a1, r1, s2, ...). No matter
(a0) was taken as a basic action or (a0, a1) was taken as a meta-action, we will update both of them
for state s0. In this case, we get 2 times more gradient updates as A3C for the same amount of
episodes, resulting in aggressive updates which lead to accelerated convergence, especially during
the initial phases of the learning. We call this kind of dependent updating version of A4C as DU-
A4C. Our pseudocode for DU-A4C is presented in Algorithm 1.

Algorithm 1 Anticipatory asynchronous advantage actor-critic with Dependent Updating (DU-
A4C) - pseudocode for each actor learner thread

// Assume global shared parameter vectors θ and θv and global shared T = 0
// Assume thread-specific parameter vector θ′ and θ′v
// Assume a basic set A = {ai} and the corresponding enlarged action set A+ = {a+i }
// where A+ =

⋃K
k=1Ak

Initialize thread step counter t← 1
repeat

Reset gradients: dθ ← 0 and dθv ← 0
Synchronize thread-specific parameters θ′ = θ and θ′v = θ
tstart = t
Get state st
repeat

Choose a+t according to policy π(a+t |st; θ′)
for ai in the basic action sequence (a1, a2, ...) corresponding to a+t do

Perform ai, receive reward rt and new state st+1

t← t+ 1
T ← T + 1

end for
until terminal st or t− tstart >= tmax

R =

{
0 for terminal st
V (st, θ

′
v) for non-terminal st

for i ∈ {t− 1, ..., tstart} do
R← ri + γR
for j ∈ {i, ...,min(i+K, t− 1)} do

Let a+ij be the meta-action corresponding to the sequence (ai, ..., aj)

Accumulate gradients wrt θ′: dθ ← dθ +∇θ′ log π(a+ij |si; θ′)(R− V (si; θ
′
v))

end for
Accumulate gradients wrt θ′v: dθv ← dθv + ∂(R− V (si; θ

′
v))

2/∂θ′v
end for
Perform asynchronous update of θ using dθ and of θv using dθv .

until T > Tmax

3.2.2 INDEPENDENT UPDATING(IU)

Independent update is a very simple and straightforward updating method that we could just view
each meta-action a+ as a separate action offered by the environment. The reward of a+ is the sum
of rewards of taking all the basic actions in a+ one by one in order. The next state of a+ is the state
after taking all the actions in the sequence. While updating, we only use the information of reward,
and the next state of a+ without regards to the dependencies and relations between meta-actions.
The pseudocode is in Algorithm 2 (in Supplementary Materterials).

Clearly, IU leads to less aggressive updates compared to DU. Even though independent updating
makes no use of extra information from the intrinsic relations of meta-actions, it still has superior
performance in experiments. The reason is that there exist some patterns of actions that yield high

6

Under review as a conference paper at ICLR 2018

rewards consistently and anticipatory action space enables the network to explore this kind of action
patterns.

3.2.3 SWITCHING

Our experiment suggests, DU-A4C converges faster over Atari games for the first few hours of train-
ing. DU-A4C shows a big gap over the speed of original A3C. However, after training for a longer
time, we observe that aggressive updates cause the network to saturate quickly. This phenomenon
is analogous to Stochastic Gradient Descent (SGD) updates where initial updates are aggressive but
over time we should decay the learning rate (Bottou, 2010).

Technically, dependent updating makes good use of information from the anticipatory actions and
yields fast convergence. Independent updating method offers a less aggressive way of updating but
it can sustain the growth for longer durations. Thus, we propose a switching method to combine the
advantages of these two updating methods.

Switching is simple: we first use dependent updating method to train the network for a while, then
switch over to independent updating method from there on. Since the network is the same for
both updating methods, the switching process is quite trivial to implement. We notice that this ap-
proach consistently stabilizes training on many scenarios(explained in the Section 4). As mentioned,
switching is analogous to decaying learning rate with epochs in a typical Neural Network training,
the difference being our approach is a hard reduction while learning rate decay is a soft reduction.

The tricky part is when should we switch. Currently, it is more of a heuristic way: for each game,
we typically switch half-way. The reason we choose half is that we want to utilize DU to converge
quickly in first half and IU to stabilize and continuously increase in the second half. In our exper-
iments, we realize that switching seems to have robust performance in experiments with regards to
different choice of switching points.

4 EVALUATIONS

4.1 STUDY OF EXPLORATION USING CARTPOLE GAME

Figure 2: Results and analysis of CartPole game. Left: ADQN vs DQN on CartPole-v0; Right: The
performed action distributions at different training stages. We divide the total 5000 episodes into 5
stages, and plot the distribution at each stage.

To understand the dynamics of the Anticipatory network, we use a simple, classic control game
Cartpole. Cartpole game has only 2 basic actions Left and Right, and its state space is R4. We
perform a 2-step Anticipatory DQN(mentioned in section 3.1) with Dependent Updates(DU) and
compare against regular DQN. Owing to the simplicity of CartPole, we do not compare A4C vs A3C
here, which we reserve for Atari games. We notice a significant jump in the score by using meta-
actions space given by {L,R,LL,LR,RL,RR}, instead of just {L, R}. Although CartPole game

7

Under review as a conference paper at ICLR 2018

Figure 3: Comparison of three variants of A4C against GA3C. The baseline GA3C is shown in
red, Dependent Updates(DU) in blue, Independent Updates(IU) in yellow and the Switching (Sw) in
green. Time instant where switching begins is shown by the black arrow. Note that switching time
differs with each run and we show a rough indicative switching time.

is simple, the results in the Figure 2(a) reveal the power of anticipation on value-based reinforcement
learning.

In the right plot (Figure 2(b)), we also show the probability (frequency) distributions of 6 meta-
actions in different learning periods. It is clear from the plots that as learning goes on, the probability
of basic actions increases and the probability of multi-step action drops. This trend shows that
multi-step actions help the agent to better explore initially, with the anticipated vision of the future,
obtaining better rewarding actions. Once the network has seen enough good actions, it figures our
the right policy and seems to select basic actions only.

4.2 ATARI GAMES

Next, we demonstrate out A4C experiments on 4 popular Atari-2600 games namely Pong, Qbert,
BeamRider, and SpaceInvaders. We use the environments provided by OPENAI GYM for both these
classes of games. Atari-2600 games are the standard benchmarks for Reinforcement Learning Algo-
rithms. We compare our results against the state-of-the-art GPU based Asynchronous Actor-Critic
(GA3C) framework from NVIDIA whose code is publicly available(at https://github.com/
NVlabs/GA3C)). In order to have uniform playing fields for both A4C and GA3C, we ran the
baseline GA3C code on various games on our machine with a single P-100 GPU. We ran each ex-
periment for 3 times on each game and plotted the average scores. To test the robustness of approach,
we experimented with various hyperparameter values like minimum training batch size, max norm
of gradient (whether to clip gradients; if so MaxNorm=40 by default), learning rate and even the
time instant where switching begins. We noticed that our approach is better than baseline on all the
settings. Nevertheless, the plots we present are for the optimal setting (MinTrainingBatchSize=40,

8

https://github.com/NVlabs/GA3C
https://github.com/NVlabs/GA3C

Under review as a conference paper at ICLR 2018

GradientClipping=False, LearningRate=0.003). These values are also suggested to be optimal in the
GA3C code. Note that we compare results using the same setting for all 3 variants of A4C and also
for the baseline GA3C.

Figure 3 shows the comparison of three variants of A4C updates against GA3C for four games. Note
that the baseline GA3C plots(in red) are very similar to the ones reported in the original paper. We
notice that the Independent Updates(IU) performs significantly better than GA3C on all occasions
except Qbert, where it is very similar GA3C. In particular, IU achieves a score of 4300 on BeamRider
game which is way better than the best result mentioned in GA3C paper. IU crosses 3000 score in
just 12.5 hrs while it takes 21 hrs for GA3C to achieve the same score. IU also achieves a score
of > 750 on SpaceInvaders game where the best result in GA3C paper achieves < 600. At the
same time, the Dependent Updates(DU) method (in blue) starts to rise faster than GA3C but doesn’t
sustain the growth after sometime owing to reasons mentioned in Section 3.2.3. The only case
where DU maintains the growth is Pong. The hybrid switching method(Sw) performs remarkably
well consistently on all the games, achieving higher scores than the best of GA3C. For example, on
Qbert game, the hybrid Sw method achieves a score of 12000 in just 7 hrs. The best result mentioned
in original GA3C paper achieves similar score in 20 hrs. The other re-runs of Qbert in GA3C paper
stall at a score of 8000. Sw outperforms GA3C on other games as well, but it is still behind IU
on BeamRider and SpaceInvaders games. In all, we notice that Switching from DU to IU after few
hours is the most robust method while IU alone is good on 2 games.

5 CONCLUSION AND FUTURE WORK

We propose a simple yet effective technique of adding anticipatory actions to the state-of-the-art
GA3C method for reinforcement learning and achieve significant improvements in convergence and
overall scores on several popular Atari-2600 games. We also identify issues that challenge the
sustainability of our approach and propose simple workarounds to leverage most of the information
from higher-order action space.

There is scope for even higher order actions. However, the action space grows exponentially with the
order of anticipation. Addressing large action space, therefore, remains a pressing concern for future
work. We believe human behavior information will help us select the best higher order actions.

REFERENCES

Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan Kautz. GA3C: gpu-
based A3C for deep reinforcement learning. CoRR, abs/1611.06256, 2016.

Marc G Bellemare, Georg Ostrovski, Arthur Guez, Philip S Thomas, and Remi Munos. Increasing
the action gap: New operators for reinforcement learning. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pp. 177–186. Springer, 2010.

Rich Caruana. Multitask learning. In Learning to learn, pp. 95–133. Springer, 1998.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria,
Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al. Massively
parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296, 2015.

9

Under review as a conference paper at ICLR 2018

Martin Riedmiller. Neural fitted q iteration-first experiences with a data efficient neural reinforce-
ment learning method. In ECML, volume 3720, pp. 317–328. Springer.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), pp. 1889–1897, 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. 2016.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

10

Under review as a conference paper at ICLR 2018

Supplementary Materials

Algorithm 2 Anticipatory asynchronous advantage actor-critic with Independent Updating (IU-
A4C) - pseudocode for each actor learner thread

// Assume global shared parameter vectors θ and θv and global shared T = 0
// Assume thread-specific parameter vector θ′ and θ′v
// Assume a basic set A = {ai} and the corresponding enlarged action set A+ = {a+i }
// where A+ =

⋃K
k=1Ak

Initialize thread step counter t← 1
repeat

Reset gradients: dθ ← 0 and dθv ← 0
Synchronize thread-specific parameters θ′ = θ and θ′v = θ
tstart = t
Get state st
repeat

Choose a+t according to policy π(a+t |st; θ′)
for ai in the basic action sequence (a1, a2, ..., ak) corresponding to a+t do

Perform ai, receive reward rt,i and new state st,i
end for
rt =

∑k
i=1 rt,i

st = st,k
t← t+ 1
T ← T + 1

until terminal st or t− tstart >= tmax

R =

{
0 for terminal st
V (st, θ

′
v) for non-terminal st

for i ∈ {t− 1, ..., tstart} do
R← ri + γR
Accumulate gradients wrt θ′: dθ ← dθ +∇θ′ log π(a+i |si; θ′)(R− V (si; θ

′
v))

Accumulate gradients wrt θ′v: dθv ← dθv + ∂(R− V (si; θ
′
v))

2/∂θ′v
end for
Perform asynchronous update of θ using dθ and of θv using dθv .

until T > Tmax

11

	Introduction
	Background
	Value-based Methods
	Policy-based Methods
	Actor-Critic Methods
	Asynchronous Advantage Actor Critic(A3C)
	GPU Enabled A3C(GA3C)

	Our Proposal: A4C
	Intuition
	Anticipatory asynchronous advantage actor-critic (A4C)
	Dependent Updating(DU)
	Independent Updating(IU)
	Switching

	Evaluations
	Study of Exploration using Cartpole Game
	Atari games

	Conclusion and Future Work

