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ABSTRACT

Time series constitute a challenging data type for machine learning algorithms,
due to their highly variable lengths and sparse labeling in practice. In this paper,
we tackle this challenge by proposing an unsupervised method to learn universal
embeddings of time series. Unlike previous works, it is scalable with respect to
their length and we demonstrate the quality, transferability and practicability of
the learned representations with thorough experiments and comparisons. To this
end, we combine an encoder based on causal dilated convolutions with a novel
triplet loss employing time-based negative sampling, obtaining general-purpose
representations for variable length and multivariate time series.

1 INTRODUCTION

We investigate in this work the topic of unsupervised general-purpose representation learning for
time series. In spite of the increasing amount of work about representation learning in fields like
natural language processing or videos, few articles explicitly deal with general-purpose representation
learning for time series without structural assumption on non-temporal data. This problem is indeed
challenging for various reasons. First, real-life time series are rarely or sparsely labeled. Therefore,
unsupervised representation learning would be strongly preferred. Secondly, methods need to deliver
compatible representations while allowing the input time series to have unequal lengths. Thirdly,
scalability and efficiency both at training and inference time is crucial, in the sense that the techniques
must work for both short and long time series encountered in practice.

Unlike prior work (Hyvarinen & Morioka, 2016; Lei et al., 2017; Malhotra et al., 2017; Wu et al.,
2018), we tackle all these challenges by proposing an unsupervised method to learn general-purpose
representations for multivariate time series that comply with the issues of varying and potentially
high lengths of the studied time series. We finally assess the quality of the learned representations
on standard datasets to ensure their universality. In particular, we show that our representations
obtain competitive performance on classification tasks, while showing transferability properties. We
also evaluate our representations on a real-life dataset including very long time series, on which we
demonstrate scalability and generalization ability across different tasks beyond classification.

2 UNSUPERVISED TRAINING

We seek to train an encoder network without having to jointly train a decoder in an autoencoder
framework like standard representations learning methods, as done by Malhotra et al. (2017), since it
would induce a larger computational cost. To this end, we choose to use a novel triplet loss, inspired
by an approach used for word representation learning with word2vec (Mikolov et al., 2013). As
far as we know, this work is the first in the general time series literature (with no focus on specific
data structures like videos or audio) to propose a triplet loss for feature learning, and especially one
handling time series of different lengths.

∗Work partially done while studying at ENS de Lyon and MLO, EPFL.
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The objective is to ensure that similar time series obtain similar representations, with no supervision
to learn such similarity. The assumption made in the CBOW model of word2vec is twofold. The
representation of the context of a word should probably be, on one hand, close to the one of this word
(Goldberg & Levy, 2014), and, on the other hand, distant from the one of randomly chosen words,
since they are probably unrelated to the original word’s context. The corresponding loss then pushes
pairs of (context, word) and (context, random word) to be linearly separable. This is called negative
sampling.
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Figure 1: Choices of xref , xpos and xneg.

To adapt this principle to time series, we con-
sider a random subseries1 xref of a given time
series yi. Then, on one hand, its representation
should probably be close to the one of any of
its own subseries xpos (a positive example). On
the other hand, if we consider another subseries
xneg (a negative example) chosen at random (in
a different random time series yj if a dataset is
available, or in the same time series if it is long
enough and not stationary), then its representa-
tion should probably be distant from the one of xref . See Figure 1 for an illustration. Following the
comparison with word2vec, xpos corresponds to a word, xref to its context, and xneg to a random
word. To improve the stability and convergence of the training procedure as well as the experimen-
tal results of our learned representations, we introduce, as in word2vec, several negative samples
(xnegk )

k∈J1,KK, chosen independently at random. The objective to be minimized corresponding to
these choices, similarly to the one of word2vec with its shallow network replaced by a deep encoder
network f (., θ) with parameters θ, is:
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where σ is the sigmoid function. This loss pushes the computed representations to distinguish
between xref and xnegk , and to assimilate xref and xpos. Note that f , which we choose to be the
network presented in Section 3, must output fixed-length representations for all time series of all
possible input sizes. Overall, the training procedure consists in traveling through the training dataset
for several epochs (possibly using mini-batches), picking tuples

(
xref , xpos, (xnegk )

k

)
at random as

detailed in Section A, and performing a minimization step on the corresponding loss for each pair.

This training procedure is interesting in that it is efficient enough to be run over long time series
(see Section 4) with an efficient encoder (see Section 3), thanks to its decoder-less design and the
separability of the loss, on which a backpropagation per term can be performed to save memory.

3 ENCODER ARCHITECTURE

We choose to use deep convolutional neural networks with dilated convolutions to handle time
series. Popularized for sequence generation (Oord et al., 2016), dilated convolutional networks have
never been used for unsupervised representation learning, to our knowledge. Compared to recurrent
neural networks, which are inherently designed for sequence-modeling tasks and thus sequential,
these networks are efficient as they are highly parallelizable on modern hardware such as GPUs.
Moreover, using dilated convolutions rather than full convolutions allows to better capture long-range
dependencies at constant depth by exponentially increasing the receptive field of the network (Oord
et al., 2016; Yu & Koltun, 2016; Bai et al., 2018).

Our model consists of stacks of dilated causal convolutions (see Figure 2a), which map a sequence to
a sequence of the same length, such that the i-th element of the output sequence is computed using
only values up until the i-th element of the input sequence, for all i. It is thus called causal, since the
output value corresponding to a given time step is not computed using future input values. Causal
convolutions allow to organize the computational graph so that, in order to update its output of a time
series when an element is added at its end, one only has to evaluate the graph shown in Figure 2a
rather than the full graph. This may save some computational time during testing.

1I.e., a subsequence of a time series composed by consecutive time steps of this time series.
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Figure 2: (a) Illustration of three stacked dilated causal convolutions. Lines between each sequence
represent their computational graph. Red solid lines highlight the dependency graph for the computa-
tion of the last value of the output sequence, showing that no future value of the input time series is
used to compute it. (b) Composition of the i-th layer of the chosen architecture.

Inspired by Bai et al. (2018), we build each layer of our network as a combination of causal convolu-
tions, weight normalizations (Salimans & Kingma, 2016), leaky ReLUs and residual connections
(see Figure 2b). Each of these layers is given an exponentially increasing dilation parameter (2i for
the i-th layer). The output of this causal network is then given to a global softmax pooling layer
squeezing the temporal dimension and aggregating all temporal information in a fixed-size vector
(Wang et al., 2017). The output of the encoder is then a linear transformation of the latter vector.

4 EXPERIMENTAL RESULTS

We present in this section the experiments conducted to assess the quality of our representations.
Some additional results, as well as the full training process and hyperparameter choices, are detailed
in Sections B, C and D. Code corresponding to these experiments is publicly available.2

Classification. We first assess the quality of our learned representations in a standard manner by
using them for time series classification. We show that our method outperforms the state-of-the-art
unsupervised methods, and notably achieves performance close to the supervised state-of-the-art.

For each considered dataset with a train / test split, we unsupervisedly train an encoder using its train
set. We then train an SVM with radial basis function kernel on top of the learned features using the
train labels of the dataset, similarly to concurrent works TimeNet (Malhotra et al., 2017) and RWS
(Wu et al., 2018), and output the corresponding classification score on the test set. As K can have a
significant impact on the performance, we present a combined version of our method, where pairs of
encoders and SVMs for different values of K (see Section D) are combined in a voting classifier.

We choose to compare ourselves to the four best state-of-the-art classifiers of univariate time series
studied by Bagnall et al. (2017): COTE – replaced by its improved version HIVE-COTE (Lines et al.,
2018) –, ST (Bostrom & Bagnall, 2015), BOSS (Schäfer, 2015) and EE (Lines & Bagnall, 2015), on
the first 85 datasets of the UCR archive (Dau et al., 2018).3 We also add DTW (which is a one-nearest
neighbor classifier with Dynamic Time Warping as measure) as a baseline to the comparison. Note
that almost half of the tested datasets have few available labels as their train set is of size at most 200.

2https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries.
3The new UCR archive includes 43 new datasets on which no results other than ours have been produced yet.
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Figure 3: Boxplot of the ratio of the accuracy
versus maximum achieved accuracy of com-
pared methods on the first 85 UCR datasets.

We observe (see Figure 3, as well as Figures 4
and 5 in the appendices) that our method is globally
second-to-best (with average rank 2.94), only beaten
by HIVE-COTE (1.67) and equivalent to ST (2.95).
HIVE-COTE being a powerful ensemble method con-
taining, among others, all classifiers in this compari-
son and thus difficult to outperform, we highlight that
our method based on unsupervised representations
achieves remarkable performance as it matches the
second-to-best studied supervised method, and in par-
ticular is at the level of the best performing method
included in HIVE-COTE. Besides their performance,
our representations are also transferable, as explained
in Section B. We highlight that this performance is
achieved, when the encoder is trained, efficiently both
in terms of time (training is a matter of seconds) and
space (only a simple SVM must be trained). Partial
results (taken as reported in the original articles; see
Section E) also indicate that our method consistently
outperforms both concurrent unsupervised methods
TimeNet and RWS (on, respectively, 13 and 9 out of 13 and 12 UCR datasets). They also indicate
that our method is beaten (on 68% out of 44 UCR datasets) by FCN (Wang et al., 2017), which are
neural networks trained for supervised classification, and thus expected to beat our neural network
trained unsupervisedly.

Regression. We show the applicability and scalability of our method on long time series without
labeling for regression tasks on the Individual Household Electric Power Consumption (IHEPC)
dataset from the UCI Machine Learning Repository (Dheeru & Karra Taniskidou, 2017), which
is a single time series of length 2 075 259 monitoring the minute-averaged electricity consumption
of a single household in France for four years. We split this time series into train (first 5 × 105

measurements, approximately a year) and test (remaining measurements), and normalize it to a
zero-mean and unit variance time series. The encoder is trained over the train time series on a single
Nvidia Tesla P100 GPU in no more than a few hours, showing that our training procedure is scalable
to long time series.

Table 1: Results obtained on the IHEPC dataset.

Task Metric Representations Raw values

Day
Test MSE 8.92 · 10−2 8.92 · 10−2

Wall time 12s 3min 1s

Quarter
Test MSE 7.26 · 10−2 6.26 · 10−2

Wall time 9s 1h 40min 15s

We consider the tasks of, given a previous time
windows of a day (1 440 measurements) and a
quarter (12 · 7 · 1 440 measurements), predict-
ing the evolution of the mean value of the series
during the next day (respectively, quarter). We
compare linear regressors applied on the raw
time series and on the corresponding representa-
tions. Results and execution times on a Nvidia
Titan Xp GPU are presented in Table 1.4 On
both scales of inputs, our representations induce
only a slightly degraded performance but pro-
vide a large efficiency improvement.

5 CONCLUSION

We presented an unsupervised general-purpose representation learning method for time series that is
scalable and produces high-quality and easy-to-use embeddings. They are generated by an encoder
formed by dilated convolutions that admits variable-length inputs, and trained with a triplet loss using
novel negative sampling for time series. Conducted experiments show that these representations are
universal and can efficiently be used for classification and regression with few or no available labels.

4While acting on representations of the same size, the quarterly linear regressor is slightly faster than the
daily one because the number of quarters in the considered time series is smaller than the number of days.
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APPENDICES

A DETAILED CHOICES OF POSITIVE AND NEGATIVE SAMPLES

In practice, we pick tuples
(
xref , xpos, (xnegk )

k∈J1,KK

)
in the following manner. We iterate over the

available dataset for a given number of epochs (given as hyperparameter). For each train time series
z, the length of xpos is chosen uniformly at random in J1, size (z)K; then the size of xref is chosen
uniformly at random in Jsize (xpos) , size (z)K, and xref is chosen uniformly at random among all
subseries of z of the chosen size. Similarly, xpos is chosen uniformly at random in xref . The choice
of (xnegk )

k∈J1,KK consists in simply choosing uniformly at random the time series which they will
be drawn from, then their length, then picking them at random as well according to those chosen
parameters. The generalization of this procedure to mini-batch training is straightforward, so we do
not detail it.

The length of the negative examples can either be the same for all samples and equal to size (xpos),
or be chosen at random similarly to size (xpos). The first case is suitable when all time series in the
dataset have equal lengths, and speeds up the training procedure thanks to computation factorizations;
the second case is only used when time series in the dataset do not have the same lengths, as we saw
no other difference than time efficiency between the two cases in our experiments.

One might consider capping the length of xneg in the case where only a single long time series is
available, so that it does not contain xref , but this only happens with low probability and does not
harm the performance of the learned representations in our experiments.

B FURTHER CLASSIFICATION RESULTS

Full scores. We report in Table 2 scores for some UCR datasets as well as full scores for our
method on the first 85 UCR datasets in Table 3. Full scores for DTW, ST, BOSS, HIVE-COTE and
EE are reported online by Bagnall et al. (2017).5

Transferability. We include in Table 2 the classification accuracy for each dataset of an SVM
trained on this dataset using the representations computed by an encoder, which was trained on
another dataset (FordA, with K = 5), to test the transferability of our representations.

We observe that the scores achieved by this SVM trained on transferred representations are close
to the scores reported when the encoder is trained on the same dataset as the SVM, showing the
transferability of our representations from a dataset to another, and from time series to other time
series with different lengths.

Multivariate Time Series Classification. We tested our method on all 30 datasets of the newly
released UEA archive (Bagnall et al., 2018). For each dataset, each dimension of the time series was
preprocessed independently from the other dimensions by normalizing its mean and variance.

The UEA archive has been designed as a first attempt to provide a standard archive for multivariate
time series classification such as the UCR one for univariate series. As it has only been released
recently, we could not compare our method to state-of-the-art classifiers for multivariate time series.
However, we provide a comparison with DTWD as baseline using results provided by Bagnall et al.
(2018). DTWD (dimension-Dependent DTW) is a possible extension of DTW in the multivariate
setting, and is the best baseline studied by Bagnall et al. (2018).

Overall, our method matches or outperforms DTWD on 72% of the UEA datasets, which indicates a
good performance. As this archive is destined to grow and evolve in the future, and without further
comparisons, no additional conclusion can be drawn.

5http://www.timeseriesclassification.com/singleTrainTest.csv.
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Table 2: Accuracy scores of variants of our method compared with those of DTW (unsupervised), ST
and BOSS (supervised) and HIVE-COTE and EE (supervised ensemble methods), on some UCR
datasets. Bold scores indicate the best performing method.

Dataset
Ours (unsupervised) Unsup. Supervised Supervised ensemble

Combined FordA (K = 5) DTW ST BOSS HIVE-COTE EE

DiatomSizeReduction 0.99 0.958 0.967 0.925 0.931 0.941 0.944

ECGFiveDays 1 0.768 1 0.984 1 1 0.82

FordB 0.798 0.764 0.62 0.807 0.711 0.823 0.662

Ham 0.657 0.723 0.467 0.686 0.667 0.667 0.571

Phoneme 0.272 0.225 0.228 0.321 0.265 0.382 0.305

SwedishLeaf 0.939 0.909 0.792 0.928 0.922 0.954 0.915

Figure 4: Critical difference diagram of the average ranks of the compared classifiers for the Nemenyi
test, obtained with Orange (Demšar et al., 2013).

supervised

unsupervised

sup. & ensemble

Figure 5: Distribution of ranks of compared methods for the first 85 UCR datasets.
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C DETAILED TRAINING FOR CLASSIFICATION TASKS

We used Python 3 for implementation, with PyTorch 0.4.1 (Paszke et al., 2017) for neural networks
and scikit-learn (Pedregosa et al., 2011) for SVMs. Each encoder was trained on a single Nvidia
Titan Xp GPU with CUDA 9.0.

C.1 SVM TRAINING AND EARLY STOPPING

We perform no hyperparameter optimization on the architecture of our encoder, nor on the batch size
or optimizer we use. We thus perform a single training procedure for each dataset and parameter
K. The only parameters we dynamically tune are the number of epochs to train the encoder through
an early stopping heuristic (stop training after a given number of epochs have been done without
increasing a performance score and until a given number of epochs is reached, and keep the encoder
corresponding to the best score), and the penalty C of the error term of the SVM. Note that this
tuning is done without using test labels.

Early stopping is only introduced in order to avoid, unlike for instance concurrent unsupervised
work TimeNet (Malhotra et al., 2017), optimizing hyperparameters for each dataset, as they are
substantially different from one another, and we stress that its introduction does not introduce any
bias compared to a fully unsupervised setting. We further discuss in Section C.2 the use of early
stopping and its impact on an unsupervised training. In particular, it is strictly equivalent to a more
computationally demanding and fully unsupervised training, and remains optional.

In order to tune the error term of the SVM and monitor a performance test which is not the train
classification score for the early stopping criterion, we use as performance score a cross-validation
score on the training set in the following manner. To choose a penalty for the SVM, we freeze the
encoder and pick the penalty that achieves the best cross-validation score on the representations of
the train set. The early stopping criterion is then the cross-validation score of the best found penalty
term. Note that if the train set or the number of training samples per class are too small, we do not use
early stopping and choose a penalty C =∞ for the SVM (which corresponds to no regularization).

This complex scheme is required because the avalaible UCR and UEA archives do not provide any
additional validation set. Because lots of datasets are small, and to guarantee a fair comparison with
concurrent methods which do not use any validation set, we designed the early stopping strategy to
only use training labels.

C.2 EARLY STOPPING DISCUSSION

With such an early stopping criterion, the entire method is then not fully unsupervised, because the
labels are used to decide when to stop the learning procedure. This choice was mainly made to avoid
having extra hyper-parameters to tune, and to save time on computations by avoiding a long training
on some datasets with a small batch size. Indeed, datasets which we test our method on are varied
and their size is particularly important with respect to training performance. As we keep the batch
size and neural network hyperparameters constant across all datasets, dynamically tuning the number
of epochs is useful in order to avoid overfitting on some datasets and save computational time on
some others.

We highlight that it does not change much the overall results, as it improves the accuracy on some
datasets, but worsens them on some others. As an example, we provide in Figure 6 the evolution of
the test accuracy with respect to the number of epochs, showing that the stopping time is not optimal.
Besides, the encoder can always be trained without label information (stopping after a certain number
of epochs), or with very sparsely labeled time series. Comparison with other concurrent unsupervised
methods is also fair as they can perform hyperparameter optimization, like TimeNet (Malhotra et al.,
2017).

Moreover, this encoder training augmented with such an early stopping criterion is strictly equivalent
to a more computationally demanding and fully unsupervised training. Indeed, consider the training
of the encoder for a number of epochs equal to the maximal number of epochs under the early
stopping procedure. If one records the weights of the encoder at the end of each epoch, then one
could simulate the online early stopping heuristic in an offline fashion by iteratively computing the
early stopping performance score, stopping when the early stopping conditions are met and retain
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Figure 6: Evolution of the test accuracy during the training of the representation on the CricketX
dataset from the UCR archive (with K = 10), with respect to the number of completed epochs. The
test labels were only used for monitoring purposes and the test accuracy was computed after each
mini-batch optimization. The vertical line marks the epoch selected by the early stopping heuristic.
Test accuracy clearly increases during training, and the early stopping heuristic is suboptimal on this
dataset.

the best set of weights. This way, the encoder training is fully unsupervised at the cost of longer
and more complex training using the train labels. Note that exploratory experiments indicate that
selecting the best performing set of weights over the whole number of epochs, instead of simulating
early stopping, tends to give results similar to the ones obtained with early stopping.

D HYPERPARAMETERS

D.1 DISCUSSION OF THE INFLUENCE OF K

As mentioned in Section 4, K can have a significant impact on the performance of the encoder. We
notably observed that K = 1 leads to statistically significantly lower scores compared to scores
obtained when trained withK > 1 on the UCR datasets, jutifying the use of several negative examples
during training. We did not observe any clear statistical difference between other values of K on
the whole archive; however, we nocited important differences between different values of K when
studying individual datasets. Therefore, we chose to include several pairs of encoders and SVMs in a
voting classifier to avoid selecting K as a hyperparameter.

D.2 DETAILED CHOICES OF HYPERPARAMETERS

We train our models with the following parameters for time series classification:

• optimizer: Adam (Kingma & Ba, 2015) with learning rate α = 0.001 and decay rates
β = (0.9, 0.999);

• SVM: penalty C ∈
{
10i | i ∈ J−4, 4K

}
∪ {∞};

• encoder training:

– number of negative samples: K ∈ {1, 2, 5, 10} for univariate time series, K ∈
{5, 10, 20} for multivariate ones;

– batch size: 10;
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– maximum number of epochs: 400;
– number of epochs to wait without performance improvement for early stopping: 25;

• architecture:
– number of channels in the intermediary layers of the causal network: 40;
– number of layers (depth of the causal network): 10,
– kernel size of all convolutions: 3;
– negative slope of the leaky ReLU: 0.01;
– number of output channels of the causal network (before max pooling): 320;
– dimension of the representations: 160.

For the Individual Household Electric Power Consumption dataset, changes are the following:

• number of negative samples: K = 10;
• batch size: 1;
• no early stopping;
• number of channels in the intermediary layers of the causal network: 30;
• number of output channels of the causal network (before max pooling): 160;
• dimension of the representations: 80.

E COMPARISON WITH FCN, TIMENET AND RWS

Comparisons with FCN, TimeNet and RWS are shown in Table 3.

11
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Table 3: Accuracy scores of the combined version of our method compared with those of FCN
(supervised), TimeNet and RWS (unsupervised), when available. Bold scores indicate the best
performing method. ‘X’s indicate that a score were reported in the original paper, but was either
obtained using transferability or on a reversed train / test split of the dataset, thus not comparable to
other results for this dataset.

Dataset
Ours (unsupervised) Supervised Unsupervised

Combined FCN TimeNet RWS

Adiac 0.775 0.857 0.565 -
ArrowHead 0.851 - - -
Beef 0.633 0.75 - 0.733
BeetleFly 0.85 - - -
BirdChicken 0.9 - - -
Car 0.817 - - -
CBF 0.998 1 - -
ChlorineConcentration 0.75 0.843 0.723 0.572
CinCECGtorso 0.726 0.813 - -
Coffee 1 1 - -
Computers 0.704 - - -
CricketX 0.79 0.815 0.659 -
CricketY 0.726 0.792 X -
CricketZ 0.767 0.813 X -
DiatomSizeReduction 0.99 0.93 - -
DistalPhalanxOutlineCorrect 0.75 - X -
DistalPhalanxOutlineAgeGroup 0.748 - X -
DistalPhalanxTW 0.676 - X X
Earthquakes 0.748 - - -
ECG200 0.87 - - -
ECG5000 0.94 - 0.934 0.933
ECGFiveDays 1 0.985 X -
ElectricDevices 0.73 - 0.665 -
FaceAll 0.786 0.929 - -
FaceFour 0.875 0.932 - -
FacesUCR 0.893 0.948 - -
FiftyWords 0.778 0.679 - -
Fish 0.897 0.971 - -
FordA 0.932 - X -
FordB 0.798 - X X
GunPoint 0.989 1 - -
Ham 0.657 - - -
HandOutlines 0.922 - - 0.843
Haptics 0.506 0.551 - -
Herring 0.609 - - -
InlineSkate 0.418 0.411 - -
InsectWingbeatSound 0.603 - - 0.619
ItalyPowerDemand 0.937 0.97 - 0.969
LargeKitchenAppliances 0.861 - - 0.792
Lightning2 0.77 0.803 - -
Lightning7 0.808 0.863 - -
Mallat 0.962 0.98 - 0.937
Meat 0.917 - - -
MedicalImages 0.778 0.792 0.753 -
MiddlePhalanxOutlineCorrect 0.838 - X X
MiddlePhalanxOutlineAgeGroup 0.636 - X -
MiddlePhalanxTW 0.578 - X -
MoteStrain 0.859 0.95 - -
NonInvasiveFatalECGThorax1 0.938 0.961 - 0.907
NonInvasiveFatalECGThorax2 0.945 0.955 - -
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Table 3: Accuracy scores of the combined version of our method compared with those of FCN
(supervised), TimeNet and RWS (unsupervised), when available. Bold scores indicate the best
performing method. ‘X’s indicate that a score were reported in the original paper, but was either
obtained using transferability or on a reversed train / test split of the dataset, thus not comparable to
other results for this dataset.

Dataset
Ours (unsupervised) Supervised Unsupervised

Combined FCN TimeNet RWS

OliveOil 0.9 0.833 - -
OSULeaf 0.814 0.988 - -
PhalangesOutlinesCorrect 0.808 - 0.772 -
Phoneme 0.272 - - -
Plane 1 - - -
ProximalPhalanxOutlineCorrect 0.89 - X 0.711
ProximalPhalanxOutlineAgeGroup 0.839 - X X
ProximalPhalanxTW 0.81 - X -
RefrigerationDevices 0.515 - - -
ScreenType 0.491 - - -
ShapeletSim 0.75 - - -
ShapesAll 0.865 - - -
SmallKitchenAppliances 0.717 - - -
SonyAIBORobotSurface1 0.895 0.968 - -
SonyAIBORobotSurface2 0.94 0.962 - -
StarlightCurves 0.964 0.967 - -
Strawberry 0.957 - 0.93 -
SwedishLeaf 0.936 0.966 0.901 -
Symbols 0.954 0.962 - -
SyntheticControl 0.987 0.99 0.983 -
ToeSegmentation1 0.947 - - -
ToeSegmentation2 0.908 - - -
Trace 1 1 - -
TwoLeadECG 0.989 1 - -
TwoPatterns 1 0.897 0.999 0.999
UWaveGestureLibraryX 0.81 0.754 - -
UWaveGestureLibraryY 0.741 0.725 - -
UWaveGestureLibraryZ 0.766 0.729 - -
UWaveGestureLibraryAll 0.927 - - -
Wafer 0.996 0.997 0.994 0.993
Wine 0.815 - - -
WordSynonyms 0.691 0.58 - -
Worms 0.74 - - -
WormsTwoClass 0.74 - - -
Yoga 0.87 0.845 0.866 -
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