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ABSTRACT

We propose Stochastic Neural Architecture Search (SNAS), an economical end-
to-end solution to Neural Architecture Search (NAS) that trains neural opera-
tion parameters and architecture distribution parameters in same round of back-
propagation, while maintaining the completeness and differentiability of the NAS
pipeline. In this work, NAS is reformulated as an optimization problem on param-
eters of a joint distribution for the search space in a cell. To leverage the gradient
information in generic differentiable loss for architecture search, a novel search
gradient is proposed. We prove that this search gradient optimizes the same ob-
jective as reinforcement-learning-based NAS, but assigns credits to structural de-
cisions more efficiently. This credit assignment is further augmented with locally
decomposable reward to enforce a resource-efficient constraint. In experiments on
CIFAR-10, SNAS takes fewer epochs to find a cell architecture with state-of-the-
art accuracy than non-differentiable evolution-based and reinforcement-learning-
based NAS, which is also transferable to ImageNet. It is also shown that child
networks of SNAS can maintain the validation accuracy in searching, with which
attention-based NAS requires parameter retraining to compete, exhibiting poten-
tials to stride towards efficient NAS on big datasets.

1 INTRODUCTION

The trend to seek for state-of-the-art neural network architecture automatically has been growing
since Zoph & Le (2016), given the enormous effort needed in scientific research. Normally, a
Neural Architecture Search (NAS) pipeline comprises architecture sampling, parameter learning,
architecture validation, credit assignment and search direction update.

There are basically three existing frameworks for neural architecture search. Evolution-based NAS
like NEAT (Stanley & Miikkulainen, 2002) employs evolution algorithm to simultaneously optimize
topology alongside with parameters. However, it takes enormous computational power and could
not leverage the efficient gradient back-propagation in deep learning. To achieve the state-of-the-art
performance as human-designed architectures, Real et al. (2018) takes 3150 GPU days for the whole
evolution. Reinforcement-learning-based NAS is end-to-end for gradient back-propagation, among
which the most efficient one, ENAS (Pham et al., 2018) learns optimal parameters and architectures
together just like NEAT. However, as NAS is modeled as a Markov Decision Process, credits are
assigned to structural decisions with temporal-difference (TD) learning (Sutton et al., 1998), whose
efficiency and interpretability suffer from delayed rewards (Arjona-Medina et al., 2018). To get rid
of the architecture sampling process, DARTS (Liu et al., 2019) proposes deterministic attention on
operations to analytically calculate expectation at each layer. After the convergence of the parent
network, it removes operations with relatively weak attention. Due to the pervasive non-linearity in
neural operations, it introduces untractable bias to the loss function. This bias causes inconsistency
between the performance of derived child networks and converged parent networks, thus parameter
retraining comes up as necessary. A more efficient, more interpretable and less biased framework is
in desire, especially for future full-fledged NAS solutions on large datasets.

In this work, we propose a novel, efficient and highly automated framework, Stochastic Neural
Architecture Search (SNAS), that trains neural operation parameters and architecture distribution
parameters in same round of back propagation, while maintaining the completeness and differ-
entiability of the NAS pipeline. One of the key motivations of SNAS is to replace the feedback
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mechanism triggered by constant rewards in reinforcement-learning-based NAS with more efficient
gradient feedback from generic loss. We reformulate NAS with a new stochastic modeling to bypass
the MDP assumption in reinforcement learning. To combine architecture sampling with computa-
tional graph of arbitrary differentiable loss, the search space is represented with a set of one-hot ran-
dom variables from a fully factorizable joint distribution, multiplied as a mask to select operations
in the graph. Sampling from this search space is made differentiable by relaxing the architecture
distribution with concrete distribution (Maddison et al., 2016). We name gradients w.r.t their pa-
rameters search gradient. From a global view, we prove that SNAS optimizes the same objective
as reinforcement-learning-based NAS, except the training loss is used as reward. Zooming in, we
provide a policy gradient equivalent of this search gradient, showing how gradients from the loss of
each sample are used to assign credits to structural decisions. By interpreting this credit assignment
as Taylor Decomposition (Montavon et al., 2017a), we prove SNAS’s efficiency over reinforcement-
learning-based NAS. Additionally, seeing that existing methods (Liu et al., 2019) manually design
topology in child networks to avoid complex architecture, we propose a global resource constraint
to automate it, augmenting the objective with feasiblity concerns. This global constraint could be
linearly decomposed for structural decisions, hence the proof of SNAS’s efficiency still applies.

In our experiments, SNAS shows strong performance compared with DARTS and all other exist-
ing NAS methods in terms of test error, model complexity and searching resources. Specifically,
SNAS discovers novel convolutional cells achieving 2.85±0.02% test error on CIFAR-10 with only
2.8M parameters, which is better than 3.00±0.14%-3.3M from 1st-order DARTS and 2.89%-4.6M
from ENAS. It is also on par with 2.76±0.09%-3.3M from 2nd-order DARTS with fewer param-
eters. With a more aggressive resource constraint, SNAS discovers even smaller model achieving
3.10±0.04% test error on CIFAR-10 with 2.3M parameters. During the architecture search process,
SNAS obtains a validation accuracy of 88% compared to around 70% of ENAS in fewer epochs.
When validating the derived child network on CIFAR-10 without finetuning, SNAS maintains the
search validation accuracy, significantly outperforming 54.66% by DARTS. These results validate
our theory that SNAS is less biased than DARTS. The discovered cell achieves 27.3% top-1 error
when transferred to ImageNet (mobile setting), which is comparable to 26.9% by 2nd-order DARTS.
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Figure 1: A conceptual visualization for a forward pass within SNAS. Sampled from p(Z), Z is a
matrix whose rows Zi,j are one-hot random variable vectors indicating masks multiplied to edges
(i, j) in the DAG. Columns of this matrix correspond to operationsOk. In this example, there are 4
operation candidates, among which the last one is zero, i.e. removing that edge. The objective is the
expectation of generic loss L of all child graphs.

2 METHODOLOGY

The main initiative of SNAS is to build an efficient and economical end-to-end learning system with
as little compromise of the NAS pipeline as possible. In this section, we first describe how to sample
from the search space for NAS in a cell, and how it motivates a stochastic reformuation for SNAS
(Section 2.1). A new optimization objective is provided and the attention-based NAS’s inconsistency
is discussed. Then in Section 2.2, we introduce how this discrete search space is relaxed to be
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continuous to let gradients back-propagate through. In Section 2.3, the search gradient of SNAS
is connected to the policy gradient in reinforcement-learning-based NAS (Zoph & Le, 2016; Pham
et al., 2018), interpreting SNAS’s credit assignment with contribution analysis. At last, we introduce
in Section 2.4 how SNAS automates the topology search to reduce the complexity of child netowrk,
as well as how it decomposes this global constraint in the context of credit assignment.

2.1 SEARCH SPACE AND ARCHITECTURE SAMPLING

Searching for structure of a cell that is later stacked as building blocks for a deep architecture is
an ad hoc solution to trade-off search efficiency and result optimality (Zoph et al., 2017; Liu et al.,
2017a; Real et al., 2018; Pham et al., 2018; Liu et al., 2019). As shown in the left of Figure 1, the
search space, i.e. a cell, is represented using a directed acyclic graph (DAG), which is called parent
graph. Nodes xi in this DAG represent latent representation, whose dimensions are simply ignored
to avoid abuse of notations. In convolutional networks, they are feature maps. Edges (i, j) represent
information flows and possible operations Oi,j to be selected between two nodes xi and xj . To
make the skip operation included, nodes are enforced to be ordered, while edges only point from
lower indexed nodes to higher ones. Thus we have intermediate nodes

xj =
∑
i<j

Õi,j(xi), (1)

where Õi,j is the selected operation at edge (i, j). Analog to ENAS, SNAS search for operations and
topology of this cell at the same time. Rather than using two distributions, this is done by introducing
a zero operation, as in DARTS. Same as ENAS and DARTS, each cell is designed to have two inputs
from the output of previous cells. The output of a cell is the concatenate of intermediate nodes.

Thanks to the fact that the volume of structural decisions, which pick Õi,j for edge (i, j), is gener-
ally tractable in a cell, we represent it with a distribution p(Z). Multiplying each one-hot random
variable Zi,j to each edge (i, j) in the DAG, we obtain a child graph, whose intermediate nodes are

xj =
∑
i<j

Õi,j(xi) =
∑
i<j

ZTi,jOi,j(xi). (2)

In terms of how to parameterize and factorize p(Z), SNAS is built upon the observation that NAS
is a task with fully delayed rewards in a deterministic environment. That is, the feedback signal is
only ready after the whole episode is done and all state transition distributions are delta functions.
Therefore, a Markov Decision Process assumption as in ENAS may not be necessary. In SNAS, we
simply assume that p(Z) is fully factorizable, whose factors are parameterized with α and learnt
along with operation parameters θ. In Appendix A we connect the probability of a trajectory in the
MDP of ENAS and this joint probability p(Z).

Following the setting in Zoph & Le (2016), the objective of SNAS is also

EZ∼pα(Z)[R(Z)]. (3)

While the difference is that rather than using a constant reward from validation accuracy, we use
the training/testing loss directly as reward, R(Z) = Lθ(Z), such that the operation parameters and
architecture parameters can be trained under one generic loss:

EZ∼pα(Z)[R(Z)] = EZ∼pα(Z)[Lθ(Z)]. (4)

The whole process of obtaining a Monte Carlo estimate of this objective is shown in Figure 1. An
intuitive interpretation of this objective is to optimize the expected performance of architectures
sampled with p(Z). This differentiates SNAS from attention-based NAS like DARTS, which avoids
the sampling process by taking analytical expectation at each edge over all operations. In Appendix
B we illustrate the inconsistency between DARTS’s loss and this objective, explaining its necessity
of parameter finetuning or even retraining after architecture derivation. Resembling ENAS, SNAS
does not have this constraint. We introduce in next subsection how SNAS calculates gradients w.r.t
θ and α.
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2.2 PARAMETER LEARNING FOR OPERATIONS AND ARCHITECTURES

Though the objective (4) could be optimized with black-box gradient descent method as in Ran-
ganath et al. (2014), it would suffer from the high variance of likelihood ratio trick (Williams, 1992)
and could not make use of the differentiable nature of Lθ(Z). Instead, we use concrete distribu-
tion (Maddison et al., 2016) here to relax the discrete architecture distribution to be continuous and
differentiable with reparameterization trick:

Zki,j = fαi,j (G
k
i,j)

=
exp((logαki,j +G

k
i,j)/λ)∑n

l=0 exp((logα
l
i,j +G

l
i,j)/λ)

,
(5)

where Zi,j is the softened one-hot random variable for operation selection at edge (i, j), Gk
i,j =

− log(− log(Uk
i,j)) is the kth Gumbel random variable, Uk

i,j is a uniform random variable. αi,j
is the architecture parameter, which could depend on predecessors Zh,i if p(Zi,j) is a conditional
probability. λ is the temperature of the softmax, which is steadily annealed to be close to zero
in SNAS. In Maddison et al. (2016), it is proved that p(limλ→0Z

k
i,j = 1) = αki,j/(

∑n
l=0α

l
i,j),

making this relaxation unbiased once converged.

The full derivation of ∇EZ∼pα(Z)[Lθ(Z)] is given in Appendix C. Here with the surrogate loss L
for each sample, we provide its gradient w.r.t xj , θki,j and αki,j :

∂L
∂xj

=
∑
m>j

∂L
∂xm

ZTm
∂Om(xj)

∂xj
,

∂L
∂θki,j

=
∂L
∂xj

Zki,j
∂Oi,j(xi)

∂θki,j
,

∂L
∂αki,j

=
∂L
∂xj

OT
i,j(xi)(δ(k

′ − k)−Zi,j)Zki,j
1

λαki,j
.

(6)

We name ∂L
∂α search gradient similar to the one in Wierstra et al. (2008), even though no policy

gradient is involved. This renders SNAS a differentiable version of evolutionary-strategy-based
NAS.

2.3 CREDIT ASSIGNMENT

With the equivalence of p(Z) in SNAS and p(τ) in ENAS from Section 2.1 and the search gradient
of SNAS from Section 2.2, we discuss in this subsection what credits SNAS search gradients assign
to each structural decision.

To assign credits to actions both temporally and laterally is an important topic in reinforcement learn-
ing (Precup, 2000; Schulman et al., 2015; Tucker et al., 2018; Xu et al., 2018). In ENAS, proximal
policy optimization (PPO) (Schulman et al., 2017) is used to optimize the architecture policy, which
distributes credits with TD learning and generalized advantage estimator (GAE) (Schulman et al.,
2015). However, as the reward of NAS task is only obtainable after the architecture is finalized and
the network is tested for accuracy, it is a task with delayed rewards. As proved by Arjona-Medina
et al. (2018), TD learning has bias with reward delay and corrects it exponentially slowly.

Different from ENAS, there is no MDP assumption in SNAS, but the reward function is made dif-
ferentiable in terms of structural decisions. From Section 2.2 we can derive the expected search
gradient for architecture parameters at edge (i, j):

EZ∼p(Z)[
∂L
∂αki,j

] = EZ∼p(Z)[∇αki,j log p(Zi,j)[
∂L
∂xj

Õi,j(xi)]c], (7)

where [·]c emphasizes · is constant for the gradient calculation w.r.t. α. A full derivation is provided
in Appendix D. Apparently, the search gradient is equivalent to a policy gradient for distribution at
this edge whose credit is assigned as

Ri,j = −[
∂L
∂xj

Õi,j(xi)]c. (8)
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From a decision-wise perspective, this reward could be interpreted as contribution analysis of L
with Taylor Decomposition (Montavon et al., 2017a), which distributes importance scores among
nodes in the same effective layer. Given the presence of skip connections, nodes may be involved
into multiple effective layers, credits from which would be integrated. This integrated credit of a
node j is then distributed to edges (i, j) pointing to it, weighted by Õi,j(xi). Details are given in
Appendix E. Thus for each structural decision, no delayed reward exists, the credits assigned to
it are valid from the beginning. This proves why SNAS is more efficient than ENAS. Laterally at
each edge, credits are distributed among possible operations, adjusted with random variables Zi,j .
At the beginning of the training, Zi,j is continuous and operations share the credit, the training is
mainly on neural operation parameters. With the temperature goes down and Zi,j becomes closer
to one-hot, credits are given to the chosen operations, adjusting their probabilities to be sampled.

2.4 RESOURCE CONSTRAINT

Apart from training efficiency and validation accuracy, forwarding time of the child network is
another concern in NAS in order for its feasible employment. In SNAS, this could be taken into
account as a regularizer in the objective:

EZ∼pα(Z)[Lθ(Z) + ηC(Z)] = EZ∼pα(Z)[Lθ(Z)] + ηEZ∼pα(Z)[C(Z)], (9)
where C(Z) is the cost of time for the child network associated with random variables Z. Rather
than directly estimating the forwarding time, there are three candidates from the literature (Gordon
et al., 2018; Ma et al., 2018) that can be used to approximately represent it: 1) the parameter size
; 2) the number of float-point operations (FLOPs); and 3) the memory access cost (MAC). Details
about C(Z) in SNAS could be found in Appendix F.

However, not like Lθ(Z), C(Z) is not differentiable w.r.t. either θ or α. A natural problem to
ask is, whether efficient credit assignment from C(Z) could be done with similar decomposition
introduced above, such that the proof of SNAS’s efficiency still applies. And the answer is positive,
thanks to the fact that C(Z) is linear in terms of all one-hot random variables Zi,j :

C(Z) =
∑
i,j

C(Zi,j) =
∑
i,j

ZTi,jC(Oi,j), (10)

mainly because the size of feature maps at each node is not dependent on the structural decision.
That is, the distribution at each edge (i, j) is optimized with local penalty, which is the conservative
decomposition of the global cost, consistent with the credit assignment principle in SNAS.

In SNAS, pα(Z) is fully factorizable, making it possible to calculate EZ∼pα [C(Z)] analytically
with sum-product algorithm (Kschischang et al., 2001). Unfortunately, this expectation is non-trivial
to calculate, we optimize the Monte Carlo estimate of the final form from sum-product algorithm

EZ∼pα [C(Z)] =
∑
i,j

EZ\i,j∼pα [EZi,j∼pα [Z
T
i,jC(Oi,j)]] (11)

with policy gradients.

3 EXPERIMENTS

Following the pipeline in DARTS, our experiments consist of three stages. First, SNAS is applied
to search for convolutional cells in a small parent network on CIFAR-10 and we choose the best
cells based on their search validation accuracy. Then, a larger network is constructed by stacking the
learned cells (child graphs) and is retrained on CIFAR-10 to compare the performance of SNAS with
other state-of-the-art methods. Finally, we show that the cells learned on CIFAR-10 is transferable
to large datasets by evaluating their performance on ImageNet.

3.1 ARCHITECTURE SEARCH ON CIFAR-10

Motivation We apply SNAS to find convolutional cells on CIFAR-10 for image classification.
Unlike DARTS, which evaluates the performance of child networks during the searching stage by
training their snapshots from scratch, we directly take the search validation accuracy as the perfor-
mance evaluation criterion. This evaluation method is valid in SNAS since the searching is unbiased
from its objective, as introduced in Section 2.1.
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Figure 2: Cells (child graphs) SNAS (mild constraint) finds on CIFAR-10. (a) Normal cell. (b)
Reduction cell.

Dataset CIFAR-10 dataset (Krizhevsky & Hinton, 2009) is a basic dataset for image classification,
which consists of 50,000 training images and 10,000 testing images. Data transformation is achieved
by the standard data pre-processing and augmentation techniques (see Appendix G.1).

Search Space Our setup follows DARTS, where convolutional cells (parent graphs) of 7 nodes are
stacked for multiple times to form a network. The input nodes, i.e. the first and second nodes, of cell
k are set equal to the outputs of cell k−2 and cell k−1, respectively, with 1× 1 convolutions inserted
as necessary, and the output node is the depthwise concatenation of all the intermediate nodes.
Reduction cells are located at the 1/3 and 2/3 of the total depth of the network to reduce the spatial
resolution of feature maps. Therefore the architecture distribution parameters is (αnormal,αreduce),
where αnormal is shared by all the normal cells and αreduce is shared by all the reduction cells.
Details about all operations included are shown in Appendix G.1.

Training Settings In the searching stage, we train a small network stacked by 8 cells (parent
graphs) using SNAS with three levels of resource constraint for 150 epochs. This network size is
determined to fit into a single GPU. Single-level optimization is employed to optimize θ and α
over the same dataset as opposed to bilevel optimization employed by DARTS. The rest of the setup
follows DARTS (Appendix G.1). The search takes 32 hours1 on a single GPU2.

Searching Process The normal and reduction cells learned on CIFAR-10 using SNAS with mild
resource constraint are shown in Figure 2. In Figure 3, we give the validation accuracy during the
search of SNAS, DARTS and ENAS with 10 Randomly Generated Seeds. Comparing with ENAS,
SNAS takes fewer epochs to converge to higher validation accuracy. Though DARTS converges
faster than SNAS, this accuracy is inconsistent with the child network. Table 1 presents their com-
parison of the validation accuracy at the end of search and after architecture derivation without
fine-tuning. While SNAS can maintain its performance, there is a huge gap between those two in
DARTS.

Table 1: Search validation accuracy and child network validation accuracy of SNAS and DARTS.
Results marked with * were obtained using the code publicly released by Liu et al. (2019).

Architecture Search Valid.
Acc (%)

Child Net
Valid. Acc (%)

Search Cost
(GPU days)

DARTS (2nd order bi-level) (Liu et al., 2019)* 87.67 54.66 13

SNAS (single-level) + mild constraint 88.54 90.67 1.5

1The batch size of SNAS is 64 and that of ENAS is 160.
2All the experiments were performed using NVIDIA TITAN Xp GPUs
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Figure 3: Search progress in validation accuracy from
SNAS, DARTS and ENAS.
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Figure 4: Entropy of architecture distri-
bution in SNAS and DARTS.

This gap is caused by the extra architecture derivation step in DARTS, consisting of the following
two steps. (1) Remove operations with relatively weak attention. As shown in Figure 4, the entropy
of the architecture distribution (softmax) at each edge, i.e. Hpα , is relatively high in DARTS, indi-
cating its uncertainty in structural decisions. Hence removing other operations from the continuous
relaxation will strongly affect the output of the network. (2) Remove relatively ambiguous edges.
DARTS manually selects two inputs for each intermediate nodes, thus the topology is inconsistent
with that in the training stage. While SNAS employs architecture sampling and resource regularizer
to automatically induce sparsity. Phenomena shown in Figure 4 and Table 1 verify our claim that
searching process in SNAS is less biased from the objective, i.e. Equation (4), and could possibly
save computation resources for parameter retraining when extended to NAS on large datasets.

Searching Results Three levels of resource constraint, mild, moderate and aggressive are exam-
ined in SNAS. Mild resource constraint lies at the margin of the appearance of zero operation to
drop edges in child graphs, as shown in Figure 2. Interestingly, every node takes only two input
edges, just as in the designed scheme in ENAS and DARTS. When the constraint level is increased
to moderate, the reduction cell begins to discover similar structures as normal cells, as shown in
Appendix H. When a more aggressive resource constraint is added, the structure of reduction cells
is further sparsified. As shown in Figure 5, more edges are dropped, leaving only two, which leads
to the drop of some nodes, including the input node ck−1, and two intermediate nodes x2 and x3.
Note that this child graph is a structure that ENAS and DARTS are not able to discover 4.
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Figure 5: Cells (child graphs) SNAS (aggressive constraint) finds on CIFAR-10. (a) Normal cell.
(b) Reduction cell.

3Repetition for convolutional cells is not necessary since the optimization outcomes are not initialization-
sensetive (Liu et al., 2019).

4In the code from Liu et al. (2019), zero is omitted in child graph derivation as empirically it tends to learn
the largest weight.
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3.2 ARCHITECTURE EVALUATION ON CIFAR-10

Motivation In the searching stage, we follow the economical setup of DARTS to use only one
single GPU, which constrains the parameter size of the child network. A conventional assumption
in DARTS and ENAS5 is that the final search validation accuracy has exploited the parameter size,
the ceiling of which can only be raised by allowing more parameters. For a fair comparison, we
follow this assumption in evaluation stage, stacking more cells (child graphs) to build a deeper
network. This network is trained from scratch as in DARTS and ENAS to report the performance of
the cells learned by SNAS on CIFAR-10.

Evaluation Settings A large network of 20 cells is trained from scratch for 600 epochs with batch
size 96. Other hyperparameters remain the same as those for architecture search. Additional en-
hancements are listed in Appendix G.2. The training takes 1.5 days on a single GPU with our
implementation in PyTorch.

Table 2: Classification errors of SNAS and state-of-the-art image classifiers on CIFAR-10.

Architecture Test Error
(%)

Params
(M)

Search Cost
(GPU days) Search Method NAS Pipeline

Completeness

DenseNet-BC (Huang et al., 2017) 3.46 25.6 - manual -

NASNet-A + cutout (Zoph et al., 2017) 2.65 3.3 1800 RL complete
AmoebaNet-A + cutout (Real et al., 2018) 3.34 ± 0.06 3.2 3150 evolution complete
AmoebaNet-B + cutout (Real et al., 2018) 2.55 ± 0.05 2.8 3150 evolution complete
Hierarchical Evo (Liu et al., 2017b) 3.75 ± 0.12 15.7 300 evolution complete
PNAS (Liu et al., 2017a) 3.41 ± 0.09 3.2 225 SMBO complete
ENAS + cutout (Pham et al., 2018) 2.89 4.6 0.5 RL complete

Random search baseline‡ + cutout (Liu et al., 2019) 3.29 ± 0.15 3.2 1 random -
DARTS (1st order bi-level) + cutout (Liu et al., 2019) 3.00 ± 0.14 3.3 0.4 gradient-based incomplete
DARTS (2nd order bi-level) + cutout (Liu et al., 2019) 2.76 ± 0.09 3.3 1 gradient-based incomplete
DARTS (single-level) + cutout (Liu et al., 2019) 3.56 ± 0.10 3.0 0.3 gradient-based incomplete

SNAS (single-level) + mild constraint + cutout 2.98 2.9 1.5 gradient-based complete
SNAS (single-level) + moderate constraint + cutout 2.85 ± 0.02 2.8 1.5 gradient-based complete
SNAS (single-level) + aggressive constraint + cutout 3.10 ± 0.04 2.3 1.5 gradient-based complete

Results The CIFAR-10 evaluation results are presented in Table 2. The test error of SNAS is on par
with the state-of-the-art RL-based and evolution-based NAS while using three orders of magnitude
less computation resources. Furthermore, with slightly longer wall-clock-time, SNAS outperforms
1st-order DARTS and ENAS by discovering convolutional cells with both a smaller error rate and
fewer parameters. It also achieves a comparable error rate compared to 2nd-order DARTS but with
fewer parameters. With a more aggressive resource constraint, SNAS can sparsify the architecture
even further to distinguish from ENAS and DARTS with only a slight drop in performance, which is
still on par with 1st-order DARTS. It is interesting to note that with same single-level optimization,
SNAS significantly outperforms DARTS. Bilevel optimization could be regarded as a data-driven
meta-learning method to resolve the bias proved above, whose bias from the exact meta-learning
objective is still unjustified due to the ignorance of separate child network derivation scheme.

3.3 ARCHITECTURE TRANSFERABILITY EVALUATION ON IMAGENET

Motivation Since real world applications often involve much larger datasets than CIFAR-10,
transferability is a crucial criterion to evaluate the potential of the learned cells (child graphs) (Zoph
et al., 2017). To show whether the cells learned on by SNAS CIFAR-10 can be generalized to larger
datasets, we apply the same cells evaluated in Section 3.2 to the classification task on ImageNet.

Dataset The mobile setting is adopted where the size of the input images is 224 × 224 and the
number of multiply-add operations in the model is restricted to be less than 600M.

5As shown in the code publicly released by Pham et al. (2018)
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Table 3: Classification errors of SNAS and state-of-the-art image classifiers on ImageNet.

Architecture Test Error (%)
top-1 top-5

Params
(M)

+ ×
(M)

Search Cost
(GPU days) Search Method NAS Pipeline

Completeness

Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 1448 - manual -
MobileNet (Howard et al., 2017) 29.4 10.5 4.2 569 - manual -
ShuffleNet 2× (v1) (Zhang et al.) 26.4 10.2 ∼5 524 - manual -
ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 10.1 ∼5 591 - manual -

NASNet-A (Zoph et al., 2017) 26.0 8.4 5.3 564 1800 RL complete
NASNet-B (Zoph et al., 2017) 27.2 8.7 5.3 488 1800 RL complete
NASNet-C (Zoph et al., 2017) 27.5 9.0 4.9 558 1800 RL complete
AmoebaNet-A (Real et al., 2018) 25.5 8.0 5.1 555 3150 evolution complete
AmoebaNet-B (Real et al., 2018) 26.0 8.5 5.3 555 3150 evolution complete
AmoebaNet-C (Real et al., 2018) 24.3 7.6 6.4 570 3150 evolution complete
PNAS (Liu et al., 2017a) 25.8 8.1 5.1 588 225 SMBO complete

DARTS (Liu et al., 2019) 26.9 9.0 4.9 595 1 gradient-based incomplete

SNAS (mild constraint) 27.3 9.2 4.3 522 1.5 gradient-based complete

Evaluation Settings We stack a network of 14 cells using the same cells designed by SNAS (mild
constraint) and evaluated on CIFAR-10 (Section 3.2) and train it for 250 epochs with other hyperpa-
rameters following DARTS (see Appendix G.3). The training takes 12 days on a single GPU.

Results Table 3 presents the results of the evaluation on ImageNet and shows that the cell found
by SNAS on CIFAR-10 can be successfully transferred to ImageNet. Notably, SNAS is able to
achieve competitive test error with the state-of-the-art RL-based NAS using three orders of magni-
tude less computation resources. And with resource constraints added, SNAS can find smaller cell
architectures that achieve competitive performance with DARTS.

4 RELATED WORKS

Improving the efficiency of NAS is a prerequisite to extending it to more complicated vision tasks
like detection, as well as larger datasets. In the complete pipeline of NAS, parameter learning is
a time-consuming one that attracts attention from the literature. Ideas to design auxiliary mecha-
nisms like performance prediction (Baker et al., 2017; Deng et al., 2017), iterative search (Liu et al.,
2017a), hypernetwork generated weights (Brock et al., 2017) successfully accelerate NAS to certain
degrees. Getting rid of these auxiliary mechanisms, ENAS (Pham et al., 2018) is the state-of-the-art
NAS framework, proposing parameter sharing among all possible child graphs, which is followed
by SNAS. In Section 2 we introduced SNAS’s relation with ENAS in details. Apart from ENAS,
we are also inspired by Louizos et al. (2017) to use continuous distribution for structural decision at
each edge and optimize it along with an l0 complexity regularizer.

The most important motivation of SNAS is to leverage the gradient information in generic dif-
ferentiable loss to update architecture distribution, which is shared by DARTS (Liu et al., 2019).
In Section 2 and Appendix B we have introduced SNAS’s advantage over DARTS, a reward for
maintaining the completeness of the NAS pipeline. Actually, the idea to make use of this gradi-
ent information to improve the learning efficiency of a stochastic model has been discussed in the
literature of generative model (Gu et al., 2015; Maddison et al., 2016) and reinforcement learning
(Schmidhuber, 1990; Arjona-Medina et al., 2018). But as far as we known, we are the first one to
combine the insights from these two fields to discuss possible efficiency improvement of NAS.

5 CONCLUSION

In this work, we presented SNAS, a novel and economical end-to-end neural architecture search
framework. The key contribution of SNAS is that by making use of gradient information from
generic differentiable loss without sacrificing the completeness of NAS pipeline, stochastic archi-
tecture search could be more efficient. This improvement is proved by comparing the credit assigned
by the search gradient with reinforcement-learning-based NAS. Augmented by a complexity regu-
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larizer, this search gradient trades off testing error and forwarding time. Experiments showed that
SNAS searches well on CIFAR-10, whose result could be transferred to ImageNet as well. As a
more efficient and less-biased framework, SNAS will serve as a possible candidate for full-fledged
NAS on large datasets in the future.
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A CONNECTING p(Z) IN SNAS AND p(τ) IN ENAS

In ENAS, the NAS task is defined as an MDP, where the observation oi = a0, a1...ai−1. Thus the
transition probability

p(oi|oi−1, ai−1) = p(oi|a0, a1...ai−2, ai−1) = δ(a0, a1...ai−1). (12)
With the policy of RNN controller denoted as π(ai|oi), the joint probability of a trajectory τ in this
MDP is

p(τ) = ρ(o0)

i∏
π(ai|oi)

i∏
p(oi+1|oi, ai)

=

i∏
π(ai|oi)

=

i∏
π(ai|a0, a1...ai−1)

= p(a),

(13)

where a is a vector of all structural decisions, which is denoted as Z in SNAS. So we have
p(τ) = p(Z). (14)

Note that if we factorize p(Z) with conditional probability to have Markovian property as in Equa-
tion 13, we have the factor

p(Zi|Z0,Z1...Zi−1) = π(ai|a0, a1...ai−1). (15)

B DIFFERENCE BETWEEN SNAS AND DARTS

We take a search space with three intermediate nodes for example to exhibit the difference between
SNAS and DARTS (Liu et al., 2019), as shown in Figure 6. This search space could be viewed as
a unit search space whose property could be generalized to larger space since it contains nodes in
series and in parallel.

The objective of a NAS task is
EZ∼pα(Z)[R(Z)], (16)

where pα(Z) is the distribution of architectures, which is previously solved with reinforcement
learning. In both SNAS and DARTS, the reward function is made differentiable using the train-
ing/testing loss, R(Z) = Lθ((Z)), such that the architecture learning could leverage information in
the gradients of this loss and conduct together with operation parameters training:

EZ∼pα(Z)[R(Z)] = EZ∼pα(Z)[Lθ(Z)]. (17)
As introduced in Appendix A, SNAS solves (16) with a novel type of factorization, without rely-
ing on the MDP assumption. Though independent assumption between edges would restrict the
probability distribution, there is no bias introduced.

However, to avoid the sampling process and gradient back-propagation through discrete random
variables, DARTS takes analytical expectation at the input of each node over operations at incoming
edges and optimizes a relaxed loss with deterministic gradients. Take the cell in Figure 6 as a base
case, the objective before this relaxation is

EZ∼pα(Z)[Lθ(Z
T
j,lOj,l(Z

T
i,jOi,j(xi)) +Z

T
j,mOj,m(ZTi,jOi,j(xi)))]

=EZ∼pα(Z)[Lθ(
∑
m>j

ZTj,mOj,m(ZTi,jOi,j(xi))].
(18)

DARTS relaxed this objective to

Lθ(
∑
m>j

Epαj,m [ZTj,mOj,m(Epαi,j [Z
T
i,jOi,j(xi)])]). (19)

Considering that O(x) are ReLU-Conv-BN stacks as in ENAS (Pham et al., 2018), which are non-
linear, this transformation introduces unbounded bias. Though it will not be perceivable in training,
where the complete graph is used for accuracy validation, consistent this loss, the derived graph is
never validated during training. Hence the training is inconsistent with the true objective maximizing
the expected performance of derived architectures. After an architecture derivation introduced in
DARTS, the performance falls enormously and the parameters need to be retrained.
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Figure 6: A comparison for gradients in DARTS and SNAS. (a) Deterministic gradients in DARTS;
(b) Stochastic gradients in SNAS. Solid lines denote deterministic nodes, while dashed lines de-
note stochastic nodes. Black dotted lines denote compounded gradients, purple lines for parameter
gradients in SNAS, red for search gradients.

C GRADIENTS IN SNAS

Figure 6(b) gives an illustration of a base three-intermediate-node unit in SNAS, where each edge
has three operations (indexed by k) to choose from. In the search space of SNAS, intermediate nodes
take input from all previous nodes. We have

xj =
∑
h<j

ZTh,jOh,j(xh) = Z
T
i,jOi,j(xi) +

∑
h<i

ZTh,jOh,j(xh). (20)

Let θki,j be the parameters inOk
i,j , we have

∂xj
∂θki,j

= ZTi,j
∂Oi,j(xi)

∂θki,j
. (21)

As we use concrete disctribution here to make the sampling differentiable with reparametrization
trick:

Zki,j = fαi,j (G
k
i,j)

=
exp((logαki,j +G

k
i,j)/λ)∑n

l=0 exp((logα
l
i,j +G

l
i,j)/λ)

,
(22)

where Gk
i,j = − log(− log(Uk

i,j)) is the kth Gumbel random variable, Uki,j is a uniform random
variable, the gradient w.r.t. αi,j is:

∂xj
∂αki,j

= OT
i,j(xi)

∂fαi,j (Gi,j)

∂αki,j
. (23)
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The partial derivative
∂fαi,j
∂αki,j

is

∂fαi,j (Gi,j)

∂αki,j
=

∂
∂αki,j

exp((logαki,j +G
k
i,j)/λ)∑n

l=0 exp((logα
l
i,j +G

l
i,j)/λ)

(δ(k′ − k)− exp((logαi,j +Gi,j)/λ)∑n
l=0 exp((logα

i
i,j +G

l
i,j)/λ)

)

=
∂(logαki,j +G

k
i,j)/λ

∂αki,j
fαi,j (G

k
i,j)(δ(k

′ − k)− fαi,j (Gi,j))

=(δ(k′ − k)− fαi,j (Gi,j))fαi,j (G
k
i,j)

1

λαki,j

=(δ(k′ − k)−Zi,j)Zki,j
1

λαki,j
.

(24)
Substitute it back to (23), we obtain

∂xj
∂αki,j

= OT
i,j(xi)(δ(k

′ − k)−Zi,j)Zki,j
1

λαki,j
. (25)

We can also derive ∂xm
∂xj

for chain rule connection:

∂xm
∂xj

= ZTj,m
∂Oj,m(xj)

∂xj
. (26)

Thus the gradient from the surrogate loss L to xj , θki,j and αki,j respectively are

∂L
∂xj

=
∑
m>j

∂L
∂xm

ZTj,m
∂Oj,m(xj)

∂xj
,

∂L
∂θki,j

=
∂L
∂xj

Zki,j
∂Oi,j(xi)

∂θki,j
,

∂L
∂αki,j

=
∂L
∂x1

OT
i,j(xi)(δ(k

′ − k)−Zi,j)Zki,j
1

λαki,j
.

(27)

D CREDIT ASSIGNMENT FOR EQUIVALENT POLICY GRADIENT

From Appendix C we can see that the expected search gradient for architecture parameters at each
edge is:

EZ∼p(Z)[
∂L
∂αki,j

] = EU∼Uniform[
∂L
∂xj

OT
i,j(xi)

∂fαi,j (− log(− log(Ui,j)))

∂αki,j
]

=

∫ 1

0

p(Ui,j)
∂L
∂xj

OT
i,j(xi)

∂fαi,j (− log(− log(Ui.j)))

∂αki,j
dUi,j

=
∂

∂αk1

∫ 1

0

p(Ui,j)[
∂L
∂xj

OT
i,j(xi)]cfαi,j (− log(− log(Ui,j)))dUi,j

=
∂

∂αki,j

∫
p(Zi,j)[

∂L
∂xj

OT
i,j(xi)]cZi,jdZi,j

=

∫
p(Zi,j)

∂ log p(Zi,j)

∂αki,j
[
∂L
∂xj

OT
i,j(xi)Zi,j ]cdZi,j

= EZ∼p(Z)[∇αki,j log p(Zi,j)[
∂L
∂xj

OT
i,j(xi)Zi,j ]c]

= EZ∼p(Z)[∇αki,j log p(Zi,j)[
∂L
∂xj

Õi,j(xi)]c],

(28)

where [·]c denotes · is a constant for the gradient calculation w.r.t. α. Note that in this derivation
we stop the gradient from successor nodes, with an independence assumption enforced in back-
propagation.
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E TAYLOR DECOMPOSITION FOR CONTRIBUTION ANALYSIS

With d neurons (pixels) xi in the same layer of a deep neural network, whose output is f(x), Mon-
tavon et al. (2017a) decomposes f(x) as a sum of individual credits for xi. This decomposition is
obtained by the first-order Taylor expansion of the function at some root point x̃ for which f(x̃) = 0:

f(x) =

d∑
i=1

Ri(x) +O(xxT ), (29)

where the individual credits
Ri(x) =

∂f

∂xi
|x=x̃(xi − x̃i) (30)

are first-order terms and O(xxT ) is for higher-order information. When ReLU is chosen as the
activation function, O(xxT ) can be omitted (Montavon et al., 2017b). Thus ones can always find a
root point x̃ = limε→0 εx that incidentally lies on the same linear region as point x, in which case
the function can be written as

f(x) =

d∑
i=1

Ri(x) =
d∑
i=1

∂f

∂xi
xi. (31)

Noticing the similarity between (8) and (31), we try using Taylor Decomposition to interpret the
credit assignment in SNAS. Given a sample x0, ones can iterate all effective layers of the DAG and
distribute credits from network output f among nodes xj in each layer. In Figure 1 for example,
DAG(Z(1)) has 2 effective layers, while DAG(Z(2)) has 3 effective layers. Given the presence of
the skip connection, nodes may be involved into multiple layers and thus obtain integrated credits

∂f

∂xj
=

∑
m>j

∂f

∂xm

∂Õm(xj)

∂xj
, (32)

e.g. x1 in DAG(2) integrates credits from x2 and x3. According to (1), multiple edges (i, j) are
pointing to j, which decompose (32) as:

R̂i,j =
∂f

∂xj
Õi,j(xi). (33)

Adjusting the weight of this sample with ∂L/∂f and taking the optimization direction into account,
we have

Ri,j = −
∂L
∂xj

Õi,j(xi) (34)

F CANDIDATES FOR LOCAL RESOURCE CONSTRAINTS

In the case of a convolutional layer, H , W and f , k correspond to the output spatial dimensions and
the filter dimensions respectively and we use I ,O to denote the number of input and output channels.
Since group convolution is also adopted in this paper to reduce the computational complexity, g is
the number of groups.

Thus, the parameter size and the number of float-point operations (FLOPs) of a single convolutional
layer is

parameter size =
fkIO

g
(35)

FLOPs =
HWfkIO

g
(36)

By assuming the computing device has enough cache to store the feature maps and the parame-
ters, we can simplify the memory access cost (MAC) to be the sum of the memory access for the
input/output feature maps and kernel weights (Ma et al., 2018).

MAC = HW (I +O) +
fkIO

g
(37)
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In SNAS, because all the operations on a single edge share the same output spatial dimensions
and the input/output channels, FLOPs of a convolutional operation is directly proportional to its
parameter size. And although the memory access cost for the input/output feature mapsHW (I+O)
does not depend on the parameter size, since both are positively correlated to the number of layers
used in the operation, we may say there is a positive correlation between MAC and the parameter
size. Thus, when only considering the convolution operations, solely using the parameter size as the
resource constraint is sufficient. However, in SNAS, we also have the pooling operation and the skip
connection, which are parameter free. The equations to calculate the resource criteria of a pooling
operation or a skip connection are as follows.

FLOPs of pooling:
FLOPs = HWfkIO (38)

FLOPs of skip connection:
FLOPs = 0 (39)

MAC of pooling and skip connection:

MAC = HW (I +O) (40)

We can see that MAC is the same for pooling and skip connection since they need to access the same
input/output feature maps, therefore, to distinguish between pooling and skip connection, FLOPs
need to be included in the resource constraint. Similarly, to distinguish between skip connection and
none (free, no operation), MAC also need to be included.

In conclusion, to construct a resource constraint which fully distinguishes the four types of oper-
ations, all three locally decomposable criteria, the parameter size, FLOPs and MAC, need to be
combined.

G DETAILED SETTINGS OF EXPERIMENTS

G.1 ARCHITECTURE SEARCH ON CIFAR-10

Data Pre-processing and Augmentation Techniques We employ the following techniques in
our experiments: centrally padding the training images to 40×40 and then randomly cropping them
back to 32 × 32; randomly flipping the training images horizontally; normalizing the training and
validation images by subtracting the channel mean and dividing by the channel standard deviation.

Implementation Details of Operations The operations include: 3× 3 and 5× 5 separable convo-
lutions, 3 × 3 and 5 × 5 dilated separable convolutions, 3 × 3 max pooling, 3 × 3 average pooling,
skip connection and zero operation. All operations are of stride one (excluded the ones adjacent to
the input nodes in the reduction cell, which are of stride two) and the convolved feature maps are
padded to preserve their spatial resolution. Convolutions are applied in the order of ReLU-Conv-
BN, and the depthwise separable convolution is always applied twice (Zoph et al., 2017; Real et al.,
2018; Liu et al., 2017a; 2019).

Detailed Training Settings We follow the training settings as in Liu et al. (2019). The neural
operation parameters θ are optimized using momentum SGD, with initial learning rate ηθ = 0.025
(annealed down to zero following a cosine schedule), momentum 0.9, and weight decay 3 × 10−4.
The architecture distribution parameters α are optimized by Adam, with initial learning rate ηα =
3× 10−4, momentum β = (0.5, 0.999) and weight decay 10−3. The batch size employed is 64 and
the initial number of channels is 16.

G.2 ARCHITECTURE EVALUATION ON CIFAR-10

Additional Enhancement Techniques Following existing works (Zoph et al., 2017; Liu et al.,
2017a; Pham et al., 2018; Real et al., 2018; Liu et al., 2019), we employ the following additional
enhancements: cutout (DeVries & Taylor, 2017), path dropout of probability 0.2 (same as DARTS
in the code publicly released by its authors) and auxiliary towers with weight 0.4.
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G.3 ARCHITECTURE TRANSFERABILITY EVALUATION ON CIFAR-10

Detailed Training Settings The network is trained with batch size 128, weight decay 3 × 10−5

and initial SGD learning rate 0.1, which is decayed by a factor of 0.97 after each epoch. Auxiliary
towers with weight 0.4 are adopted as additional enhancements.

H CELLS LEARNED BY SNAS WITH A MODERATE RESOURCE CONSTRAINT
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Figure 7: Cells (child graphs) SNAS (moderate constraint) finds on CIFAR-10. (a) Normal cell. (b)
Reduction cell.
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