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ABSTRACT

Consider an imitation learning problem that the imitator and the expert have differ-
ent dynamics models. Most of the current imitation learning methods fail because
they focus on imitating actions. We propose a novel state alignment based imita-
tion learning method to train the imitator to follow the state sequences in expert
demonstrations as much as possible. The state alignment comes from both lo-
cal and global perspectives and we combine them into a reinforcement learning
framework by a regularized policy update objective. We show the superiority of
our method on standard imitation learning settings and imitation learning settings
where the expert and imitator have different dynamics models.

1 INTRODUCTION

Learning from demonstrations (imitation learning, abbr. as IL) is a basic strategy to train agents for
solving complicated tasks. Imitation learning methods can be generally divided into two categories:
behavior cloning (BC) and inverse reinforcement learning (IRL). Behavior cloning (Ross et al.,
2011b) formulates a supervised learning problem to learn a policy that maps states to actions using
demonstration trajectories. Inverse reinforcement learning (Russell, 1998; Ng et al., 2000) tries to
find a proper reward function that can induce the given demonstration trajectories. GAIL (Ho &
Ermon, 2016) and its variants (Fu et al.; Qureshi et al., 2018; Xiao et al., 2019) are the recently
proposed IRL-based methods, which uses a GAN-based reward to align the distribution of state-
action pairs between the expert and the imitator.

Although state-of-the-art BC and IRL methods have demonstrated compelling performance in stan-
dard imitation learning settings, e.g. control tasks (Ho & Ermon, 2016; Fu et al.; Qureshi et al., 2018;
Xiao et al., 2019) and video games (Aytar et al., 2018b), these approaches are developed based on
a strong assumption: the expert and the imitator share the same dynamics model; specifically, they
have the same action space, and any feasible state-action pair leads to the same next state in proba-
bility for both agents. The assumption brings severe limitation in practical scenarios: Imagine that a
robot with a low speed limit navigates through a maze by imitating another robot which moves fast,
then, it is impossible for the slow robot to execute the exact actions as the fast robot. However, the
demonstration from the fast robot should still be useful because it shows the path to go through the
maze.

We are interested in the imitation learning problem under a relaxed assumption: Given an imita-
tor that shares the same state space with the expert but their dynamics may be different, we train
the imitator to follow the state sequence in expert demonstrations as much as possible. This is a
more general formulation since it poses fewer requirements on the experts and makes demonstra-
tion collection easier. Due to the dynamics mismatch, the imitator becomes more likely to deviate
from the demonstrations compared with the traditional imitation learning setting. Therefore, it is
very important that the imitator should be able to resume to the demonstration trajectory by itself.
Note that neither BC-based methods nor GAIL-based IRL methods have learned to handle dynamics
misalignment and deviation correction.

To address the issues, we propose a novel approach with four main features: 1) State-based. Com-
pared to the majority of literature in imitation learning, our approach is state-based rather than
action-based. Not like BC and IRL that essentially match state-action pairs between the expert and
the imitator, we only match states. An inverse model of the imitator dynamics is learned to recover
the action; 2) Deviation Correction. A state-based β-VAE (Higgins et al., 2017) is learned as the
prior for the next state to visit. Compared with ordinary behavior cloning, this VAE-based next state
predictor can advise the imitator to return to the demonstration trajectory when it deviates. The
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robustness benefits from VAE’s latent stochastic sampling; 3) Global State Alignment. While the
VAE can help the agent to correct its trajectory to some extent, the agent may still occasionally enter
states that are far away from demonstrations, where the VAE has no clue how to correct it. So we
have to add a global constraint to align the states in demonstration and imitation. Inspired by GAIL
that uses reward to align the distribution of state-action pairs, we also formulate an IRL problem
whose maximal cumulative reward is the Wasserstein Distance between states of demonstration and
imitation. Note that we choose not to involve state-action pairs as in GAIL(Ho & Ermon, 2016),
or state-state pairs as in an observation-based GAIL (Torabi et al., 2018a), because our state-only
formulation imposes weaker constraints than the two above options, thus providing more flexibility
to handle different agent dynamics; 4) Regularized Policy Update. We combine the prior for next
state learned from VAE and the Wasserstein distance-based global constraint from IRL in a unified
framework, by imposing a Kullback-Leibler divergence based regularizer to the policy update in the
Proximal Policy Optimization algorithm.

To empirically justify our ideas, we conduct experiments in two different settings. We first show that
our approach can achieve similar or better results on the standard imitation learning setting, which
assumes the same dynamics between the expert and the imitator. We then evaluate our approach
in the more challenging setting that the dynamics of the expert and the imitator are different. In a
number of control tasks, we either change the physics properties of the imitators or cripple them by
changing their geometries. Existing approaches either fail or can only achieve very low rewards, but
our approach can still exhibit decent performance. Finally, we show that even for imitation across
agents of completely different actuators, it is still possible for the state-alignment based method to
work. Surprisingly, a point mass and an ant in MuJoCo (Todorov et al., 2012) can imitate each other
to navigate in a maze environment.

Our contributions can be summarized as follows:
• Propose to use a state alignment based method in the imitation learning problems where

the expert’s and the imitator’s dynamics are different.
• Propose a local state alignment method based on β-VAE and a global state alignment

method based on Wasserstein distance.
• Combine the local alignment and global alignment components into a reinforcement learn-

ing framework by a regularized policy update objective.

2 RELATED WORK

Imitation learning is widely used in solving complicated tasks where pure reinforcement learning
might suffer from high sample complexity, like robotics control (Le et al., 2017; Ye & Alterovitz,
2017; Pathak et al., 2018), autonomous vehicle (Fu et al.; Pomerleau, 1989), and playing video game
(Hester et al., 2018; Pohlen et al., 2018; Aytar et al., 2018a). Behavioral cloning (Bain & Sommut,
1999) is a straight-forward method to learn a policy in a supervised way. However, behavioral
cloning suffers from the problem of compounding errors as shown by (Ross & Bagnell, 2010), and
this can be somewhat alleviated by interactive learning, such as DAGGER (Ross et al., 2011b).
Another important line in imitation learning is inverse reinforcement learning (Russell, 1998; Ng
et al., 2000; Abbeel & Ng, 2004; Ziebart et al., 2008; Fu et al.), which finds a cost function under
which the expert is uniquely optimal.

Since IRL can be connected to min-max formulations, works like GAIL, SAM (Ho & Ermon, 2016;
Blondé & Kalousis, 2018) utilize this to directly recover policies. Its connections with GANs (Good-
fellow et al., 2014) also lead to f -divergence minimization (Ke et al., 2019; Nowozin et al., 2016)
and Wasserstein distance minimization (Xiao et al., 2019). One can also extend the framework from
matching state-action pairs to state distribution matching, such as Torabi et al. (2018a); Sun et al.
(2019); Schroecker & Isbell (2017). Other works (Aytar et al., 2018b; Liu et al., 2018; Peng et al.,
2018) also learn from observation alone, by defining reward on state and using IRL to solve the
tasks. Works like (Lee et al., 2019; Lee et al.) also use state-based reward for exploration. Torabi
et al. (2018b); Edwards et al. (2018) will recover actions from observations by learning an inverse
model or latent actions. However, our work aims to combine the advantage of global state distribu-
tion matching and local state transition alignment, which combines the advantage of BC and IRL
through a novel framework.

3 BACKGROUNDS

Variational Autoencoders Kingma & Welling (2013); Rezende et al. (2014) provides a frame-
work to learn both a probabilistic generative model pθ(x|z) as well as an approximated posterior
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Figure 2: Visualization of state alignment

distribution qφ(z|x). β-VAE is a variant VAE that introduces an adjustable hyperparameter β to the
original objective:

L(θ, φ;x, z, β) = Eqφ(z|x) [log pθ(x|z)]− βDKL (qφ(z|x)‖p(z)) (1)

Larger β will penalize the total correlation (Chen et al., 2018) to encourage more disentangled latent
representations, while smaller β often results in sharper and more precise reconstructions.

Wasserstein distance The Wasserstein distance between two density functions p(x) and q(x) with
support on a compact metric space (M,d) has an alternative form due to Kantorovich-Rubenstein
duality (Villani, 2008):

W(p, q) = sup
φ∈L1

Ep(x)[φ(x)]− Eq(x)[φ(x)] (2)

Here, L1 is the set of all 1-Lipschitz functions from M to R. Compared with the prevalent KL-
divergence and its extension, the f-divergence family, Wasserstein distance has a number of advan-
tages theoretically and numerically. Please refer to Arjovsky et al. (2017) and Solomon (2018) for a
detailed discussion.

4 SAIL: STATE ALIGNMENT BASED IMITATION LEARNING

4.1 OVERVIEW

Figure 1: Using VAE as a state predic-
tive model will be more self-correctable
because of the stochastic sampling mech-
anism. But this won’t happen when we use
VAE to predict actions.

Our imitation learning method is based on state align-
ment from both local and global perspectives. For lo-
cal alignment, the goal is to follow the transition of the
demonstration as much as possible, and allow the re-
turn to the demonstration trajectory whenever the im-
itation deviates. To achieve both goals, we use a β-
VAE (Higgins et al., 2017) to generate the next state
(Figure 2 Left). For global alignment, we set up an ob-
jective to minimize the Wasserstein distance between
the states in the current trajectory and the demonstra-
tions (Figure 2 Right). There has to be a framework
to naturally combine the local alignment and global
alignment components. We resort to the reinforcement
learning framework by encoding the local alignment
as policy prior and encoding the global alignment as
reward over states. Using Proximal Policy Optimiza-
tion (PPO) by Schulman et al. (2017) as the backbone
RL solver, we derive a regularized policy update. To maximally exploit the knowledge from demon-
strations and reduce interactions with the environment, we adopt a pre-training stage to produce a
good initialization based on the same policy prior induced by the local alignment. Our method is
summarized in Algorithm 1. In the rest parts of this section, we will introduce all the components
of our method in details.

4.2 LOCAL ALIGNMENT BY STATE PREDICTIVE VAE

To align the transition of states locally, we need a predictive model to generate the next state which
the agent should target at. And then we can train an inverse dynamics model to recover the cor-
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Algorithm 1 SAIL: State Alignment based Imitation Learning
Require: Expert trajectories τe : [s1, a1, s2, a2, ...] ∼ πe, initial policy π, inverse dynamics model

g, discriminator φ, total episode T , memory capacity S
1: if Imitator and Expert have the same dynamics model then
2: Pre-train g using τe and transitions collected by a random policy
3: else
4: Pre-train g using transitions collected by a random policy
5: end if
6: Pre-train VAE using τe, and obtain the policy prior . Pre-train VAE and obtain policy prior
7: Pretrain π using policy prior as described in Sec 4.5
8: while episode ≤ T do
9: while |τ | ≤ S do . τ is the collected trajectories

10: Collect trajectory {(s, a, s′, r, done)} using π
11: Update r using (4)
12: Add {(s, a, s′, r, done)} to τ
13: end while
14: Train φ using maxφ∈L1

Es∼τe [φ(s)]− Es∼τ [φ(s)] . Calculate Wasserstein Distance
15: Update inverse dynamics model g
16: Update policy using (5)
17: end while

responding action, so as to provide a direct supervision for policy. It is worth-noting that, while
training an inverse dynamics model is generally challenging, it is not so hard if we only focus on
the agent dynamics, especially when the low-dimensional control states are accessible as in many
practical scenarios. The problem of how to learn high-quality inverse/forward dynamics models is
an active research topic.

Instead of using an ordinary network to memorize the subsequent states, which will suffer from the
same issue of compounding errors as behavioral cloning (Ross & Bagnell, 2010; Ross et al., 2011a),
we propose to use VAE to generate the next state based on the following two reasons. First, as shown
in (Dai et al., 2018), VAE is more robust to outliers and regularize itself to find the support set of a
data manifold, so it will generalize better for unseen data. Second, because of the latent stochastic
sampling, the local neighborhood of a data point will have almost the same prediction, which is
self-correctable when combined with a precise inverse dynamics model as illustrated in Figure 1.

We can also use a VAE to generate action based on the current state. But if the agent deviated from
the demonstration trajectory a little bit, this predicted action is not necessarily guide the agent back
to the trajectory, as shown in Figure 1. And in Sec 5.3.2, we conduct experiments to compare the
state predictive VAE and the action predictive VAE.

Instead of the vanilla VAE, we use β-VAE to balance the KL penalty and prediction error, with
formulation shown in (1). In Sec 5, we discuss the effects of the hyper-parameter β in different
experiment settings as one of the ablation studies.

4.3 GLOBAL ALIGNMENT BY WASSERSTEIN DISTANCE

Due to the difference of dynamics between the expert and the imitator, the VAE-based local align-
ment cannot fully prevent the imitator from deviating from demonstrations. In such circumstances,
we still need to assess whether the imitator is making progress in learning from the demonstra-
tions. We, therefore, seek to control the difference between the state visitation distribution of the
demonstration and imitator trajectories, which is a global constraint.

Note that using this global constraint alone will not induce policies that follow from the demon-
stration. Consider the simple case of learning an imitator from experts of the same dynamics. The
expert takes cyclic actions. If the expert runs for 100 cycles with a high velocity and the imitator
runs for only 10 cycles with a low velocity within the same time span, their state distribution would
still roughly align. That is why existing work such as GAIL aligns state-action occupancy measure.
However, as shown later, our state-based distribution matching will be combined with the local
alignment component, which will naturally resolve this issue. The advantage of this state-based
distribution matching over state-action pair matching as in GAIL or state-next-state pair matching
in (Torabi et al., 2018a) is that the constraint becomes loosened.

4



Published as a conference paper at ICLR 2020

We use IRL approach to achieve the state distribution matching by introducing a reinforcement learn-
ing problem. Our task is to design the reward to train an imitator that matches the state distribution
of the expert.

Before introducing the reward design, we first explain the computation of the Wasserstein distance
between the expert trajectories {τe} and imitator trajectory {τ} using the Kantorovich duality:

W(τe, τ) = sup
φ∈L1

Es∼τe [φ(s)]− Es∼τ [φ(s)] (3)

where φ is the Kantorovich’s potential, and serves as the discriminator in WGAN (Arjovsky et al.,
2017). φ is trained with a gradient penalty term as WGAN-GP introduced in (Gulrajani et al., 2017)

After the rollout of imitator policy is obtained, the potential φ will be updated by (3). Assume a
transition among an imitation policy rollout of length T is (si, si+1). To provide a dense signal
every timestep, we assign the reward as:

r(si, si+1) =
1

T
[φ(si+1)− Es∼τeφ(s)] (4)

We now explain the intuition of the above reward. By solving (3), those states of higher probability
in demonstration will have a larger φ value. The reward in (4) will thus encourage the imitator to
visit such states.

Maximizing the curriculum reward will be equivalent to

J(π) =

T∑
t=1

Est,st+1∼π[r(st, st+1)] =

T∑
t=1

Est+1
[φ(st+1)− Es∼τe [φ(s)]]

T
= −W(τe, τ)

In other words, the optimal policy of this MDP best matches the state visitation distributions w.r.t
Wasserstein distance.

Compared with AIRL (Fu et al.) that also defines rewards on states only, our approach indeed enjoys
certain advantages in certain cases. We provide a theoretical justification in the Appendix D.

4.4 REGULARIZED PPO POLICY UPDATE OBJECTIVE

As mentioned in the second paragraph of Sec 4.3, the global alignment has to be combined with
local alignment. This is achieved by adding a prior to the original clipped PPO objective.

We maximize the following unified objective function:

J(πθ) = LCLIP (θ)− λDKL

(
πθ(·|st)

∥∥∥ pa) (5)

We will explain the two terms in detail. LCLIP (θ) denotes the clipped surrogate objective used in
the original PPO algorithm:

LCLIP (θ) = Êt
[
min

(
πθ(a|s)
πθold(a|s)

Ât, clip

(
πθ(a|s)
πθold(a|s)

, 1− ε, 1 + ε

)
Ât

)]
, (6)

where Ât is an estimator of the advantage function at timestep t. The advantage function is calcu-
lated based on a reward function described in Sec 4.3.

TheDKL term in (5) serves as a regularizer to keep the policy close to a learned policy prior pa. This
policy prior pa is derived from the state predictive VAE and an inverse dynamics model. Assume
the β-VAE is f(st) = st+1 and the inverse dynamics model is ginv(st, st+1) = a. To solve the
case when the agents have different dynamics, we learn a state prediction network and use a learned
inverse dynamics to decode the action. We define the action prior as

pa(at|st) ∝ exp

(
−
∥∥∥ginv(st, f(st))− at

σ

∥∥∥2) (7)

where the RHS is a pre-defined policy prior, a Gaussian distribution centered at ginv(st, f(st)).
σ controls how strong the action prior is when regularizing the policy update, which is a hyper-
parameter. Note that the inverse model can be further adjusted during interactions.
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LCLIP is computed through the advantage Ât and reflects the global alignment. The policy prior is
obtained from the inverse model and local β-VAE, which makes the DKL serve as a local alignment
constraint. Furthermore, our method can be regard as a combination of BC and IRL because our KL-
divergence based action prior encodes the BC policy and we update the policy leveraging reward.

We would note that our state-alignment method augments state distribution matching by taking
relationships of two consecutive states into account with robustness concern.

4.5 PRE-TRAINING

We pretrain the state predictive VAE and the inverse dynamics model, and then obtain the policy
prior in (7), which is a Gaussian distribution. For pre-training, we want to initialize PPO’s Gaussian
policy π by this prior pa, by minimizing the KL-divergence between them. Practically, we use direct
supervision from ginv(st, f(st)) and σ in (7) to directly train both the mean and variance of the
policy network, which is more efficient during the pre-training stage. During the online interaction,
the update rule of PPO’s policy is by optimizing (5), and the variance will be further adjusted for all
the dimensions of the action space.

5 EXPERIMENTS

We conduct two different kinds of experiments to show the superiority of our method. In Sec 5.1, we
compare our method with behavior cloning (Bain & Sommut, 1999), GAIL (Ho & Ermon, 2016),
and AIRL (Fu et al.) in control setting where the expert and the imitator have different dynamics
model, e.g., both of them are ant robots but the imitator has shorter legs. In Sec 5.1, we further
evaluate in the traditional imitation learning setting. Finally, in Sec 5.3, we conduct ablation study
to show the contribution of the components.

5.1 IMITATION LEARNING ACROSS AGENTS OF DIFFERENT ACTION DYNAMICS

5.1.1 ACTORS OF MODIFIED PHYSICS AND GEOMETRY PROPERTIES

We create environments using MuJoCo (Todorov et al., 2012) by changing some properties of ex-
perts, such as density and geometry of the body. We choose 2 environments, Ant and Swimmer, and
augment them to 6 different environments: Heavy/Light/Disabled Ant/Swimmer. The Heavy/Light
agents have modified density, and the disabled agents have modified head/tail/leg lengths. The
demonstrations are collected from the standard Ant-v2 and Swimmer-v2. More descriptions of the
environments and the demonstration collection process can be founded in the Appendix.

We then evaluate our method on them.
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Figure 3: Comparison with BC, GAIL and AIRL when dynamics are different from experts.
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Figure 3 demonstrates the superiority of our methods over all the baselines. Our approach is the
most stable in all the 6 environments and shows the leading performance in each of them. GAIL
seems to be the most sensitive to dynamics difference. AIRL, which is designed to solve imitation
learning for actors of different dynamics, can perform on par with our method in two swimmer-
based environments (DisabledSwimmer and HeavySwimmer) that have relatively lower dimensional
action space (2D for swimmer versus 8D for ants).

Interestingly, the stability and performance of vanilla behavior cloning are quite reasonable in 4 of
the environments, although it failed to move about in the DisabledAnt and HeavyAnt environments.
For these two tasks, the agent will reach dangerous states by cloning actions, yet our method will
not approach these states by using state-based imitation. In the other four games, BC agents do not
die but just move less efficiently, so they have a sub-optimal yet still reasonable score. 1

5.1.2 ACTORS OF HETEROGENEOUS ACTION DYNAMICS

We consider an extremely challenging setting that the imitator and demonstrator are functionally
different. One typical example of expert/imitator pair in practice would be a human and a humanoid
robot. We consider a much simplified version but with similar nature – a Point and an Ant in
MuJoCo. In this task, even if the state space cannot be exactly matched, there are still some shared
dimensions across the state space of the imitator and the actor, e.g., the location of the center of
mass, and the demonstration should still teach the imitator in these dimensions.

We use the same setting as many hierarchical RL papers, such as HIRO and Near-Optimal RL
(Nachum et al., 2018a;b). The agent need to reach a goal position in a maze, which is represented
by (x,y) coordinates. We also know that the first two dimensions of states are the position of the
agent. The prior knowledge includes: (1) the goal space (or the common space that need to be
matched) (2) the projection from the state space to the goal space (select the first two dimensions of
the states).

(a) Original Ant (b) Disabled Ant (c) PointMaze (d) AntMaze

Figure 4: Imitation Learning of Actors with Heterogeneous Action Dynamics.

The first task is that the Ant should reach the other side of the maze from several successful demon-
strations of a Point robot. As shown in Figure 4(c) and Figure 4(d), the maze structure for the ant
and point mass is exactly the same.

To solve this problem, we first pre-train an VAE on the demonstrations, and use this VAE to propose
the next “subgoal” for the Ant. This VAE is trained on the goal space (i.e. the first two dimensions)
of the Point robot’s trajectory. Then we train an inverse model for Ant, which will generate an action
based on the Ant’s current state (high dimensional) and goal predicted by VAE (2 dimensional).

Our performance is shown in Figure 5(c). After 1M training steps, the agent has success rate of 0.8
to reach the other side of the maze.

5.2 ACTORS OF THE SAME DYNAMICS (STANDARD IMITATION LEARNING)

We also evaluate our algorithm on 6 non-trivial control tasks in MuJoCo: Swimmer, Hopper, Walker,
Ant, HalfCheetach, and Humanoid. We first collect demonstration trajectories with Soft Actor-
Critic, which can learn policies that achieve high scores in most of these environments2. For com-

1For LightSwimmer 3(e), AIRL meets MuJoCo numerical exception for several trials.
2We collect near-optimal demonstration on Swimmer using TRPO due to the limited performance of SAC.
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parison, we evaluate our method against 3 baselines: behavior cloning, GAIL, and AIRL3. Also,
to create even stronger baselines for the cumulative reward and imitator run-time sample complex-
ity, we initialize GAIL with behavior cloning, which would obtain higher scores in Swimmer and
Walker. Lastly, to evaluate how much each algorithm depends on the amount of demonstrations, we
sampled demonstration trajectories of ten and fifty episodes.

Table 1 depicts representative results in Hopper and HalfCheetah4. The advantage of our meth-
ods over BC should be attributed to the inherent data augmentation by VAE. On Hopper-v2, we
are significantly better with 10 demos but are just on par if the demos are increased to 50. On
HalfCheetah-v2, the demo cheetah runs almost perfectly ( 12294 scores); in other words, the demo
provides limited instruction when the imitator is even slightly off the demo states, thus the robustness
from VAE becomes critical.

Table 1: Performance on Hopper-v2 and HalfCheetah-v2
Hopper-v2 HalfCheetah-v2

# Demo 10 50 10 50
Expert 3566 ± 1.24 12294.22 ± 273.59

BC 1318.76 ± 804.36 3525.87 ± 160.74 971.42 ± 249.62 4813.20 ± 1949.26
GAIL 3372.66 ± 130.75 3363.97 ± 262.77 474.42 ± 389.30 -175.83 ± 26.76

BC-GAIL 3132.11 ± 520.65 3130.82 ± 554.54 578.85 ± 934.34 1597.51 ± 1173.93
AIRL 3.07 ± 0.02 3.31 ± 0.02 -146.46 ± 23.57 755.46 ± 10.92

Our init 3412.58 ± 450.97 3601.16 ± 300.14 1064.44 ± 227.32 7102.29 ± 910.54
Our final 3539.56 ± 130.36 3614.19 ± 150.74 1616.34 ± 180.76 8817.32 ± 860.55

5.3 ABLATION STUDY

5.3.1 COEFFICIENT β IN β-VAE

β-VAE introduces an additional parameter to the original VAE. It controls the variance of the ran-
domly sampled latent variable sampling, which subsequently affects the reconstruction quality and
robustness. Theoretically, a smaller β leads to better state prediction quality, with the cost of losing
the deviation correction ability (Dai et al., 2018).

To empirically show the role of beta and check the sensitivity of our algorithm with respect to beta,
we evaluate VAE in settings of both the imitator has the same dynamics and has different dynam-
ics. We select HalfCheetah-v2 and HeavyAnt as an example. For HalfCheetah-v2, we pretrain the
inverse dynamics and VAE using given demonstrations so that the initial performance will tell the
quality of the VAE’s prediction. For DisabledAnt, we pretrain the dynamics with random trials,
which results in forward/inverse dynamics estimation of less accuracy. In this case, we examine
both its initialized performance and final performance. The results are shown in Table 2. We find
out that for β in [0.01, 0.1], the performance is better. Specifically, when the imitator is different
from the expert, a smaller β will result in poor performance as it overfits the demonstration data.

We also compare our method with an ordinary MLP trained by MSE loss. We find out that VAE
outperforms MLP in all settings. Note that the MLP-based approach is very similar to the state-based
behavior cloning work of (Torabi et al., 2018b).

5.3.2 ACTION PREDICTIVE β-VAE

In Figure 1, we mentioned that a VAE to predict the next action is less favorable. To justify the
claim, we compare a VAE-based BC with a vanilla BC that both predict actions, as shown in Table 3.
Experiments show that VAE-BC is even outperformed by a vanilla BC, especially when β is larger
than 0.001. Compared with the last line in Table 2, we can conclude that VAE is more useful when
predicting state, which consolidates that the advantage really comes from our state-based approach
but not only the robustness of VAE.

5.3.3 EFFECT OF WASSERSTEIN DISTANCE AND KL REGULARIZATION

In our policy update process, we use Wasserstein distance with KL regularization to update the
policy. To analyze their effects on the performance, we use HalfCheetah-v2 and Humanoid-v2 with

3AIRL and EAIRL(Qureshi et al., 2018) have similar performance, and we only compare to AIRL.
4Results for other environments can be founded in the Appendix.
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Table 2: Analyze the role of VAE coefficient. The “None” item means replacing VAE with an
ordinary network with linear layers.

β
Environments

HalfCheetah-50 HalfCheetah-20 HeavyAnt-Initial HeavyAnt-Final
0.2 2007.86 1289.21 258.91 282.13

0.15 2653.04 1151.93 1149.65 1502.68
0.1 7102.29 1797.44 1219.34 5208.45

0.05 5933.28 2215.71 987.72 4850.62
0.01 5893.17 1982.62 740.54 1921.26
0.005 4415.04 1369.57 320.54 399.31
None 4759.69 1123.79 359.15 -62.13

Table 3: Compare behavior cloning to variational behavior cloning
β

Environments
HalfCheetah-50 Hopper-50

0.1 230.52 ± 13.26 203.87 ± 14.39
0.01 1320.04 ± 15.43 438.10 ± 20.43
0.001 3306.91 ± 12.51 3303.72 ± 10.46
None 4813.20 ± 1949.26 3525.87 ± 6.74

0 200000 400000 600000 800000 100000012000001400000
Steps

0

2000

4000

6000

8000

S
co

re

W Distance + KL
No W Distance
No KL

(a) HalfCheetah-v2

0 200000 400000 600000 800000 1000000 1200000
Steps

1500

2000

2500

3000

3500

4000

S
co

re

W Distance + KL
No W Distance
No KL

(b) Humanoid-v2

0 200000 400000 600000 800000 1000000
Steps

0.0

0.2

0.4

0.6

0.8

S
co

re

Ours

(c) AntMaze

Figure 5: (a), (b) show the effects of Wasserstein distance and KL regularization on HalfCheetah-v2
and Humanoid-v2 given 20 demonstration trajectories. And (c) presents the result on Antmaze.

20 expert trajectories. For each environment, they use the same pretrained inverse model and VAE,
thus they have the same behavior after pretraining.

As shown in Figure 5(a)(b), Wasserstein distance combined with KL regularization performs the
best. Wasserstein objective is used in our inverse RL based mechanism that would significantly
penalize the exploration when the agent deviates from the demonstration far away. However, using
this objective alone lacks constraints over consecutive states, thus performing the worst. The KL
objective adds constraints over consecutive states using a VAE prior; however, VAE is unable to
extrapolate to states when the imitator deviates far from the demo (green line gradually fails as in
Fig 5 (b)), but this is the scenario when the Wasserstein distance would not favor, thus the reward
from the Wasserstein distance will push the imitator back to the demonstration states.

6 CONCLUSION

We proposed SAIL, a flexible and practical imitation learning algorithms that use state alignment
from both local and global perspective. We demonstrate the superiority of our method using MuJoCo
environments, especially when the action dynamics are different from the demonstrations.
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Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635, 2011a.
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A LEARNING ACROSS DIFFERENT ENVIRONMENTS

PointMaze & AntMaze As shown in Figure 4, a point mass or an ant is put in a 24 × 24 U-maze.
The task is to make the agent reach the other side of U-maze with the demonstration from the point
mass. The ant is trained to reach a random goal in the maze from a random location, and should
reach the other side of the maze. The state space of ant is 30-dim, which contains the positions and
velocities.

HeavyAnt Two times of original Ant’s density. Two times of original gear of the armature.

LightAnt One tenth of original Ant’s density.

DisabledAnt Two front legs are 3 quarters of original Ant’s legs.

HeavySwimmer 2.5 times of original Swimmer’s density.

LightSwimmer One twentieth of original Swimmer’s density.

DisabledSwimmer Make the last joint 1.2 times longer and the first joint 0.7 times of the original
length

The exact results of these environments are listed in Table 4, 5. All the statistics are calculated from
20 trails.

Table 4: Performance on modifeid Swimmer
DisabledSwimmer LightSwimmer HeavySwimmer

BC 249.09 ± 1.53 277.99 ± 3.41 255.95 ± 2.5
GAIL 228.46 ± 2.02 -4.11 ± 0.51 254.91 ± 1.35
AIRL 283.42 ± 3.69 67.58 ± 25.09 301.27 ± 5.21

SAIL(Ours) 287.71 ± 2.31 342.61 ± 6.14 286.4 ± 3.2

Table 5: Performance on modified Ant
DisabledAnt HeavyAnt LightAnt

BC 1042.45 ± 75.13 550.6 ± 77.62 4936.59 ± 53.42
GAIL -1033.54 ± 254.36 -1089.34 ± 174.13 -971.74 ± 123.14
AIRL -3252.69 ± 153.47 -62.02 ± 5.33 -626.44 ± 104.31

SAIL(Ours) 3305.71 ± 67.21 5608.47 ± 57.67 4335.46 ± 82.34

B IMITATION BENCHMARK EXPERIMENTS SETTINGS AND RESULTS

We use six MuJoCo (Todorov et al., 2012) control tasks. The name and version of the environments
are listed in Table 6, which also list the state and action dimension of the tasks with expert perfor-
mance and reward threshold to indicate the minimum score to solve the task. All the experts are
trained by using SAC (Haarnoja et al., 2018) except Swimmer-v2 where TRPO (Schulman et al.,
2015) get higher performance.

Table 6: Performance on benchmark control tasks
Environment State Dim Action Dim Reward threshold Expert Performance
Swimmer-v2 8 2 360 332
Hopper-v2 11 3 3800 3566

Walker2d-v2 17 6 - 4924
Ant-v2 111 8 6000 6157

HalfCheetah-v2 17 6 4800 12294
Humanoid-v2 376 17 1000 5187

The exact performance of all methods are list in Table 7, 8, 9, 10, 11, 12. We compare GAIL(Ho &
Ermon, 2016), behavior cloning, GAIL with behavior cloning initilization and AIRL to our method
containing. Means and standard deviations are calculated from 20 trajectories after the agents con-
verge and the number total interactions with environments is less than one million environment
steps.
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Table 7: Performance on Swimmer-v2 with different trajectories
Swimmer-v2

#Demo 5 10 20 50
Expert 332.88 ± 1.24

BC 328.85 ± 2.26 331.17 ± 2.4 332.17 ± 2.4 330.65 ± 2.42
GAIL 304.64 ± 3.16 271.59 ± 11.77 56.16 ± 5.99 246.73 ± 5.76

BC-GAIL 313.80 ± 3.42 326.58 ± 7.87 294.93 ± 12.21 315.68 ± 9.99
AIRL 332.11 ± 2.57 338.43 ± 3.65 335.67 ± 2.72 340.08 ± 2.70

Our init 332.36 ± 3.62 335.78 ± 0.34 336.23 ± 2.53 334.03 ± 2.11
Our final 332.22 ± 3.23 339.67 ± 3.21 336.18 ± 1.87 336.31 ± 3.20

Table 8: Performance on Hopper-v2 with different trajectories
Hopper-v2

#Demo 5 10 20 50
Expert 3566 ± 1.24

BC 1471.40 ± 637.25 1318.76 ± 804.36 1282.46 ± 772.24 3525.87 ± 160.74
GAIL 3300.32 ± 331.61 3372.66 ± 130.75 3201.97 ± 295.27 3363.97 ± 262.77

BC-GAIL 3122.23 ± 358.65 3132.11 ± 520.65 3111.42 ± 414.28 3130.82 ± 554.54
AIRL 4.12 ± 0.01 3.07 ± 0.02 4.11 ± 0.01 3.31 ± 0.02

Our init 2322.49 ± 300.93 3412.58 ± 450.97 3314.03 ± 310.32 3601.16 ± 300.14
Our final 3092.26 ± 670.72 3539.56 ± 130.36 3516.81 ± 280.98 3610.19 ± 150.74

Table 9: Performance on Walker2d-v2 with different trajectories
Walker2d-v2

#Demo 5 10 20 50
Expert 5070.97 ± 209.19

BC 1617.34 ± 693.63 4425.50 ± 930.62 4689.30 ± 372.33 4796.24 ± 490.05
GAIL 1307.21 ± 388.55 692.16 ± 145.34 1991.58 ± 446.66 751.21 ± 150.18

BC-GAIL 3454.91 ± 792.40 2094.68 ± 1425.05 3482.31 ± 828.21 2896.50 ± 828.18
AIRL -7.13 ± 0.11 -7.39 ± 0.09 -3.74 ± 0.13 -4.64 ± 0.09

Our init 1859.10 ± 720.44 2038.90 ± 260.78 4509.82 ± 1470.65 4757.58 ± 880.45
Our final 2681.20 ± 530.67 3764.14 ± 470.01 4778.82 ± 760.34 4780.73 ± 360.66

Table 10: Performance on Ant-v2 with different trajectories
Ant-v2

#Demo 5 10 20 50
Expert 6190.90 ± 254.18

BC 3958.20 ± 661.28 3948.88 ± 753.41 5424.01 ± 473.05 5852.79 ± 572.97
GAIL 340.02 ± 59.02 335.25 ± 89.19 314.35 ± 52.13 284.18 ± 32.40

BC-GAIL -1081.30 ± 673.65 -1177.27 ± 618.67 -13618.45 ± 4237.79 -1166.16 ± 1246.79
AIRL -839.32 ± -301.54 -386.43 ± 156.98 -586.07 ± 145.43 -393.90 ± 145.13

Our init 1150.82 ± 200.87 3015.43 ± 300.70 5200.58 ± 870.74 5849.88 ± 890.56
Our final 1693.59 ± 350.74 3983.34 ± 250.99 5980.37 ± 420.16 5988.65 ± 470.03

Table 11: Performance on HalfCheetah-v2 with different trajectories
HalfCheetah-v2

#Demo 5 10 20 50
Expert 12294.22 ± 208.41

BC 225.42 ± 147.16 971.42 ± 249.62 2782.76 ± 959.67 4813.20 ± 1949.26
GAIL -84.92 ± 43.29 474.42 ± 389.30 -116.70 ± 34.14 -175.83 ± 26.76

BC-GAIL 1362.59 ± 1255.57 578.85 ± 934.34 3744.32 ± 1471.90 1597.51 ± 1173.93
AIRL 782.36 ± 48.98 -146.46 ± 23.57 1437.25 ± 25.45 755.46 ± 10.92

Our init 267.71 ± 90.38 1064.44 ± 227.32 3200.80 ± 520.04 7102.74 ± 910.54
Our final 513.66 ± 15.31 1616.34 ± 180.76 6059.27 ± 344.41 8817.32 ± 860.55
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Table 12: Performance on Humanoid-v2 with different trajectories
Humanoid-v2

#Demo 5 10 20 50
Expert 5286.21 ± 145.98

BC 1521.55± 272.14 3491.07± 518.64 4686.05 ±355.74 4746.88 ±605.61
GAIL 485.92± 27.59 486.44 ±27.18 477.15± 22.07 481.14± 24.37

BC-GAIL 363.68 ±44.44 410.03 ±33.07 487.99± 30.77 464.91 ±33.21
AIRL 79.72 ± 4.27 87.15 ± 5.01 -1293.86 ± 10.70 84.84 ± 6.46

Our init 452.31 ± 190.12 1517.63 ± 110.45 4610.25 ± 2750.86 4776.83 ± 1320.46
Our final 1225.58 ± 210.88 2190.43 ± 280.18 4716.91 ±680.29 4780.07 ± 700.01

C HYPER-PARAMETER AND NETWORK ARCHITECTURE

When we pretrain the policy network with our methods, we choose β = 0.05 in β-VAE. We use
Adam with learning rate 3e-4 as the basic optimization algorithms for all the experiments. The
policy network and value network used in the algorithms all use a three-layer relu network with
hidden size 256. We choose σ = 0.1 in the policy prior for all the environments.

D COMPARISON WITH AIRL (FU ET AL.) FROM A THEORETICAL
PERSPECTIVE

Here we illustrate the theoretical advantage of our SAIL algorithm over AIRL in certain scenarios
by an example.

The theory of AIRL shows that it is able to recover the groundtruth reward of an MDP up to a
constant if the reward of this MDP is define on states only, when the adversarial learning reaches the
equilibrium. Next we show a basic case that violates the theoretical assumption of AIRL but can be
solved by our algorithm.

� �a11

a12

a21

a22

Figure 6: Two-ring MDP with deterministic transition

Figure 6 shows the states and transition of an MDP. The demonstration policy jumps back and forth
between s1 and s2 periodically. Because our algorithm has the action prior (local alignment), it is
clear that we can solve this problem. The dynamics of many periodic games, such as Walker and
HalfCheetah in MuJoco, are extension of this two-ring graph.

It is easy to show that it is impossible for the adversarial game in AIRL to solve this problem at
equilibrium. According to Sec 6 of Fu et al., the reward family of AIRL is parameterized as

fθ(s, s
′) = g(s) + γh(s′)− h(s) (8)

For simplicity of notation, let φ(s) = g(s)− h(s) and ψ(s) = γh(s), then

fθ(s, s
′) = φ(s) + ψ(s′) (9)

In other words, the reward of AIRL is decomposible to the sum of two functions defined on states
only.

Again, for simplicity, we omit the arguments of functions but use subscripts to represent states. For
example, f12 = f(s1, s2) and φ1 = φ(s1). Then,

f12 = φ1 + ψ2, f11 = φ1 + ψ1

f21 = φ2 + ψ1, f22 = φ2 + ψ2
(10)

Assume that AIRL has reached the equilibrium and learned the optimal policy, then it must be true
that f12 > f11 and f21 > f22 (otherwise, there exists other optimal policies). But f12 > f11 implies
that ψ2 > ψ1, while f21 > f22 implies that ψ1 > ψ2, which is a contradiction.
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