
Additive function approximation in the brain

Kameron Decker Harris
Paul G. Allen School of Computer Science and Engineering, Department of Biology

University of Washington
kamdh@uw.edu

Abstract

Many biological learning systems such as the mushroom body, hippocampus, and
cerebellum are built from sparsely connected networks of neurons. For a new
understanding of such networks, we study the function spaces induced by sparse
random features and characterize what functions may and may not be learned. A
network with d inputs per neuron is found to be equivalent to an additive model of
order d, whereas with a degree distribution the network combines additive terms of
different orders. We identify three specific advantages of sparsity: additive function
approximation is a powerful inductive bias that limits the curse of dimensionality,
sparse networks are stable to outlier noise in the inputs, and sparse random features
are scalable. Thus, even simple brain architectures can be powerful function
approximators. Finally, we hope that this work helps popularize kernel theories of
networks among computational neuroscientists.

1 Introduction

Kernel function spaces are popular among machine learning researchers as a potentially tractable
framework for understanding artificial neural networks trained via gradient descent [e.g. 1, 2, 3, 4, 5, 6].
Artificial neural networks are an area of intense interest due to their often surprising empirical
performance on a number of challenging problems and our still incomplete theoretical understanding.
Yet computational neuroscientists have not widely applied these new theoretical tools to describe the
ability of biological networks to perform function approximation.

The idea of using fixed random weights in a neural network is primordial, and was a part of
Rosenblatt’s perceptron model of the retina [7]. Random features have then resurfaced under many
guises: random centers in radial basis function networks [8], functional link networks [9], Gaussian
processes (GPs) [10, 11], and so-called extreme learning machines [12]; see [13] for a review.
Random feature networks, where the neurons are initialized with random weights and only the
readout layer is trained, were proposed by Rahimi and Recht in order to improve the performance of
kernel methods [14, 15] and can perform well for many problems [13].

In parallel to these developments in machine learning, computational neuroscientists have also studied
the properties of random networks with a goal towards understanding neurons in real brains. To a first
approximation, many neuronal circuits seem to be randomly organized [16, 17, 18, 19, 20]. However,
the recent theory of random features appears to be mostly unknown to the greater computational
neuroscience community.

Here, we study random feature networks with sparse connectivity: the hidden neurons each receive
input from a random, sparse subset of input neurons. This is inspired by the observation that the
connectivity in a variety of predominantly feedforward brain networks is approximately random and
sparse. These brain areas include the cerebellar cortex, invertebrate mushroom body, and dentate
gyrus of the hippocampus [21]. All of these areas perform pattern separation and associative learning.
The cerebellum is important for motor control, while the mushroom body and dentate gyrus are

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Sparse connectivity

l inputs m features output

Advantages of sparsity

• Additivity as inductive bias

• Stability to input noise

• Scalable wiring & computation

d in-degree

Example right: Learning the additive function

from limited data using sparse random features

True

Estimate

Figure 1: Sparse connectivity in a shallow neural network. The function shown is the sparse random
feature approximation to an additive sum of sines, learned from poorly distributed samples (red
crosses). Additivity offers structure which may be leveraged for fast and efficient learning.

general learning and memory areas for invertebrates and vertebrates, respectively, and may have
evolved from a similar structure in the ancient bilaterian ancestor [22]. Recent work has argued that
the sparsity observed in these areas may be optimized to balance the dimensionality of representation
with wiring cost [20]. Sparse connectivity has been used to compress artificial networks and speed up
computation [23, 24, 25], whereas convolutions are a kind of structured sparsity [26, 27].

We show that sparse random features approximate additive kernels [28, 29, 30, 31] with arbitrary
orders of interaction. The in-degree of the hidden neurons d sets the order of interaction. When the
degrees of the neurons are drawn from a distribution, the resulting kernel contains a weighted mixture
of interactions. These sparse features offer advantages of generalization in high-dimensions, stability
under perturbations of their input, and computational and biological efficiency.

2 Background: Random features and kernels

Now we will introduce the mathematical setting and review how random features give rise to kernels.
The simplest artificial neural network contains a single hidden layer, of size m, receiving input from
a layer of size l (Figure 1). The activity in the hidden layer is given by, for i ∈ [m],

φi(x) = h(wᵀ
i x + bi). (1)

Here each φi is a feature in the hidden layer, h is the nonlinearity, W = (w1,w2, . . . ,wm) ∈ Rl×m
are the input to mixed weights, and b ∈ Rm are their biases. We can write this in vector notation as
φ(x) = h(Wᵀx− b), where φ : Rl → Rm.

Random features networks draw their input-hidden layer weights at random. Let the weights wi and
biases bi in the feature expansion (1) be sampled i.i.d. from a distribution µ on Rl+1. Under mild
assumptions, the inner product of the feature vectors for two inputs converges to its expectation

1

m
φ(x)ᵀφ(x′)

m→∞−−−−→ E [φ(x)φ(x′)] =

∫
h(wᵀx + b)h(wᵀx′ + b) dµ(w, b) := k(x,x′). (2)

We identify the limit (2) with a reproducing kernel k(x,x′) induced by the random features, since the
limiting function is an inner product and thus always positive semidefinite [14]. The kernel defines
an associated reproducing kernel Hilbert space (RKHS) of functions. For a finite network of width
m, the inner product 1

mφ(x)ᵀφ(x′) is a randomized approximation to the kernel k(x,x′).

3 Sparsely connected random feature kernels

We now turn to our main result: the general form of the random feature kernels with sparse, indepen-
dent weights. For simplicity, we start with a regular model and then generalize the result to networks
with varying in-degree. Two kernels that can be computed in closed form are highlighted.

Fix an in-degree d, where 1 ≤ d ≤ l, and let µ|d be a distribution on Rd which induce, together with
some nonlinearity h, the kernel kd(z, z′) on z, z′ ∈ Rd (for the moment, d is not random). Sample a

2

sparse feature i ∈ [m] in two steps: First, pick d neighbors from all
(
l
d

)
uniformly at random. Let

Ni ⊆ [l] denote this set of neighbors. Second, sample wji ∼ µ|d if j ∈ Ni and otherwise set wji = 0.
We find that the resulting kernel

kregd (x,x′) = E[E[φ(xN)φ(x′N)|N]] =

(
l

d

)−1 ∑
N :|N |=d

kd(xN ,x
′
N). (3)

Here xN denotes the length d vector of x restricted to the neighborhood N , with the other l − d
entries in x ignored.

More generally, the in-degrees may be chosen independently according to a degree distribution, so
that d becomes a random variable. Let D(d) be the probability mass function of the hidden node
in-degrees. Conditional on node i having degree di, the in-neighborhood Ni is chosen uniformly at
random among the

(
l
di

)
possible sets. Then the induced kernel becomes

kdistD (x,x′) = E[E[φ(xN)φ(x′N)|N , d]] =

l∑
d=0

D(d) kregd (x,x′). (4)

For example, if every layer-two node chooses its inputs independently with probability p, the D(di)
is the probability mass function of the binomial distribution Bin(l, p). The regular model (3) is a
special case of (4) with D(d′) = I{d′ = d}. Extending the proof techniques in [14] yields:

Claim The random map 1
mφ(x)ᵀφ(x′) with κ-Lipschitz nonlinearity uniformly approximates

kdistD (x,x′) to error ε usingm = O(lκ
2

ε2 log C
ε) many features (the proof is contained in Appendix C).

Two simple examples With Gaussian weights and regular d = 1, we find that (see Appendix B)

kreg1 (x,x′) = 1− 1

l
‖sgn(x)− sgn(x′)‖0 if h = step function, and (5)

kreg1 (x,x′) = 1− c

l
‖x− x′‖1 if h = sign function. (6)

4 Advantages of sparse connectivity

4.1 Additive modeling

The regular degree kernel (3) is a sum of kernels that only depend on combinations of d inputs,
making it an additive kernel of order d. The general expression for the degree distribution kernel (4)
illustrates that sparsity leads to a mixture of additive kernels of different orders. These have been
referred to as additive GPs [30], but these kind of models have a long history as generalized additive
models [e.g. 28, 32]. For the regular degree model with d = 1, the sum in (3) is over neighborhoods
of size one, simply the individual indices of the input space. Thus, for any two input neighborhoods
N1 andN2, we have |N1 ∩N2| = ∅, and the RKHS corresponding to kreg1 (x,x′) is the direct sum of
the subspacesH = H1 ⊕ . . .⊕Hl. Thus regular d = 1 defines a first-order additive model, where
f(x) = f1(x1) + . . . + fl(xl). When d > 1 we allow interactions between subsets of d variables,
e.g. regular d = 2 leads to f(x) = f12(x1, x2) + . . . + fl−1,l(xl−1, xl), all pairwise terms. These
interactions are defined by the structure of the terms kd(xN ,x′N). Finally, the degree distribution
D(d) determines how much weight to place on different degrees of interaction.

Generalization from fewer examples in high dimensions Stone proved that first-order additive
models do not suffer from the curse of dimensionality [33, 34], as the excess risk does not depend
on the dimension l. Kandasamy and Yu [31] extended this result to dth-order additive models and
found a bound on the excess risk of O(l2dn

−2s
2s+d) or O(l2dCd/n) for kernels with polynomial or

exponential eigenvalue decay rates (n is the number of samples and the constants s and C parametrize
rates). Without additivity, these weaken to O(n

−2s
2s+l) and O(Cl/n), much worse when l� d.

Similarity to dropout Dropout regularization [35, 36] in deep networks has been analyzed in a
kernel/GP framework [37], leading to (4) with D = Bin(l, p) for a particular base kernel. Dropout
may thus improve generalization by enforcing approximate additivity, for the reasons above.

3

4.2 Stability: robustness to noise or attacks affecting a few inputs

Equations (5) and (6) are similar: They differ only by the presence of an `0-“norm” versus an `1-norm
and the presence of the sign function. Both norms are stable to outlying coordinates in an input x.
This property also holds for different nonlinearities and 1 < d� l, since every feature φi(x) only
depends on d inputs, and therefore only a minority of the m features will be affected by the few
outliers.1 Sufficiently sparse features will then be less affected by sparse noise than a fully-connected
network, offering denoising advantages [e.g. 20]. A regressor f(x) = αᵀφ(x) built from these
features is stable so long as ‖α‖p is small, since |f(x)− f(x′)| ≤ ‖α‖p‖φ(x)− φ(x′)‖q for any
Hölder conjugates 1/p+ 1/q = 1. Thus if x′ = x + e where e contains a small number of nonzero
entries, then f(x′) ≈ f(x) since φ(x) ≈ φ(x′). Stability also may guarantee the robustness of these
networks to sparse adversarial attacks [38, 39, 40], although exactly the conditions under which these
approximations hold (p =∞, q = 1 is an interesting case) we leave for future work.

4.3 Scalability: computational and biological

Computational Sparse random features give potentially huge improvements in scaling. Direct
implementations of additive models incur a large cost for d > 1, since (3) requires a sum over(
l
d

)
= O(ld) neighborhoods.2 This leads to O(n2ld) time to compute the Gram matrix of n examples

and O(nld) operations to evaluate f(x). In our case, since the random features method is primal,
we need to perform O(nmd) computations to evaluate the feature matrix and the cost of evaluating
f(x) remains O(md).3 Sparse matrix-vector multiplication makes evaluation faster than the O(ml)
time it takes when connectivity is dense. For ridge regression, we have the usual advantages that
computing an estimator takes O(nm2 + nmd) time and O(nm+md) memory, rather than O(n3)
time and O(n2) memory for a naïve kernel ridge method.

Biological In a small animal such as a flying insect, space is extremely limited. Sparsity offers a
huge advantage in terms of wiring cost [20]. Additive approximation also means that such animals
can learn much more quickly, as seen in the mushroom body [41, 42, 43]. While the previous
computational points do not apply as well to biology, since real neurons operate in parallel, fewer
operations translate into lower metabolic cost for the animal.

5 Discussion

Inspired by their ubiquity in biology, we have studied sparse random networks of neurons using the
theory of random features, finding the advantages of additivity, stability, and scalability. This theory
shows that sparse networks such as those found in the mushroom body, cerebellum, and hippocampus
can be powerful function approximators. Kernel theories of neural circuits may be more broadly
applicable in the field of computational neuroscience.

Expanding the theory of dimensionality in neuroscience Learning is easier in additive function
spaces because they are low-dimensional, a possible explanation for few-shot learning in biological
systems. Our theory is complementary to existing theories of dimensionality in neural systems
[16, 44, 45, 46, 47, 20, 48, 49, 50], which defined dimensionality using a skewness measure of
covariance eigenvalues. Kernel theory extends this concept, measuring dimensionality similarly [51]
in the space of nonlinear functions spanned by the kernel.

Limitations We model biological neurons as simple scalar functions, completely ignoring time
and neuromodulatory context. It seems possible that a kernel theory could be developed for time-
and context-dependent features. Our networks suppose i.i.d. weights, but weights that follow Dale’s
law should also be considered. We have not studied the sparsity of activity, postulated to be
relevant in cerebellum. It remains to be demonstrated how the theory can make concrete, testable
predictions, e.g. whether this theory may explain identity versus concentration encoding of odors or
the discrimination/generalization tradeoff under experimental conditions.

1 If one coordinate of x is noisy, the probability that the ith neuron is affected is di/l � 1.
2 There is a more efficient method when working with a tensor product kernel, as in [29, 30, 31].
3 Note that we need to take m = Ω(l) to ensure good approximation of the kernel (Appendix C).

4

Acknowledgments KDH was supported by a Washington Research Foundation postdoctoral fellowship.
Thank you to Rajesh Rao for support during this project and to Bing Brunton for support and many helpful
comments.

References
[1] Francis Bach. Breaking the Curse of Dimensionality with Convex Neural Networks. Journal of Machine

Learning Research, 18(19):1–53, 2017.
[2] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence and Generaliza-

tion in Neural Networks. arXiv:1806.07572 [cs, math, stat], June 2018.
[3] Lenaic Chizat and Francis Bach. On the Global Convergence of Gradient Descent for Over-parameterized

Models using Optimal Transport. arXiv:1805.09545 [cs, math, stat], May 2018.
[4] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A Mean Field View of the Landscape of Two-

Layers Neural Networks. arXiv:1804.06561 [cond-mat, stat], April 2018.
[5] Grant M. Rotskoff and Eric Vanden-Eijnden. Trainability and Accuracy of Neural Networks: An Interacting

Particle System Approach. arXiv:1805.00915 [cond-mat, stat], May 2018.
[6] Luca Venturi, Afonso S. Bandeira, and Joan Bruna. Spurious Valleys in Two-layer Neural Network

Optimization Landscapes. arXiv:1802.06384 [cs, math, stat], February 2018.
[7] F. Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and Organization in the

Brain. Psychological Review, 65(6):386–408, 1958.
[8] D. S. Broomhead and David Lowe. Radial Basis Functions, Multi-Variable Functional Interpolation

and Adaptive Networks. Technical Report RSRE-MEMO-4148, Royal Signals and Radar Establishment
Malvern (UK), March 1988.

[9] B. Igelnik and Yoh-Han Pao. Stochastic choice of basis functions in adaptive function approximation and
the functional-link net. IEEE Transactions on Neural Networks, 6(6):1320–1329, November 1995. ISSN
1045-9227. doi: 10.1109/72.471375.

[10] Radford M. Neal. Priors for Infinite Networks. In Bayesian Learning for Neural Networks, Lecture Notes
in Statistics, pages 29–53. Springer, New York, NY, 1996. ISBN 978-0-387-94724-2 978-1-4612-0745-0.
doi: 10.1007/978-1-4612-0745-0_2.

[11] Christopher K. I. Williams. Computing with Infinite Networks. In M. C. Mozer, M. I. Jordan, and
T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 295–301. MIT Press,
1997.

[12] L. P. Wang and C. R. Wan. Comments on "The Extreme Learning Machine". IEEE Transactions on Neural
Networks, 19(8):1494–1495, August 2008. ISSN 1045-9227. doi: 10.1109/TNN.2008.2002273.

[13] Simone Scardapane and Dianhui Wang. Randomness in neural networks: An overview. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery, 7(2):e1200, 2017. ISSN 1942-4795. doi:
10.1002/widm.1200.

[14] Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines. In J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Information Processing Systems 20,
pages 1177–1184. Curran Associates, Inc., 2008.

[15] A. Rahimi and B. Recht. Uniform approximation of functions with random bases. In 2008 46th Annual
Allerton Conference on Communication, Control, and Computing, pages 555–561, September 2008. doi:
10.1109/ALLERTON.2008.4797607.

[16] Surya Ganguli and Haim Sompolinsky. Compressed Sensing, Sparsity, and Dimensionality in Neuronal
Information Processing and Data Analysis. Annual Review of Neuroscience, 35(1):485–508, 2012. doi:
10.1146/annurev-neuro-062111-150410.

[17] Sophie J. C. Caron, Vanessa Ruta, L. F. Abbott, and Richard Axel. Random convergence of olfactory
inputs in the Drosophila mushroom body. Nature, 497(7447):113–117, May 2013. ISSN 0028-0836. doi:
10.1038/nature12063.

[18] Sophie J. C. Caron. Brains Don’t Play Dice—or Do They? Science, 342(6158):574–574, November 2013.
ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1245982.

[19] Kameron Decker Harris, Tatiana Dashevskiy, Joshua Mendoza, Alfredo J. Garcia, Jan-Marino Ramirez,
and Eric Shea-Brown. Different roles for inhibition in the rhythm-generating respiratory network. Journal
of Neurophysiology, 118(4):2070–2088, October 2017. ISSN 0022-3077, 1522-1598. doi: 10.1152/jn.
00174.2017.

[20] Ashok Litwin-Kumar, Kameron Decker Harris, Richard Axel, Haim Sompolinsky, and L. F. Abbott.
Optimal Degrees of Synaptic Connectivity. Neuron, 93(5):1153–1164.e7, March 2017. ISSN 0896-6273.
doi: 10.1016/j.neuron.2017.01.030.

[21] N. Alex Cayco-Gajic and R. Angus Silver. Re-evaluating Circuit Mechanisms Underlying Pattern Separa-
tion. Neuron, 101(4):584–602, February 2019. ISSN 08966273. doi: 10.1016/j.neuron.2019.01.044.

[22] Gabriella H. Wolff and Nicholas J. Strausfeld. Genealogical correspondence of a forebrain centre implies
an executive brain in the protostome–deuterostome bilaterian ancestor. Philosophical Transactions of the
Royal Society B: Biological Sciences, 371(1685):20150055, January 2016. doi: 10.1098/rstb.2015.0055.

5

[23] Song Han, Jeff Pool, John Tran, and William Dally. Learning both Weights and Connections for Efficient
Neural Network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems 28, pages 1135–1143. Curran Associates, Inc., 2015.

[24] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding. arXiv:1510.00149 [cs], October 2015.

[25] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning Structured Sparsity in Deep
Neural Networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems 29, pages 2074–2082. Curran Associates, Inc., 2016.

[26] Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional Kernel Networks.
arXiv:1406.3332 [cs, stat], June 2014.

[27] Corinne Jones, Vincent Roulet, and Zaid Harchaoui. Kernel-based Translations of Convolutional Networks.
arXiv:1903.08131 [cs, math, stat], March 2019.

[28] Grace Wahba. Spline Models for Observational Data. SIAM, September 1990. ISBN 978-0-89871-244-5.
[29] Francis R. Bach. Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning. In D. Koller,

D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21,
pages 105–112. Curran Associates, Inc., 2009.

[30] David K Duvenaud, Hannes Nickisch, and Carl E. Rasmussen. Additive Gaussian Processes. In J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 24, pages 226–234. Curran Associates, Inc., 2011.

[31] Kirthevasan Kandasamy and Yaoliang Yu. Additive Approximations in High Dimensional Nonparametric
Regression via the SALSA. In International Conference on Machine Learning, pages 69–78, June 2016.

[32] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer-Verlag New York, New York, NY, 2009. ISBN 978-0-387-84858-7.
OCLC: 428882834.

[33] Charles J. Stone. Additive Regression and Other Nonparametric Models. The Annals of Statistics, 13(2):
689–705, June 1985. ISSN 0090-5364, 2168-8966. doi: 10.1214/aos/1176349548.

[34] Charles J. Stone. The Dimensionality Reduction Principle for Generalized Additive Models. The Annals
of Statistics, 14(2):590–606, June 1986. ISSN 0090-5364, 2168-8966. doi: 10.1214/aos/1176349940.

[35] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580 [cs], July
2012.

[36] Nitish Srivastava. Improving Neural Networks with Dropout. University of Toronto, 2013.
[37] David Duvenaud, Oren Rippel, Ryan P. Adams, and Zoubin Ghahramani. Avoiding pathologies in very

deep networks. arXiv:1402.5836 [cs, stat], February 2014.
[38] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified Robust-

ness to Adversarial Examples with Differential Privacy. arXiv:1802.03471 [cs, stat], February 2018.
[39] Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified Adversarial Robustness via Randomized

Smoothing. arXiv:1902.02918 [cs, stat], February 2019.
[40] Hadi Salman, Greg Yang, Jerry Li, Pengchuan Zhang, Huan Zhang, Ilya Razenshteyn, and Se-

bastien Bubeck. Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers.
arXiv:1906.04584 [cs, stat], June 2019.

[41] Ramón Huerta and Thomas Nowotny. Fast and Robust Learning by Reinforcement Signals: Explorations
in the Insect Brain. Neural Computation, 21(8):2123–2151, August 2009. ISSN 0899-7667, 1530-888X.
doi: 10.1162/neco.2009.03-08-733.

[42] Charles B. Delahunt and J. Nathan Kutz. Putting a bug in ML: The moth olfactory network learns to read
MNIST. Neural Networks, 118:54–64, October 2019. ISSN 0893-6080. doi: 10.1016/j.neunet.2019.05.012.

[43] Charles B. Delahunt and J. Nathan Kutz. Insect cyborgs: Bio-mimetic feature generators improve machine
learning accuracy on limited data. arXiv:1808.08124 [cs, stat], August 2018.

[44] Mattia Rigotti, Omri Barak, Melissa R. Warden, Xiao-Jing Wang, Nathaniel D. Daw, Earl K. Miller, and
Stefano Fusi. The importance of mixed selectivity in complex cognitive tasks. Nature, 497(7451):585–590,
May 2013. ISSN 0028-0836. doi: 10.1038/nature12160.

[45] Baktash Babadi and Haim Sompolinsky. Sparseness and Expansion in Sensory Representations. Neuron,
83(5):1213–1226, September 2014. ISSN 0896-6273. doi: 10.1016/j.neuron.2014.07.035.

[46] Markus Meister. On the dimensionality of odor space. eLife, 4:e07865, July 2015. ISSN 2050-084X. doi:
10.7554/eLife.07865.

[47] Luca Mazzucato, Alfredo Fontanini, and Giancarlo La Camera. Stimuli Reduce the Dimensionality of
Cortical Activity. Frontiers in Systems Neuroscience, 10, 2016. ISSN 1662-5137. doi: 10.3389/fnsys.
2016.00011.

[48] Peiran Gao, Eric Trautmann, Byron M. Yu, Gopal Santhanam, Stephen Ryu, Krishna Shenoy, and Surya
Ganguli. A theory of multineuronal dimensionality, dynamics and measurement. November 2017. doi:
10.1101/214262.

[49] Francesca Mastrogiuseppe and Srdjan Ostojic. Linking Connectivity, Dynamics, and Computations in
Low-Rank Recurrent Neural Networks. Neuron, 99(3):609–623.e29, August 2018. ISSN 0896-6273. doi:
10.1016/j.neuron.2018.07.003.

6

[50] Matthew S. Farrell, Stefano Recanatesi, Guillaume Lajoie, and Eric Shea-Brown. Dynamic compression
and expansion in a classifying recurrent network. bioRxiv, page 564476, March 2019. doi: 10.1101/564476.

[51] Tong Zhang. Learning Bounds for Kernel Regression Using Effective Data Dimensionality. Neural
Computation, 17(9):2077–2098, September 2005. ISSN 0899-7667. doi: 10.1162/0899766054323008.

7

Appendices: Additive function approximation in the brain
Table of contents

• Appendix A: Test problems and numerical experiments

• Appendix B: Kernel examples arising from random features, dense and sparse

• Appendix C: Kernel approximation results, uniform convergence of Lipschitz features

A Test problems

We have implemented sparse random features in Python to demonstrate the properties of learn-
ing in this basis. Our code, which provides a scikit-learn style SparseRFRegressor
and SparseRFClassifier estimators, is available from https://github.com/kharris/
sparse-random-features.

A.1 Additive function approximation

A.1.1 Comparison with datasets from Kandasamy and Yu [1]

As said in the main text, Kandasamy and Yu [1] created a theory of the generalization properties
of higher-order additive models. They supplemented this with an empirical study of a number
of datasets using their Shrunk Additive Least Squares Approximation (SALSA) implementation
of the additive kernel ridge regression (KRR). Their data and code were obtained from https:
//github.com/kirthevasank/salsa.

We compared the performance of SALSA to the sparse random feature approximation of the same
kernel. We employ random sparse Fourier features with Gaussian weights N(0, σ2I) with σ =

0.05 ·
√
dn1/5 in order to match the Gaussian radial basis function used by Kandasamy and Yu

[1]. We use m = 300l features for every problem, with regular degree d selected equal to the one
chosen by SALSA. The regressor on the features is cross-validated ridge regression (RidgeCV from
scikit-learn) with ridge penalty selected from 5 logarithmically spaced points between 10−4 · n
and 102 · n.

In Figure 2, we compare the performance of sparse random features to SALSA. Generally, the training
and testing errors of the sparse model are slightly higher than for the kernel method, except for the
forestfires dataset.

Figure 2: Comparison of sparse random feature approximation to additive kernel method SALSA [1].
The parameters were matched between the two models (see text). The sparse feature approximation
performs slightly worse than the exact method, but similar.

8

https://github.com/kharris/sparse-random-features
https://github.com/kharris/sparse-random-features
https://github.com/kirthevasank/salsa
https://github.com/kirthevasank/salsa

Figure 3: Performance of sparse random features of differing degree d and training size n for the
polynomial test function. Test error is measured as mean square error with noise floor at 0.0025. As
the amount of training data increases, higher d, i.e. more model complexity, is preferred.

A.1.2 Polynomial test function shows generalization from fewer examples

We studied the speed of learning for a test function as well. The function to be learned f(x) was a
sparse polynomial plus a linear term:

f(x) = c1a
ᵀx + c2 p(x).

The linear term took a ∼ N(0, I), the polynomial p was chosen to have 3 terms of degree 3 with
weights drawn from N(0, 1). The inputs x are drawn from the uniform distribution over [0, 1]16.
Gaussian noise ε with variance 0.052 was added to generate observations yi = f(xi) + εi. Constants
c1 and c2 were tuned by setting c1 = 1

σlin

1−α√
α2+(1−α)2

and c2 = 1
σnonlin

α√
α2+(1−α)2

, where α = 0.05

and σlin and σnonlin were the standard deviations of the linear and nonlinear terms alone.

For this problem we use random features of varying regular degrees d = 1, 3, 10, 16 and number
of data points n. The features use a Fourier nonlinearity h(·) = (sin ·, cos ·), weights wij ∼
N(0, d−1/2), and biases bi ∼ U([−π, π]), leading to an RBF kernel in d dimensions. The output
regression model is again ridge regression with the penalty selected via cross-validation on the
training set from 7 logarithmically spaced points between 10−4 and 102.

In Figure 3, we show the test error as well as the selected ridge penalty for different values of d and
n. With a small amount of data (n < 250), the model with d = 1 has the lowest test error, since
this “simplest” model is less likely to overfit. On the other hand, in the intermediate data regime
(250 < n < 400), the model with d = 3 does best. For large amounts of data (n > 400), all of
the models with interactions d ≥ 3 do roughly the same. Note that with the RBF kernel the RKHS
Hd ⊆ Hd′ whenever d ≤ d′, so d > 3 can still capture the degree 3 polynomial model. However,
we see that the more complex models have a higher ridge penalty selected. The penalty is able to
adaptively control this complexity given enough data.

A.2 Stability with respect to sparse input noise

Here we show that sparse random features are stable for spike-and-slab input noise. In this example,
the truth follows a linear model, where we have random input points xi ∼ N (0, I) and linear
observations yi = xᵀ

i β for i = 1, . . . , n and β ∼ N (0, I). However, we only have access to sparsely
corruputed inputs wi = xi + ei, where ei = 0 with probability 1 − p and ei = εx − xi with
probability p, εx ∼ N (0, σ2I). That is, the corrupted inputs are replaced with pure noise. We use
p = 0.03� 1 and σ = 6� 1 so that the noise is sparse but large when it occurs.

In Table 1 we show the performance of various methods on this regression problem given the corrupted
data (W,y). Note that if the practitioner has access to the uncorrupted data X, linear regression
succeeds with a perfect score of 1. Using kernel ridge regression with k(x,x′) = 1− 1

l ‖x− x′‖1,
the kernel that arises from sparse random features with d = 1 and sign nonlinearity, leads to improved
performance over naïve linear regression on the corrupted data or a robust Huber loss function. The

9

Model Training score Testing score
Linear 0.854 0.453
Kernel 1.000 0.607
Trim + linear 0.945 0.686
Huber 0.858 0.392

Table 1: Scores (R2 coefficient) of various regression models on linear data with corrupted inputs.
In the presence of these errors, linear regression fails to acheive as good a test score as the kernel
method, which is almost as good as trimming before performing regression and better than the robust
Huber estimator.

Figure 4: Kernel eigenvalue amplification while (left) varying p with σ = 6 fixed, and (right)
varying σ with p = 0.03 fixed. Plotted is the ratio of eigenvalues of the kernel matrix corrupted
by noise to those without any corruption, ordered from largest to smallest in magnitude. We see
that the sparse feature kernel shows little noise amplification when it is sparse (right), even for large
amplitude. On the other hand, less sparse noise does get amplified (left).

best performance is attained by trimming the outliers and then performing linear regression. However,
this is meant to illustrate our point that sparse random features and their corresponding kernels may
be useful when dealing with noisy inputs in a learning problem.

In Figure 4 we show another way of measuring this stability property. We compute the eigenvalues
of the kernel matrix on a fixed dataset of size n = 800 points both with noise and without noise.
Plotted are the ratio of the noisy to noiseless eigenvalues, in decibels, which we call the amplification
and is a measure of how corrupted the kernel matrix is by this noise. The main trend that we see
is, for fixed p = 3, changing the amplitude of the noise σ does not lead to significant amplification,
especially of the early eigenvalues which are of largest magnitude. On the other hand, making the
outliers denser does lead to more amplification of all the eigenvalues. The eigenspace spanned by the
largest eigenvalues is the most “important” for any learning problem.

B Kernel examples

B.1 Fully-connected weights

We will now describe a number of common random features and the kernels they generate with
fully-connected weights. Later on, we will see how these change as sparsity is introduced in the
input-hidden connections.

Translation invariant kernels The classical random features [2] sample Gaussian weights w ∼
N(0, σ−2I), uniform biases b ∼ U [−a, a], and employ the Fourier nonlinearity h(·) = cos(·). This
leads to the Gaussian radial basis function kernel

k(x,x′) = exp

(
− 1

2σ2
‖x− x′‖2

)
,

10

for x,x′ ∈ [−a, a]l. In fact, every translation-invariant kernel arises from Fourier nonlinearities for
some distributions of weights and biases (Bôchner’s theorem).

Moment generating function kernels The exponential function is more similar to the kinds of
monotone firing rate curves found in biological neurons. In this case, we have

k(x,x′) = E exp(wᵀ(x + x′) + 2b).

We can often evaluate this expectation using moment generating functions. For example, if w and b
are independent, which is a common assumption, then

k(x,x′) = E (exp(wᵀ(x + x′)) · E exp(2b),

where E (exp(wᵀ(x + x′)) is the moment generating function for the marginal distribution of w,
and E exp(2b) is just a constant that scales the kernel.

For multivariate Gaussian weights w ∼ N(m,Σ) this becomes

k(x,x′) = exp

(
mᵀ(x + x′) +

1

2
(x + x′)ᵀΣ(x + x′)

)
· E exp(2b).

This equation becomes more interpretable if m = 0 and Σ = σ−2I and the input data are normalized:
‖x‖ = ‖x′‖ = 1. Then,

k(x,x′) ∝ exp
(
σ−2xᵀx′

)
∝ exp

(
− 1

2σ2
‖x− x′‖2

)
.

This result highlights that dot product kernels k(x,x′) = v(xᵀx′) , where v : R → R, are radial
basis functions on the sphere Sl−1 = {x ∈ Rl : ‖x‖2 = 1}. The eigenbasis of these kernels are the
spherical harmonics [3, 4].

Arc-cosine kernels This class of kernels is also induced by monotone “neuronal” nonlinearities
and leads to different radial basis functions on the sphere [3, 5, 6]. Consider standard normal weights
w ∼ N(0, I) and nonlinearities which are threshold polynomial functions

h(z) = Θ(z)zp

for p ∈ Z+, where Θ(·) is the Heaviside step function. The kernel in this case is given by

k(x,x′) = 2

∫
Rl

Θ(wᵀx)Θ(wᵀx′)(wᵀx)p(wᵀx′)p
e
−‖w‖2

2

(2π)l/2
dw

=
1

π
‖x‖p‖x′‖pJp(θ),

for a known function Jp(θ) where θ = arccos
(

xᵀx′

‖x‖‖x′‖

)
. Note that arc-cosine kernels are also dot

product kernels. Also, if the weights are drawn as w ∼ N(0, σ−2I), the terms x are replaced by
x/σ, but this does not affect θ. With p = 0, corresponding to the step function nonlinearity, we have
J0(θ) = π − θ, and the resulting kernel does not depend on ‖x‖ or ‖x′‖:

k(x,x) = 1− 1

π
arccos

(
xᵀx′

‖x‖‖x′‖

)
. (7)

Sign nonlinearity We also consider a shifted version of the step function nonlinearity, the sign
function sgn(z), equal to +1 when z > 0,−1 when z < 0, and zero when z = 0. Let b ∼ U([a1, a2])
and w ∼ P , where P is any spherically symmetric distribution, such as a Gaussian. Then,

k(x,x′) = E
[∫ a2

a1

db

a2 − a1
sgn(wᵀx− b) sgn(wᵀx′ − b)

]
= E

[
1− 2

|wᵀx−wᵀx′|
a2 − a1

]
= 1− 2

a2 − a1
E|wᵀ(x− x′)|

= 1− 2E(|wᵀe|)‖x− x′‖2
a2 − a1

11

where e = (x− x′)/‖x− x′‖2. The factor E(|wᵀe|) in front of the norm is just a function of the
radial part of the distribution P , which we should set inversely proportional to

√
l to match the scaling

of ‖x− x′‖2. For w ∼ N(0, σ2l−1I), we obtain

k(x,x′) = 1− 2σ

√
2

πl

‖x− x′‖2
a2 − a1

. (8)

B.2 Sparse weights

The sparsest networks possible have d = 1, leading to first-order additive kernels. Here we look
at two simple nonlinearities where we can perform the sum and obtain an explicit formula for the
additive kernel. In both cases, the kernels are simply related to a robust distance metric. This suggests
that such kernels may be useful in cases where there are outlier coordinates in the input data.

Step function nonlinearity We again consider the step function nonlinearity h(·) = Θ(·), which in
the case of fully-connected Gaussian weights leads to the degree p = 0 arc-cosine kernel k(x,x′) =

1 − θ(x,x′)
π . When d = 1, xN = xi and x′N = x′i are scalars. For a scalar a, normalization leads

to a/‖a‖ = sgn(a). Therefore, θ = arccos (sgn(xi) sgn(x′i)) = 0 if sgn(xi) = sgn(x′i) and π
otherwise. Performing the sum in (3), we find that the kernel becomes

kreg1 (x,x′) = 1− |{i : sgn(xi) 6= sgn(x′i)}|
l

= 1− ‖sgn(x)− sgn(x′)‖0
l

. (9)

This kernel is equal to one minus the normalized Hamming distance of vectors sgn(x) and sgn(x′).
The fully-connected kernel, on the other hand, uses the full angle between the vectors x and x′. The
sparsity can be seen as inducing a “quantization,” via the sign function, on these vectors. Finally,
if the data are in the binary hypercube, with x and x′ ∈ {−1,+1}l, then the kernel is exactly one
minus the normalized Hamming distance.

Sign nonlinearity We now consider a slightly different nonlinearity, the sign function. It will turn
out that the kernel is quite different than for the step function. This has h(·) = sgn(·) = 2Θ(·)− 1.
Let b ∼ U([a1, a2]) and w ∼ P . Then,

kreg1 (x,x′) =
1

l

l∑
i=1

EP
[∫ a2

a1

db

a2 − a1
sgn(wxi − b)sgn(wx′i − b)

]

=
1

l

l∑
i=1

EP
[
1− 2

|wxi − wx′i|
a2 − a1

]
= 1− 2EP (|w|)

l

‖x− x′‖1
a2 − a1

. (10)

Choosing P (w) = 1
2δ(w + 1) + 1

2δ(w − 1) and a2 = −a1 = a recovers the “random stump” result
of Rahimi and Recht [2]. Despite the fact that sign is just a shifted version of the step function, the
kernels are quite different: the sign nonlinearity does not exhibit the quantization effect and depends
on the `1-norm rather than the `0-“norm”.

C Kernel approximation results

We now show a basic uniform convergence result for any random features, not necessarily sparse,
that use Lipschitz continuous nonlinearities. Recall the definition of a Lipschitz function:
Definition 1. A function f : X → R is said to be L-Lipschitz continuous (or Lipschitz with
constant L) if

|f(x)− f(y)| ≤ L‖x− y‖
holds for all x,y ∈ X . Here, ‖ · ‖ is a norm on X (the `2-norm unless otherwise specified).

Assuming that h is Lipschitz and some regularity assumptions on the distribution µ, the random
feature expansion approximates the kernel uniformly over X . As far as we are aware, this result has

12

not been stated previously, although it appears to be known (see Bach [7]) and is very similar to
Claim 1 in Rahimi and Recht [2] which holds only for random Fourier features (see also Sutherland
and Schneider [8] and Sriperumbudur and Szabo [9] for improved results in this case). The rates
we obtain for Lipschitz nonlinearities are not essentially different than those obtained in the Fourier
features case.

As for the examples we have given, the only ones which are not Lipschitz are the step function
(order 0 arc-cosine kernel) and sign nonlinearities. Since these functions are discontinuous, their
convergence to the kernel occurs in a weaker than uniform sense. However, our result does apply to
the rectified linear nonlinearity (order 1 arc-cosine kernel), which is non-differentiable at zero but
1-Lipschitz and widely applied in artificial neural networks. The proof of the following Theorem
appears at the end of this section.

Theorem 1 (Kernel approximation for Lipschitz nonlinearities). Assume that x ∈ X ⊂ Rl and
that X is compact, ∆ = diam(X), and the null vector 0 ∈ X . Let the weights and biases (w, b)
follow the distribution µ on Rl+1 with finite second moments. Let h(·) be a nonlinearity which is
L-Lipschitz continuous and define the random feature φ : Rl → R by φ(x) = h(wᵀx − b). We
assume that the following hold for all x ∈ X : |φ(x)| ≤ κ almost surely, E |φ(x)|2 < ∞, and
E φ(x)φ(x′) = k(x,x′).

Then supx,x′∈X
∣∣ 1
mφ(x)ᵀφ(x′)− k(x,x′)

∣∣ ≤ ε with probability at least

1− 28

(
κL∆

√
E‖w‖2 + 3(E‖w‖)2

ε

)2

exp

(
−mε2

8(l + 1)κ2

)
.

Sample complexity Theorem 1 guarantees uniform approximation up to error ε using m =

O
(
lκ2

ε2 log C
ε

)
features. This is precisely the same dependence on l and ε as for random Fourier

features. Note that [10] also found that m should scale linearly with l to minimize error in a particular
classification task.

A limitation of Theorem 1 is that it only shows approximation of the limiting kernel rather than
direct approximation of functions in the RKHS. A more detailed analysis of the convergence to
RKHS is contained in the work of Bach [7], whereas Rudi and Rosasco [11] directly analyze the
generalization ability of these approximations. Sun et al. [12] show even faster rates which also apply
to SVMs, assuming that the features are compatible (“optimized”) for the learning problem. Also,
the techniques of Sutherland and Schneider [8] and Sriperumbudur and Szabo [9] could be used to
improve our constants and prove convergence in other Lp norms.

In the sparse case, we must extend our probability space to capture the randomness of (1) the degrees,
(2) the neighborhoods conditional on the degree, and (3) the weight vectors conditional on the degree
and neighborhood. The degrees are distributed independently according to di ∼ D, with some abuse
of notation since we also use D(d) to represent the probability mass function. We shall always
think of the neighborhoods N ∼ ν|d as chosen uniformly among all d element subsets, where ν|d
represents this conditional distribution. Finally, given a neighborhood of some degree, the nonzero
weights and bias are drawn from a distribution (w, b) ∼ µ|d on Rd+1. For simpler notation, we do
not show any dependence on the neighborhood here, since we will always take the actual weight
values to not depend on the particular neighborhood N . However, strictly speaking, the weights do
depend on N because that determines their support. Finally, we use E to denote expectation over all
variables (degree, neighborhood, and weights), whereas we use Eµ|d for the expectation under µ|d
for a given degree.

Corollary 2 (Kernel approximation with sparse features). Assume that x ∈ X ⊂ Rl and that
X is compact, ∆ = diam(X), and the null vector 0 ∈ X . Let the degrees d follow the degree
distribution D on [l]. For every d ∈ [l], let µ|d denote the conditional distributions for (w, b)
on Rd+1 and assume that these have finite second moments. Let h(·) be a nonlinearity which is
L-Lipschitz continuous, and define the random feature φ : Rl → R by φ(x) = h(wᵀx− b), where
w follows the degree distribution model. We assume that the following hold for all xN ∈ XN with
|N | = d, and for all 1 ≤ d ≤ l: |φ(xN)|2 ≤ κ almost surely under µ|d, E

[
|φ(xN)|2|d

]
<∞, and

E[φ(xN)φ(x′N)|d] = kregd (xN ,x
′
N).

13

Then supx,x′∈X
∣∣ 1
mφ(x)ᵀφ(x′)− kdistD (x,x′)

∣∣ ≤ ε, with probability at least

1− 28

(
κL∆

√
E‖w‖2 + 3(E‖w‖)2

ε

)2

exp

(
−mε2

8(l + 1)κ2

)
.

The kernels kregd (z, z′) and kdistD (x,x′) are given by equations (3) and (4).

Proof. It suffices to show that conditions (1–3) on the conditional distributions µ|d, d ∈ [l], imply
conditions (1–3) in Theorem 1. Conditions (1) and (2) clearly hold, since the distribution D has finite
support. By construction, Eφ(x)φ(x′) = E[E[φ(xN)φ(x′N)|d]] = E[kregd (xN ,x

′
N)] = kdistD (x,x′),

which concludes the proof.

Differences of sparsity The only difference we find with sparse random features is in the terms
E‖w‖2 and E‖w‖, since sparsity adds variance to the weights. This suggests that scaling the weights
so that Eµ|d‖w‖2 is constant for all d is a good idea. For example, setting (wi)Ni ∼ N(0, σ2d−1i Idi),
the random variables ‖wi‖2 ∼ σ2d−1i χ2(di) and ‖wi‖ ∼ σd

−1/2
i χ(di). Then E‖wi‖2 = σ2

irregardless of di and E‖wi‖ = σ(1 + o(di)). With this choice, the number of sparse features needed
to achieve an error ε is the same as in the dense case, up to a small constant factor. This is perhaps
remarkable since there could be as many as 2l terms in the expression of kdistD (x,x′). However, the
random feature expansion does not need to approximate all of these terms well, just their average.

Proof of Theorem 1. We follow the approach of Claim 1 in [2], a similar result for random Fourier
features but which crucially uses the fact that the trigonometric functions are differentiable and
bounded. For simplicity of notation, let ξ = (x,x′) and define the direct sum norm on X+ = X ⊕X
as ‖ξ‖+ = ‖x‖+ ‖x′‖. Under this norm X+ is a Banach space but not a Hilbert space, however this
will not matter. For i = 1, . . . ,m, let

fi(ξ) = φi(x)φi(x
′),

gi(ξ) = φi(x)φi(x
′)− k(x,x′)

= fi(ξ)− Efi(ξ),

and note that these gi are i.i.d., centered random variables. By assumptions (1) and (2), fi and gi are
absolutely integrable and k(x,x′) = Eφi(x)φi(x

′). Denote their mean by

ḡ(ξ) =
1

m
φ(x)ᵀφ(x′)− k(x,x′) =

1

m

m∑
i=1

gi(ξ).

Our goal is to show that |ḡ(ξ)| ≤ ε for all ξ ∈ X+ with sufficiently high probability.

The space X+ is compact and 2l-dimensional, and it has diameter at most twice the diameter of X
under the sum norm. Thus we can cover X+ with an ε-net using at most T = (4∆/R)2l balls of
radius R [13]. Call the centers of these balls ξi for i = 1, . . . , T , and let L̄ denote the Lipschitz
constant of ḡ with respect to the sum norm. Then we can show that |ḡ(ξ)| ≤ ε for all ξ ∈ X+ if we
show that

1. L̄ ≤ ε
2R , and

2. |ḡ(ξi)| ≤ ε
2 for all i.

First, we bound the Lipschitz constant of gi with respect to the sum norm ‖·‖+. Since h isL-Lipschitz,
we have that φi is Lipschitz with constant L‖wi‖. Thus, letting ξ′ = ξ + (δ, δ′),

2|fi(ξ)− fi(ξ′)| ≤ |φi(x + δ)φi(x
′ + δ′)− φi(x + δ)φi(x

′)|
+ |φi(x + δ)φi(x

′ + δ′)− φi(x)φi(x
′ + δ′)|

+ |φi(x + δ)φi(x
′)− φi(x)φi(x

′)|
+ |φi(x)φi(x

′ + δ′)− φi(x)φi(x
′)|

≤ 2L‖wi‖ · sup
x∈X
|φi(x)| · (‖δ‖+ ‖δ′‖)

= 2κL‖wi‖ · ‖ξ − ξ′‖+,

14

we have that fi has Lipschitz constant κL‖wi‖. This implies that gi has Lipschitz constant ≤
κL(‖wi‖+ E‖w‖).

Let L̄ denote the Lipschitz constant of ḡ. Note that EL̄ ≤ 2κLE‖w‖. Also,

EL̄2 ≤ L2κ2E (‖w‖+ E‖w‖)2

= L2κ2
(
E‖w‖2 + 3(E‖w‖)2

)
.

Markov’s inequality states that Pr[L̄2 > t2] ≤ E[L̄2]/t2. Letting t = ε
2R , we find that

Pr[L̄ > t] = Pr
[
L̄ >

ε

2R

]
≤ L2κ2

(
E‖w‖2 + 3(E‖w‖)2

)(2R

ε

)2

. (11)

Now we would like to show that |ḡ(ξi)| ≤ ε/2 for all i = 1, . . . , T anchors in the ε-net. A
straightforward application of Hoeffding’s inequality and a union bound shows that

Pr
[
|ḡ(ξi)| >

ε

2
for all i

]
≤ 2T exp

(
−mε2

8κ4

)
, (12)

since |fi(ξ)| ≤ κ2.

Combining equations (11) and (12) results in a probability of failure

Pr

[
sup
ξ∈X+

|ḡ(ξ)| ≥ ε

]
≤ 2

(
4∆

R

)2l

exp

(
−mε2

8κ2

)
+ L2κ2(E‖w‖2 + 3(E‖w‖)2)

(
2R

ε

)2

= aR−2l + bR2. (13)

Set R = (a/b)
1

2l+2 , so that the probability (13) has the form, 2a
2

2l+2 b
2l

2l+2 . Thus the probability of
failure satisfies

Pr

[
sup
ξ∈X+

|ḡ(ξ)| ≥ ε

]
≤ 2a

2
2l+2 b

2l
2l+2

= 2 · 2
2

2l+2

(
8κL∆

√
E‖w‖2 + 3(E‖w‖)2

ε

) 4l
2l+2

exp

(
−mε2

4(2l + 2)κ2

)

≤ 28

(
κL∆

√
E‖w‖2 + 3(E‖w‖)2

ε

)2

exp

(
−mε2

8(l + 1)κ2

)
,

for all l ∈ N, assuming ∆κL
√
E‖w‖2 + 3(E‖w‖)2 > ε. Considering the complementary event

concludes the proof.

References
[1] Kirthevasan Kandasamy and Yaoliang Yu. Additive Approximations in High Dimensional Nonparametric

Regression via the SALSA. In International Conference on Machine Learning, pages 69–78, June 2016.
[2] Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines. In J. C. Platt,

D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Information Processing Systems 20,
pages 1177–1184. Curran Associates, Inc., 2008.

[3] Alex J. Smola, Zoltán L. Óvári, and Robert C Williamson. Regularization with Dot-Product Kernels. In
T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13,
pages 308–314. MIT Press, 2001.

[4] Francis Bach. Breaking the Curse of Dimensionality with Convex Neural Networks. Journal of Machine
Learning Research, 18(19):1–53, 2017.

[5] Youngmin Cho and Lawrence K. Saul. Kernel Methods for Deep Learning. In Y. Bengio, D. Schuurmans,
J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing
Systems 22, pages 342–350. Curran Associates, Inc., 2009.

[6] Youngmin Cho and Lawrence K. Saul. Analysis and Extension of Arc-Cosine Kernels for Large Margin
Classification. arXiv:1112.3712 [cs], December 2011.

[7] Francis Bach. On the Equivalence Between Kernel Quadrature Rules and Random Feature Expansions. J.
Mach. Learn. Res., 18(1):714–751, January 2017. ISSN 1532-4435.

15

[8] Dougal J. Sutherland and Jeff Schneider. On the Error of Random Fourier Features. arXiv:1506.02785 [cs,
stat], June 2015.

[9] Bharath Sriperumbudur and Zoltan Szabo. Optimal Rates for Random Fourier Features. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems 28, pages 1144–1152. Curran Associates, Inc., 2015.

[10] Baktash Babadi and Haim Sompolinsky. Sparseness and Expansion in Sensory Representations. Neuron,
83(5):1213–1226, September 2014. ISSN 0896-6273. doi: 10.1016/j.neuron.2014.07.035.

[11] Alessandro Rudi and Lorenzo Rosasco. Generalization Properties of Learning with Random Features. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 3215–3225. Curran Associates, Inc., 2017.

[12] Yitong Sun, Anna Gilbert, and Ambuj Tewari. But How Does It Work in Theory? Linear SVM with
Random Features. arXiv:1809.04481 [cs, stat], September 2018.

[13] Felipe Cucker and Steve Smale. On the mathematical foundations of learning. Bulletin of the
American Mathematical Society, 39(1):1–49, 2002. ISSN 0273-0979, 1088-9485. doi: 10.1090/
S0273-0979-01-00923-5.

16

	Introduction
	Background: Random features and kernels
	Sparsely connected random feature kernels
	Advantages of sparse connectivity
	Additive modeling
	Stability: robustness to noise or attacks affecting a few inputs
	Scalability: computational and biological

	Discussion
	Test problems
	Additive function approximation
	Comparison with datasets from kandasamy2016
	Polynomial test function shows generalization from fewer examples

	Stability with respect to sparse input noise

	Kernel examples
	Fully-connected weights
	Sparse weights

	Kernel approximation results

