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Abstract

Stochastic classifiers arise in a number of machine learning problems, and have
become especially prominent of late, as they often result from constrained opti-
mization problems, e.g. for fairness, churn, or custom losses. Despite their utility,
the inherent randomness of stochastic classifiers may cause them to be problematic
to use in practice for a variety of practical reasons. In this paper, we attempt to
answer the theoretical question of how well a stochastic classifier can be approxi-
mated by a deterministic one, and compare several different approaches, proving
lower and upper bounds. We also experimentally investigate the pros and cons of
these methods, not only in regard to how successfully each deterministic classifier
approximates the original stochastic classifier, but also in terms of how well each
addresses the other issues that can make stochastic classifiers undesirable.

1 Introduction

Stochastic classifiers arise in a variety of machine learning problems. For example, they are produced
by constrained training problems [1–5], where one seeks to optimize a classification objective subject
to goals such as fairness, recall and churn. The use of stochastic classifiers turns out to be crucial in
making such constrained optimization problems tractable, due to the potentially non-convex nature of
the constraints [4]. For similar reasons, stochastic classifiers are important for optimizing custom
evaluation metrics such as robust optimization [6], or the G-mean or the H-mean metrics popular
in class-imbalanced classification tasks [7–12]. Stochastic classifiers also arise in the PAC-Bayes
literature [e.g. 13–16], in ensemble learning [17].

Despite their utility in theory, the inherent randomness of stochastic classifiers may be problematic
in practice. In some cases, practitioners may object to stochastic classifiers on ethical grounds, or
because they are difficult to debug, test, and visualize, or they will cite the added complexity that
they can bring to a real-world production system. Worse, in some settings, it might simply not make
sense to use a stochastic classifier. For example, suppose that a classifier is trained to filter spam from
emails, and if applied once to an email it accurately rejects spam 99% of the time. If a stochastic
classifier is used, then the spammer could simply send hundreds of copies, confident that some will
randomly pass through the stochastic classifier.

Similarly, although stochastic classifiers often arise from optimizing for statistical fairness measures,
they may seem unfair because their randomness may make them fail at another popular fairness
principle, that similar individuals should receive similar outcomes [18]. Indeed, when using a
stochastic classifier, even the same example may receive different outcomes, if it is classified twice.

For all of these reasons, stochastic classifiers can be undesirable, but they are often difficult to avoid.
For example, when solving constrained optimization problems subject to non-convex constraints,
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as in the statistical fairness setting, all algorithms with theoretical guarantees that we are aware of
produce stochastic classifiers [e.g. 3–5]⇤.

In this paper we investigate the question of how to make a given stochastic classifier deterministic,
what issues arise, and what criteria can be used to judge the result. Section 2 defines our terms
and notation, and makes our first contribution: a precise statement of what it means to say that a
deterministic classifier is a good approximation to a stochastic classifier. Our second contribution, in
Section 2.1, is to prove a lower bound on how well a deterministic classifier can perform, measured
in these terms. In Section 2.2, we discuss how the standard thresholding approach performs. In
Section 2.3 we consider a hashing approach, which is regarded in folklore as an obvious way to make
a stochastic classifier deterministic, and in our third contribution we prove that hashing enjoys a
performance guarantee that can be favorably compared to our lower bound.

Our fourth contribution is delineating, in Section 3, other design criteria for whether a deterministic
classifier will be satisfying to practitioners. As a fifth contribution, in Section 3.3 we suggest a variant
of hashing, and explain how it allows one to control how well the resulting classifier will satisfy these
other design criteria. Next, we focus on the important special case of stochastic ensembles, and as
a sixth contribution, we propose an alternative more-intuitive variable binning strategy for making
them deterministic. We conclude, in Section 5, with experiments on six datasets comparing these
strategies on different problems where stochastic classifiers arise.

2 Stochastic Classifiers

Let X be the instance space, with Dx being the associated data distribution, and Y = {0, 1} the label
space (this is the binary classification setting), with Dy|x being the conditional label distribution.
We will write the resulting joint distribution as Dxy . Deterministic classifiers will always be written
with hats (e.g. f̂ ), and stochastic classifiers without hats (e.g. f ). A stochastic binary classifier is a
function f : X ! [0, 1] mapping each instance x to the probability of making a positive prediction.

Our goal is to find a deterministic classifier f̂ : X ! {0, 1} that approximates f , but we first must
clarify what precisely would constitute a “good approximation”. To this end, we define a rate metric
as a pair (`,X`), where ` : {0, 1} ⇥ {0, 1} ! {0, 1} is a binary loss function and X` ✓ X is the
subset of the instance space on which this loss should be evaluated. Such rate metrics are surprisingly
flexible, and cover a broad set of tasks that are of interest to practitioners [e.g. 1, 2]. For example,
on a fairness problem based on demographic parity constraint [20], we might be interested in the
positive prediction rate (`) on members of a certain protected class (X`).

We denote the value of a metric as E`(f) := Ex,y[f(x)`(1, y) + (1 � f(x))`(0, y) | x 2 X`] for
a stochastic classifier f , and as E`(f̂) := Ex,y[`(f̂(x), y) | x 2 X`] for a deterministic f̂ . We will
generally be concerned with several designated metrics `1, . . . , `m, each of which captures some
property of f that should be preserved (i.e. we want E`i(f) ⇡ E`i(f̂) for all i 2 [m]). Typically,
the set of metrics will depend on the original learning problem. For example, if we found f by
minimizing the false positive rate (FPR) subject to FNR and churn constraints, then the relevant
metrics would presumably include FPR, FNR and churn. The key to our approach is that we do not
attempt to find a deterministic function that approximates a stochastic classifier pointwise: rather, we
require only that it perform well w.r.t. metrics that aggregate over swaths of the data.

While it might be tempting to formulate the search for f̂ as an explicit optimization problem, the only
appropriate techniques we’re aware of are constrained solvers which themselves produce stochastic
classifiers [3, 2, 4]. Instead, we focus on problem-agnostic strategies that are easy to implement, but
that—despite their simplicity—often enjoy good theoretical guarantees and perform well in practice.

2.1 Lower Bound

Before we discuss techniques for creating a deterministic classifier from a stochastic one, we’d like
to understand the extent to which this is possible. Our first result, therefore, is a lower bound:

⇤Alternatives that do not explicitly perform constrained optimization (e.g. [19], which instead attempts to
find a simple “correction” to an existing classifier), can be immune to this problem.

2



Theorem 1. For a given instance space X , data distribution Dx, metric subset X` ✓ X and
stochastic classifier f , there exists a metric loss ` and conditional label distribution Dy|x such that:

���E`(f)� E`(f̂)
��� � max

x2X`

n
Prx0⇠Dx|X`

{x0 = x} ·min {f(x), 1� f(x)}
o

for all deterministic classifiers f̂ , where Dx|X` is the data distribution Dx restricted to X`.

Proof. In Appendix B.1.

This result is straightforward to prove, but neatly illustrates the two main obstacles to finding a
good deterministic f̂ : (i) point masses (the Prx0⇠Dx|X`

{x0 = x} term), and (ii) stochasticity (the
min{f(x), 1� f(x)} term). If f contains too much stochasticity on a large point mass, then it will
not be possible to approximate it well with a deterministic f̂ .

In Section 2.3, we will show that the converse of the above statement roughly holds: if either the
probability mass or the stochasticity of f on point masses approaches zero, then it is possible to find
a deterministic classifier on which the errors of our metrics will, likewise, approach zero.

2.2 Thresholding

Thresholding is the “standard” approach for converting a stochastic binary classifier into a determin-
istic one: if f(x) > 1/2, then we make a positive prediction, and a negative prediction otherwise. If
the label truly is drawn randomly according to f(x), then thresholding forms the Bayes Classifier and
hence minimizes the expected misclassifications [21]. For any choice of loss `, there is an intuitive
upper bound on thresholding’s performance:
Theorem 2. Let f : X ! [0, 1] be a stochastic classifier, and Dx a data distribution on X . Define
the thresholded stochastic classifier f̂(x) := 1{f(x) > 1/2}. Then for any metric (`,X`) and
associated conditional label distribution Dy|x:

���E`(f)� E`(f̂)
���  Ex⇠Dx|X`

[min {f(x), 1� f(x)}]

where Dx|X` is the data distribution Dx restricted to X`.

Proof. In Appendix B.2.

This upper bound confirms that the closer the original stochastic f comes to being deterministic, the
better the thresholding deterministic classifier f̂ will mimic it. However, unlike the lower bound of
Theorem 1, the thresholding approach does not improve as point masses shrink. Indeed, even for a
continuous data distribution Dx (i.e. no point masses), the thresholded f̂ could perform very poorly.
For example, if f(x) = 0.51 for every x, then f̂ will always make a positive prediction, unlike the
original stochastic classifier, which makes a negative prediction 49% of the time.

2.3 Hashing

To improve upon thresholding, we would like to choose f̂ in such a way that its performance improves
not only as the stochasticity of f decreases, but also as the point masses in Dx shrink. To this end,
we propose “simulating” the randomness of a stochastic classifier by hashing the input features to
deterministically generate a random-seeming number. The high-level idea is that even if a classifier
makes a deterministic decision on a given instance x, by making dissimilar predictions on instances
that are close to x, the classifier can give the illusion of being stochastic from the perspective of
aggregate rate metrics. In this section, we will show that with the appropriate type of hash function
(defined below), we can tightly bound the performance of the resulting deterministic classifier.
Definition 1 (Pairwise Independence). A family H of hash functions h : C ! [k] on a finite set
C is pairwise independent if, for all c, c0 2 C and i, i0 2 [k], we have that Prh⇠Unif(H){(h(c) =
i) ^ (h(c0) = i0)} = 1/k2 whenever c 6= c0.

3



At first glance, this might seem like a fairly strong property, but it’s actually quite simple to construct
a pairwise independent hash function from a logarithmic number (in |C| and k) of random bits (see
Claim 1 in Appendix B.3 for an example).

Notice that we define a hash function on a set of “clusters” C, instead of on X itself. This handles the
case in which X is an infinite set (e.g. Rd), and allows us to define a finite C and associated mapping
⇡ : X ! C, the result of which, ⇡(x), is what we hash. In practice, X will be finite anyway (e.g.
d-dimensional vectors of floating-point numbers), and one is then free to choose C = X and take ⇡ to
be the identity function. Even in the finite case, however, it may be beneficial to pre-assign instances
to clusters before hashing, as we will discuss in Section 3.
Theorem 3. Let f : X ! [0, 1] be a stochastic classifier, and Dx a data distribution on X . Suppose
that we’re given m metrics (`i,X`i) for i 2 [m], each of which is potentially associated with a
different conditional label distribution Dyi|x. Take H to be a pairwise independent set of hash
functions h : C ! [k], and ⇡ : X ! C to be a function that pre-assigns instances to clusters before
hashing.

Sample a h ⇠ Unif(H), and define the deterministic classifier f̂h : X ! {0, 1} as:

f̂h(x) = 1

⇢
f(x) �

2h(⇡(x))� 1

2k

�

where the expression (2h(⇡(x))� 1)/2k maps [k] (the range of h) into [0, 1].

Then, with probability 1� � over the sampling of h ⇠ Unif(H), for all i 2 [m]:

���Ef (`i)� Ef̂h
(`i)
��� <

1

2k
+

 
m

�

X

c2C

✓⇣
Prx⇠Dx|X`i

{⇡(x) = c}
⌘2

⇥Ex⇠Dx|X`i


1

2k
+ f(x) (1� f(x)) | ⇡(x) = c

�◆◆ 1
2

where Dx|X`i
is the data distribution Dx restricted to X`i .

Proof. In Appendix B.3.

Notice that 1/2k approaches zero as the number of hash buckets k increases. These terms aside, the
upper bound of Theorem 3 has strong similarities to the lower bound of Theorem 1†, particularly in
light of the fact that pre-clustering is optional. The main differences are that: (i) point masses (the
Prx⇠Dx|X`i

{⇡(x) = c} terms) are measured over entire clusters c 2 C, instead of merely instances
x 2 X , (ii) we take the `2 norm over point masses, instead of maximizing over them, and (iii)
stochasticity is measured with an expected variance Ex⇠Dx|X`i

[f(x)(1� f(x)) | ⇡(x) = c] over a
cluster, instead of min{f(x), 1� f(x)}.

Most importantly—unlike for the thresholding approach of Section 2.2—the key properties of our
lower bound are present when using hashing. It will be easier to see this if we loosen Theorem 3 by
separately bounding (i) the stochasticity as f(x)(1� f(x))  1/4 (the first term in the below min),
or (ii) the point masses as (Prx⇠Dx|X`i

{⇡(x) = c})2  Prx⇠Dx|X`i
{⇡(x) = c} (the second):

���Ef (`i)� Ef̂h
(`i)
��� <

1

2k
+

r
m

2k�
+

r
m

�
min

(
1

2

sX

c2C

⇣
Prx⇠Dx|X`i

{⇡(x) = c}
⌘2

,
q

Ex⇠Dx|X`i
[f(x) (1� f(x))]

)

Ignoring the first two additive terms (recall that we can choose k), if the distribution over clusters
c 2 C is approximately uniform, then the bound goes to zero as the number of clusters increases, at
roughly a 1/

p
|C| rate. Likewise, as the variance Ex⇠Dx|X`i

[f(x)(1� f(x))] goes to zero, the error
of the deterministic classifier approaches zero for all m metrics, with high probability.

†In Appendix B.4, we verify that the above bound is larger than that of Theorem 1, as it should be.
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3 Orderliness: Determinism Is Not Enough

So far we have shown that the hashing approach of Section 2.3 enjoys a better bound on its perfor-
mance, in terms of aggregate rate metrics, than the standard thresholding approach of Section 2.2.
We’ll now turn our attention to other criteria for judging the quality of deterministic approximations
to stochastic classifiers.

The approaches we’ve considered thus far can be sorted in terms of how “orderly” they are. As we
use the term, “orderliness” is a loose notion measuring how “smooth” or “self-consistent” a classifier
is. The original stochastic classifier is the least orderly: it might classify the same example differently,
when it’s encountered multiple times. The hashing classifier is more orderly because it’s deterministic,
and will therefore always give the same classification on the same example—but it may behave very
differently even on extremely similar examples (if they are hashed differently). The thresholding
classifier is the most orderly, since it will threshold every example in exactly the same way, so similar
examples will likely be classified identically.

3.1 Repeated Use

As we noted in the introduction, a stochastic classifier may be a poor choice when a user can force
the classifier to make multiple predictions. For example, if a spam filter is stochastic, then a spammer
could get an email through by sending it repeatedly. Simply replacing a stochastic classifier with a
deterministic one might be insufficient: a disorderly spam filter—even a deterministic one—could be
defeated by a sending many variants of the same spam message (say, differing only in whitespace).

3.2 Fairness Principles

The fact that we measure the quality of an approximate stochastic classifier in terms of aggregate
metrics implies that we’re looking at fairness from the statistical perspective: even if individual
outcomes are random (or deterministic-but-arbitrary), the classifier could still be considered “fair” if
it could be shown to be free of systematic biases (imposed via constraints on aggregate group-based
fairness metrics). As we showed in Theorem 3, a hashing classifier’s performance bound improves as
it becomes more disorderly (i.e. as the number of clusters in C, and/or the number of hash bins k
increases), measured in these terms.

Unlike this group-based perspective, Dwork et al. [20] propose a “similar individuals receive similar
outcomes” principle, which looks at fairness from the perspective of an individual. This principle
is better served by classifiers that are more orderly: a thresholding classifier’s decision regions are
fairer as measured by this principle than e.g. a hashing classifier with fine-grained bins.

This tension between the extremes of least-orderly classifiers (accurate rate metrics) and most-orderly
(similar individuals, similar outcomes), leads one to wonder whether there is some middle ground: in
Section 3.3 we present an approach that allows us to directly trade-off between these two extremes.

Reality, of course, is more complicated: for example, lotteries are often considered “fair” by par-
ticipants if each feels that the underlying mechanism is fair, regardless of their individual out-
comes [22, 23]. In such cases, disorderliness, or even stochasticity, might be desirable from a fairness
point of view, and this tension vanishes.

3.3 Clustering + Hashing

The hashing technique of Section 2.3 has a built-in mechanism for (partially) addressing the method’s
inherent lack of orderliness: pre-clustering. If ⇡ : X ! C assigns “similar” elements x, x0

2 X to
the same cluster c 2 C, then such elements will be hashed identically, and the values of the stochastic
classifier f(x), f(x0) will therefore be thresholded at the same value. Hence, assuming that the
stochastic classifier f is smooth, and with an appropriate choice of ⇡, the resulting deterministic f̂
could be considered “locally orderly”, and will therefore satisfy a form of similar inputs, similar
outcomes, and provide some protection against repeated use.

There are, unfortunately, a couple of drawbacks to this approach. First, the onus is on the practitioner
to design the clustering function ⇡ in such a way that it captures the appropriate notion of similarity.
For example, if one wishes to encode an intuitive notion of fairness, then instances that are placed
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into different clusters—and are therefore treated inconsistently by f̂—should be distinct enough that
this assignment is justifiable. Second, one should observe that the bound of Theorem 3 is better
when there are more clusters, and worse when there are fewer. Hence, there is a trade-off between
orderliness and performance: if some required level of metric accuracy must be attained, then doing
so might force one to use so many clusters that there is insufficient local orderliness.

4 Stochastic Ensembles

We now focus on a special case of stochastic classifier that randomly selects from a finite number
of deterministic base classifiers. This type of stochastic classifier arises from many constrained
optimization algorithms [3–5]. Let a stochastic ensemble f : X ! [0, 1] be defined in terms
of n deterministic classifiers ĝ1, . . . , ĝn : X ! {0, 1}, and an associated probability distribution
p 2 �n�1

✓ Rn, for which f(x) :=
Pn

j=1 pj ĝj(x). To evaluate this classifier on an example x, one
first samples an index j 2 [n] according to distribution p, and predicts ĝj(x).

The hashing approach of Section 2.3 can be applied to stochastic ensembles, but due to the special
structure of such models, it’s possible to do better. Here, we propose an alternate strategy that first
applies a clustering, and then subdivides each cluster into n bins, for which the ith such bin contains
roughly a pi proportion of the cluster instances, and assigns all instances within the ith bin to classifier
ĝj . We do this by using a pre-defined score function q and a random shift parameter rc for each
cluster c. The benefit of this approach is that it adjusts the sizes of the bins based on the probability
distribution p, enabling us to get away with a comparatively smaller number of bins, and therefore
achieve higher local orderliness, compared to the hashing classifier (which relies on a large number
of roughly-equally-sized bins). We call this the variable binning approach:
Theorem 4. Let f : X ! [0, 1] be a stochastic classifier, and Dx a data distribution on X . Suppose
that we’re given m metrics (`i,X`i) for i 2 [m], each of which is potentially associated with a
different conditional label distribution Dyi|x. Take ⇡ : X ! C to be a function that pre-assigns
instances to clusters, and q : X ! [0, 1] to be a pre-defined score function. Choose p:0 = 0 and
denote p:j = p1 + . . . + pj , 8j 2 [n]. Define clip(z) = z � bzc.

Sample |C| random numbers r1, . . . , r|C| independently and uniformly from [0, 1)and define the
deterministic classifier f̂(x) =

Pn
j=1 sj(x) ĝj(x), where s : X ! {0, 1}n selects one of n base

classifiers and is given by:

sj(x) =
X

c2C

1 {⇡(x) = c, clip(q(x) + rc) 2 [p:j�1, p:j)}

Then, with probability 1� � over the sampling of r1, . . . , r|C|:
���Ef (`i)� Ef̂ (`i)

��� <
⇣m
�

X

c2C

⇣⇣
Prx⇠Dx|X`i

{⇡(x) = c}
⌘2

⇥ Ex⇠Dx|X`i
[f(x) (1� f(x)) | ⇡(x) = c]

⌘⌘ 1
2

where Dx|X`i
is the data distribution Dx restricted to X`i .

Proof. In Appendix B.5.

The proof proceeds by showing that the selector function s satisfies a pairwise independence property.
The above bound is the similar to the bound for hashing in Theorem 3, except that it no longer
contains terms that depend on the number of hash buckets k, and is therefore a slight improvement.
In our experiments, we find it to match the performance of hashing with more local orderliness.

5 Experiments

We experimentally evaluate the different strategies described above for approximating a stochastic
classifier with a deterministic classifier. We consider constrained training tasks with two different
fairness goals: (i) Matching ROC curves across protected groups (ii) Matching regression histograms
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Table 1: Comparison of de-randomization approaches on ROC matching tasks. For each method,
we report A (B), where A is the absolute difference in objective

P
t2T

TPRt between the stochastic
classifier and the deterministic classifier, and B is the difference in fairness. For a FPR threshold
t, we measure fairness as: TPRptr

t � TPRt, and report the maximum absolute difference in fairness
metric between the stochastic and deterministic classifier across all t 2 T . The number of base
classifiers in the support of the stochastic ensemble is shown in parentheses after each dataset name.

Crime (4) COMPAS (5) Law School (5)

Train Test Train Test Train Test
Threshold 0.007 (0.01) 0.012 (0.03) 0.002 (0.01) 0.002 (0.00) 0.118 (0.12) 0.099 (0.11)
Hashing 0.001 (0.00) 0.004 (0.01) 0.001 (0.01) 0.005 (0.03) 0.004 (0.01) 0.001 (0.03)
VarBin 0.002 (0.00) 0.000 (0.02) 0.001 (0.01) 0.002 (0.02) 0.000 (0.01) 0.000 (0.02)

Adult (3) Wiki Toxicity (4) Business (3)

Train Test Train Test Train Test
Threshold 0.002 (0.04) 0.005 (0.03) 0.025 (0.04) 0.024 (0.03) 0.015 (0.02) 0.014 (0.01)
Hashing 0.005 (0.01) 0.002 (0.01) 0.000 (0.01) 0.004 (0.01) 0.000 (0.01) 0.001 (0.02)
VarBin 0.000 (0.01) 0.002 (0.01) 0.014 (0.01) 0.013 (0.01) 0.000 (0.01) 0.001 (0.01)

across protected groups. These goals impose a large number of constraints on the model, and
stochastic solutions become crucial in being able to satisfy them. We used the proxy-Lagrangian
optimizer of Cotter et al. [4, 5] to solve the constrained optimization problem. This solver outputs a
stochastic ensemble, as well as the best deterministic classifier, chosen heuristically from its iterates.

Datasets. We use use a variety of fairness datasets with binary protected attributes: (1) COMPAS [24],
where the goal is the predict recidivism with gender as the protected attribute; (2) Communities &
Crime [25], where the goal is to predict if a community in the US has a crime rate above the 70th
percentile, and as in Kearns et al. [26], we consider communities having a black population above the
50th percentile as the protected group; (3) Law School [27], where the task is to predict whether a law
school student will pass the bar exam, with race (black or other) as the protected attribute; (4) UCI
Adult [25], where the task is to predict if a person’s income exceeds 50K/year, with female candidates
as the protected group; (5) Wiki Toxicity [28], where the goal is to predict if a comment posted on a
Wikipedia talk page contains non-toxic/acceptable content, with the comments containing the term
‘gay’ considered as the protected group; (6) Business Entity Resolution, a proprietary dataset from a
large internet services company, where the task is to predict whether a pair of business descriptions
refer to the same real business, with non-chain businesses treated as protected. We used linear models
for all experiments. See Appendix A for further details on the datasets and setup.‡

Methods. We apply the thresholding, hashing and variable binning (VarBin) techniques to convert the
trained stochastic ensemble into a deterministic classifier. For hashing, we first map the input features
to 2128 clusters (using a 128-bit cryptographic hash function), and apply a pairwise independent hash
function to map it to 232 buckets (see Claim 1 in Appendix B.3 for the construction). For VarBin, we
choose a direction � uniformly at random from the unit `2 sphere, project instances onto this direction,
and have the cluster mapping ⇡ divide the projected values into k = 25 contiguous bins, i.e. ⇡(x) = c
whenever uc�1  h�, xi  uc, where u0 = minx h�, xi < u1 < . . . < u25 = maxx h�, xi are
equally-spaced thresholds. The score q(x) for an instance x is taken to be the projected value h�, xi

normalized by the maximum and minimum values within its cluster, i.e. q(x) =
h�,xi�u⇡(x)�1

u⇡(x)�u⇡(x)�1
.

Additionally, we find that adding the random numbers r1, . . . , r|C| was unnecessary and take rc = 0
for all c, which considerably simplifies the implementation of VarBin.

5.1 ROC Curve Matching

Our first task is to train a scoring model that yields similar ROC curves for both the protected
group and the overall population. Let TPRt denote the true positive rate in the model’s ROC curve
when thresholded at false positive rate t and, let TPRptr

t denote the true positive rate achieved
on the protected group members when thresholded to yield the same false positive rate t on the

‡Code made available at: https://github.com/google-research/google-research/

tree/master/stochastic_to_deterministic
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Figure 1: Test set ROC curves for the Black group and overall population in the Law School
dataset. Note that the stochastic classifier successfully matches the two ROC curves and the hashing
approximation is much more faithful than the best deterministic iterate provided by the solver.

Figure 2: Comparison of pre-clustered Hashing and VarBin showing the trade-off between orderliness
(using the proxy of fewer bins) and accuracy on the rate metrics (more bins).

protected group. We are interested in a selected set of FPRs in the initial portion of the curve:
T = {0.1, 0.2, 0.3, 0.4}. Our goal is to maximize the sum of TPRs at these FPRs, subject to TPR
values being similar for both the protected group and overall population, i.e.:

max
P

t2T
TPRt s.t. |TPRt � TPRptr

t |  0.01, 8t 2 T .

This results in 24 constraints on true and false positive rates. For this problem, the constrained
optimizer outputs ensembles with 3–5 deterministic classifiers. We report the objective and constraint
violations for the trained stochastic models in Table 4 of Appendix A. The stochastic solution yields
a much lower constraint violation compared to an unconstrained classifier trained to optimize the
error rate, and the “best iterate” deterministic classifier. A comparison of the different strategies for
de-randomizing the trained stochastic model is presented in Table 1. Hashing and VarBin are able to
closely match the performance of the stochastic classifier. Thresholding fares poorly on three of the
six datasets. Figure 1 provides a visualization of the matched ROC curves.

We next study the trade-off between orderliness and accuracy. To evaluate hashing with different
numbers of bins, we project the inputs along a random direction, form equally-spaced bins, and hash
the bin indices. Figure 2 plots the difference in objective between the stochastic and hash-deterministic
models for different numbers of bins (averaged over 50 random draws of the random direction and
hash function). We show a similar plot for the constraint metrics. We compare hashing with a
VarBin strategy that uses the same number of (total) bins. VarBin is generally better at approximating
the stochastic classifier with a small number of bins because VarBin sizes the bins to respect the
probability distribution p, and is thus able to provide better accuracy with more orderliness.

5.2 Histogram Matching

We next consider a regression task where the fairness goal is to match the output distribution of
the model for the protected group and the overall population. For a regression model ĝ : X ! Y ,
with a bounded Y ⇢ R, we divide the output range into 10 equally sized bins B1, . . . , B10

and require that the fraction of protected group members in a bin is close to the fraction of
the overall population in that bin:

��Prx|ptr {ĝ(x) 2 Bj}� Prx {ĝ(x) 2 Bj}
��  0.01, for all

j 2 [10]. We minimize the squared error subject to satisfying this goal, which results in a
total of 20 constraints on the model. We train stochastic models on the same datasets as before,
and use real-valued labels wherever available: for Crime, we predict the per-capita crime rate,
for Law School, we predict the under-graduate GPA, and for WikiToxicity, we predict the
level of toxicity (a value in [0,1]). In this case, the constrained optimizer outputs a stochastic
ensemble of regression models ĝ1, . . . , ĝn : X ! Y with probabilities p 2 �n�1. In place of
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Table 2: Comparison of de-randomization approaches on histogram matching regression tasks. We
report A (B), where A is the difference in squared error between the stochastic classifier and the
deterministic classifier and B is the difference in fairness. We measure fairness as Prx | ptr(ĝ(x) 2
Bj) � Prx(ĝ(x) 2 Bj), and report the maximum abs. difference in this metric between the stochastic
and deterministic classifier across all bins Bj . ‘Average’ is the regression analogue of thresholding.

Crime (5) COMPAS (4) Law School (5)

Train Test Train Test Train Test
Average 0.001 (0.02) 0.001 (0.02) 0.068 (0.03) 0.069 (0.06) 0.265 (0.01) 0.262 (0.02)
Hashing 0.000 (0.01) 0.000 (0.03) 0.002 (0.03) 0.004 (0.06) 0.002 (0.01) 0.002 (0.01)
VarBin 0.000 (0.05) 0.001 (0.14) 0.001 (0.08) 0.007 (0.07) 0.002 (0.04) 0.002 (0.06)

Adult (4) Wiki Toxicity (5) Business (8)

Train Test Train Test Train Test
Average 0.003 (0.01) 0.003 (0.01) 0.023 (0.09) 0.023 (0.09) 0.091 (0.07) 0.090 (0.08)
Hashing 0.000 (0.01) 0.000 (0.01) 0.000 (0.01) 0.001 (0.01) 0.010 (0.03) 0.013 (0.07)
VarBin 0.000 (0.04) 0.000 (0.04) 0.002 (0.13) 0.003 (0.18) 0.001 (0.06) 0.005 (0.08)

Figure 3: Test set histograms of model outputs for the female candidates (red) and the overall
population (green) in the Adult dataset.

thresholding, we report the “Average” baseline that simply outputs the expected value of the
ensemble: f̂(x) =

Pn
j=1 pj ĝj(x). For our datasets, the trained stochastic ensembles contain 4 to 8

classifiers. We report the objective and constraint violations in Table 5 in Appendix A. An evaluation
of how well the constructed deterministic classifiers match the stochastic classifier is presented in
Table 2. Hashing and VarBin yield comparable performance on most datasets. The Average base-
line fails on four of the datasets. Figure 3 provides a visualization of the matched output distributions.

In Appendix A.3, we present a third experiment on an unconstrained multiclass problem where
we seek to optimize the G-mean evaluation metric, which is the geometric mean of the per-class
accuracies. We apply a training approach based on the Frank-Wolfe method [12] on the UCI Abalone
dataset [25] and present the result of de-randomizing a stochastic ensemble with 100 base classifiers.

6 Conclusions and Future Work

There are a number of ways to convert a stochastic classifier to a deterministic approximation, and
one of these—hashing—enjoys a theoretical guarantee that compares favorably to a lower bound,
in terms of how well the approximation preserves aggregate rate metrics. However, the reasons
that determinism may be preferable to stochasticity include stability, debuggability, various notions
of fairness, and resistance to manipulation via repeated use. In terms of these issues, a disorderly
classifier, like that resulting from hashing, may be unsatisfactory.

Applying pre-clustering to the hashing approach partially solves this problem, as does the variable
binning approach of Section 4, but leaves a number of important questions open, including how one
should measure similarity, and whether we can improve on the “local orderliness” property these
approaches enjoy, and whether there are special cases where one can construct accurate deterministic
classifiers without losing out on orderliness.

Another possible refinement would be to consider more general metrics than the aggregate rates that
we consider in Section 2. For example, one could potentially use smooth functions of rates, to handle
e.g. the F-score or G-mean metrics [29] (see the experiment in Appendix A.3). Or, to support the
ranking or regression settings, one could define rate metrics over pairs of examples [30–32].
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