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Abstract

On-policy reinforcement learning (RL) algo-
rithms have high sample complexity while off-
policy algorithms are difficult to tune. Merging
the two holds the promise to develop efficient
algorithms that generalize across diverse envi-
ronments. It is however challenging in practice
to find suitable hyper-parameters that govern
this trade off. This paper develops a simple al-
gorithm named P3O that interleaves off-policy
updates with on-policy updates. P3O uses the
effective sample size between the behavior pol-
icy and the target policy to control how far they
can be from each other and does not introduce
any additional hyper-parameters. Extensive
experiments on the Atari-2600 and MuJoCo
benchmark suites show that this simple tech-
nique is highly effective in reducing the sample
complexity of state-of-the-art algorithms.

1 Introduction

Reinforcement Learning (RL) refers to techniques where
an agent learns a policy that optimizes a given perfor-
mance metric from a sequence of interactions with an
environment. There are two main types of algorithms
in reinforcement learning. In the first type, called on-
policy algorithms, the agent draws a batch of data using
its current policy. The second type, known as off-policy
algorithms, reuse data from old policies to update the
current policy. Off-policy algorithms such as Deep Q-
Network (Mnih et al., 2015, 2013) and Deep Determin-
istic Policy Gradients DDPG (Lillicrap et al., 2015) are
biased (Gu et al., 2017) because behavior of past policies
may be very different from that of the current policy and
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hence old data may not be a good candidate to inform
updates of the current policy. Therefore, although off-
policy algorithms are data efficient, the bias makes them
unstable and difficult to tune (Fujimoto et al., 2018). On-
policy algorithms do not usually incur a bias 1; they are
typically easier to tune (Schulman et al., 2017) with the
caveat that since they look at each data sample only once,
they have poor sample efficiency. Further, they tend to
have high variance gradient estimates which necessitates
a large number of online samples and highly distributed
training (Ilyas et al., 2018; Mnih et al., 2016).

Efforts to combine the ease-of-use of on-policy algorithms
with the sample efficiency of off-policy algorithms have
been fruitful (Gu et al., 2016; O’Donoghue et al., 2016b;
Wang et al., 2016; Gu et al., 2017; Nachum et al., 2017;
Degris et al., 2012). These algorithms merge on-policy
and off-policy updates to trade-off the variance of the
former against the bias of the latter. Implementing these
algorithms in practice is however challenging: RL algo-
rithms already have a lot of hyper-parameters (Henderson
et al., 2018) and such a combination further exacerbates
this. This paper seeks to improve the state of affairs.

We introduce the Policy-on Policy-off Policy Optimiza-
tion (P3O) algorithm in this paper. It performs gradient
ascent using the gradient

E
πθ

[
∇ log πθ Â

πθ
]
+ E

β

[
min(ρ, c)∇ log πθÂ

πθ
]

− λ∇θ E
s∼β

KL
(
β(·|s) || πθ(·|s)

) (1)

where the first term is the on-policy policy gradient, the
second term is the off-policy policy gradient corrected by
an importance sampling (IS) ratio ρ and the third term is

1Note that most policy gradient implementations use the
undiscounted state distribution frequencies instead of discounted
distribution, these implementations are biased. However,
as Thomas (2014) show being completely unbiased may even
hurt performance.



a constraint that keeps the state distribution of the target
policy πθ close to that of the behavior policy β. Our key
contributions are:

1. we automatically tune the IS clipping threshold c and
the KL regularization coefficient λ using the normal-
ized effective sample size (ESS), and

2. we control changes to the target policy using samples
from replay buffer via an explicit Kullback-Leibler
constraint.

The normalized ESS measures how efficient off-policy
data is to estimate the on-policy gradient. We set

λ = 1− ESS and c = ESS.

We show in sections 4 and A that this simple technique
leads to consistently improved performance over competi-
tive baselines on discrete action tasks from the Atari-2600
benchmark suite (Bellemare et al., 2013) and continuous
action tasks from MuJoCo benchmark (Todorov et al.,
2012).

2 Background

This section introduces notation and provides an overview
of policy gradients, off-policy optimization techniques
and covariate shift.

2.1 Notation

Let us consider an agent that interacts with the environ-
ment in discrete time steps. The policy π(a|s) picks an
action a ∈ A given the current state s ∈ S. The agent
receives a reward r(s, a) ∈ R after this interaction and
its goal is to maximize the discounted sum of rewards
Gt =

∑∞
i=t γ

ir(si, ai) where γ ∈ [0, 1) is a scalar
constant that ensures that the sum is well-defined. The
quantity Gt is called the return. We shorten r(st, at) to
rt to simplify notation.

If the initial state s0 is drawn from a distribution d0(s)
and the agent follows the policy π thereafter, the action
value function and the state only value function are given
by

qπ(st, at) = E
(s,a)∼π

[
Gt|st, at

]
and

vπ(st) = E
at

[
qπ(st, at)

] (2)

respectively. The goal of the agent is to find a policy
π∗ = arg maxπ J(π) that maximizes the expected value
of the returns where

J(π) = E
s∼d0

[
vπ(s)

]
. (3)

2.2 Policy gradients

We denote by πθ, a policy that is parameterized by param-
eters θ ∈ Rn; these may for instance be the parameters of
a deep neural network. This induces a parameterization of
the state-action and state-only value functions which we
denote by qπθ and vπθ respectively. Monte-Carlo policy
gradient methods such as REINFORCE (Williams, 1992)
solve the above optimization problem by taking gradient
steps on the objective and uses the likelihood-ratio trick
to estimate the policy gradient. The policy gradient of (3)
is

E
st∼dπθ ,at∼πθ

[
∇θ log πθ(at|st) qπθ (st, at)

]
(4)

where dπθ is the unnormalized discounted state visita-
tion frequency dπθ (s) =

∑∞
t=0 γ

t P(st = s). We will
shorten the notation for the expectation Est∼dπθ ,at∼πθ [·]
to Eπθ [·].

Remark 1 (Baseline for variance reduction). We can
estimate the policy gradient as an average of the above
integrand over sample trajectories drawn using the current
policy πθ. The action value function qπθ is typically esti-
mated using Monte-Carlo as q̂πθ (st, at) =

∑∞
i=0 γ

irt+i.
Both of these entail a large variance for policy gradi-
ents (Kakade and Langford, 2002; Baxter and Bartlett,
2001) and a number of techniques exist to mitigate the
variance. The most common one is to subtract a state
dependent control variate (baseline) v̂πθ (s) from q̂πθ (s).
This leads to the Monte-Carlo estimate of the advantage
function (Konda and Tsitsiklis, 2000)

Âπθ (s, a) = q̂πθ (s, a)− v̂πθ (s)

which is used in place of qπθ in (4). Let us note
that more general state-action dependent baselines can
also be used (Liu et al., 2017). We denote the base-
lined policy gradient integrand in short by g(πθ) :=
Âπθ (s, a)∇θ log πθ(a|s) to rewrite (4) as

∇on
θ J(πθ) = E

πθ

[
g(πθ)

]
. (5)

2.3 Off-policy policy gradient

The policy gradient in (5) involves an expectation over
data collected from the current policy πθ. Vanilla policy
gradient methods use each datum only once to update the
policy; this makes then sample inefficient. A solution to
this problem is to use an experience replay buffer (Lin,
1992) to store previous data and reuse these experiences
to update the current policy using importance sampling.
For a mini-batch of size T consisting of {(sk, ak, s′k)}
for k ≤ T drawn from the buffer, the integrand in (5)



becomes( T∏
t=0

ρ(st, at)
) T∑
t=0

(
T−t∑
i=0

γirt+i

)
∇θ log πθ(at|st)

where the importance sampling (IS) ratio

ρ(s, a) =
πθ(a|s)
β(a|s)

> 0 (6)

governs the relative probability of the candidate policy πθ
with respect to the one that collected the data β.

Degris et al. (2012) employed marginal value functions
to approximate the above gradient and they obtained the
expression

E
s∼dβ ,a∼β

[
ρ(s, a)∇θ log πθ(a|s)Âπθ (s, a)

]
(7)

for the off-policy policy gradient. Note that states are sam-
pled from dβ which is the state distribution of β. Further,
the expectation occurs using the policy β while the action
value function qπθ is that of the target policy πθ. This is
important because in order to use the off-policy policy
gradient above, one needs to estimate qπθ . The authors
in Wang et al. (2016) estimate qπθ using the Retrace(λ)
estimator (Munos et al., 2016). If πθ and β are very differ-
ent from each other, the importance ratio ρ(s, a) may vary
across a large magnitude. This leads to high variance if (8)
is estimated using Monte-Carlo techniques. An effective
way to mitigate this is to clip ρ(s, a) at some threshold c.
We will use this clipped importance ratio often and denote
it as ρc = min(ρ, c). This helps us shorten the notation
for the off-policy policy gradient to

∇off
θ J(πθ) = E

β

[
ρc g(πθ)

]
. (8)

2.4 Covariate shift

In the supervised learning setting if we observe iid data
from a distribution q(x), minimizing the risk with respect
to another distribution p(x) amounts to minimizing the
following weighted loss function

E
x∼p(x)

E
y|x

[`(y, ϕ(x))]

= E
x∼q(x)

E
y|x

[w(x) `(y, ϕ(x))] .
(9)

Here y are the labels associated to draws x ∼ q(x) and
`(y, ϕ(x)) is the loss of the predictor ϕ(x). Such an
importance sampling estimator is consistent but leads to
increased variance because it discounts samples that have
low likelihood under the new distribution p(x) (Robert
and Casella, 2013; Elvira et al., 2018).

Definition 2 (Effective sample size). Given a dataset
X = {x1, x2, . . . , xN} and two densities p(x) and q(x)
with p(x) being absolutely continuous with respect to
q(x), the effective sample size is defined as the number of
samples from p(x) that would provide an estimator with
a performance equal to that of the importance sampling
(IS) estimator in (9) with N samples (Kong, 1992). For
our purposes, we will use the normalized effective sample
size

ESS =
1

N
‖w(X)‖21/‖w(X)‖22 (10)

where w(X) := [dp(x1)/dq(x1), . . . ,dp(xN )/dq(xN )]
is a vector that consists of the Radon-Nikodym derivative
of the two densities (Resnick, 2013) evaluated at the sam-
ples. This expression is a good rule of thumb and occurs,
for instance, for a weighted average of Gaussian random
variables (Quionero-Candela et al., 2009) or in particle
filtering (Smith, 2013). We have normalized the ESS by
the size of the dataset which makes ESS ∈ [0, 1].

We can use the ESS as an indicator of the efficacy of up-
dates to πθ with samples drawn from the behavior policy
β. If the ESS is large, the two policies predict similar
actions given the state and we can confidently use data
from β to update πθ.

3 Approach

This section discusses the P3O algorithm. We first identify
key characteristics of merging off-policy and on-policy
updates and then discuss the details of the P3O algorithm
and provide insight into its behavior using ablation exper-
iments.

3.1 Combining on-policy and off-policy policy
gradients

We can combine the on-policy update in (5) with the off-
policy update in (8) after bias-correction on the former to
get

E
πθ

[(
1− c

ρ

)
+

g(πθ)
]
+ E

β

[
ρc g(πθ)

]
; (11)

here (·)+ := max (·, 0) denotes rectification. This is
similar to the off-policy actor-critic (Degris et al., 2012)
and ACER gradient (Wang et al., 2016) except that the
authors in Wang et al. (2016) use the Retrace(λ) estimator
to estimate qπθ in (8). Note that the expectation in the
second term is computed over actions that were sampled
by β whereas the expectation of the first term is computed
over all actions a ∈ A weighted by the probability of
taking them πθ(a|s). The clipping constant c in (11)
controls the off-policy updates versus on-policy updates.
As c → ∞, ACER does a completely off-policy update



while we have a completely on-policy update as c → 0.
In practice, it is difficult to pick a value for c that works
well for different environments as we elaborate upon in
the following remark. This difficulty in choosing c is a
major motivation for the present paper.
Remark 3 (How much on-policy updates does ACER
do?). We would like to study the fraction of weight up-
dates coming from on-policy data as compared to those
coming from off-policy data in (11). We took a stan-
dard implementation of ACER2 with c = 10 and track
the on-policy part of the loss (first term in (11)) as train-
ing progresses in Fig. 1. Note that the on-policy loss is
zero throughout training. This suggests that the perfor-
mance of ACER (Wang et al., 2016) should be attributed
pre-dominantly to off-policy updates and the Retrace(λ)
estimator rather than the combination of off-policy and
on-policy updates. This experiment demonstrates the im-
portance of hyper-parameters when combining off-policy
and on-policy updates.

Figure 1: On-policy loss for ACER (first term in (11)) is zero all
through training due to aggressive IS ratio thresholding. ACER
had the highest reward from among A2C, PPO and P3O in 3
out of these 5 games (Assault, RiverRaid and BreakOut; see
the Supplementary Material for more details). In spite of the
on-policy loss being zero for all Atari games, ACER receives
good rewards across the benchmark.

3.2 Combining on-policy and off-policy data with
control variates

Another way to leverage off-policy data is to use it to
learn a control variate, typically the action value function
qω . This has been the subject of a number papers; recent
ones include Q-Prop (Gu et al., 2016) which combines
Bellman updates with policy gradients and Interpolated
Policy Gradients (IPG) (Gu et al., 2017) which directly
interpolates between on-policy and off-policy determin-
istic gradient, DPG and DDPG algorithms, (Silver et al.,
2014; Lillicrap et al., 2016)) using a hyper-parameter. To
contrast with the ACER gradient in (11), the IPG is

(1− ν) E
πθ

[
g(πθ)

]
+ ν E

s∼β

[
∇θ E

a∼πθ(a|s)
{qω(s, a)}

]
(12)

2OpenAI baselines: https://github.com/openai/baselines

where qw is an off-policy fitted critic. Notice that since
the policy πθ is stochastic the above expression uses
∇θ Ea∼πθ {qω} for the off-policy part instead of the DPG
∇θqω(s, µθ(s)) for a deterministic policy µθ(s). This
avoids training a separate deterministic policy (unlike Q-
Prop) for the off-policy part and encourages on-policy
exploration and an implicit trust region update. The pa-
rameter ν explicitly controls the trade-off between the bias
and the variance of off-policy and on-policy gradients re-
spectively. However, we have found that it is difficult to
pick this parameter in practice; this is also seen in the
results of (Gu et al., 2017) which show sub-par perfor-
mance on MuJoCo (Todorov et al., 2012) benchmarks;
for instance compare these results to similar experiments
in Fujimoto et al. (2018) for the Twin Delayed DDPG
(TD3) algorithm.

3.3 P3O: Policy-on Policy-off Policy Optimization

Our proposed approach, named Policy-on Policy-off Pol-
icy Optimization (P3O) explicitly controls the deviation
of the target policy with the behavior policy. It is given as
follows

E
πθ

[
g(πθ)

]
+ E

β

[
ρc g(πθ)

]
− λ∇θ E

s∼β
KL
(
β(·|s) || πθ(·|s)

)
.

(13)

The first term is the standard on-policy gradient, the sec-
ond term in the above expression is the off-policy policy
gradient with truncation of the IS ratio using a constant c
while the third term allows explicit control of the devia-
tion of the target policy πθ from β. Note that we do not
perform bias correction in the first term so it is missing
the factor

(
1− c

ρ

)
+

from the ACER gradient (11). As

we noted in Remark 3, it may be difficult to pick a value
of c which keeps this factor non-zero. Note that even if
the KL-term is zero, the above gradient is a biased esti-
mate of the on-policy policy gradient. Further, note that
the KL-divergence term can be rewritten as Eβ [log ρ]
and therefore minimizes the importance ratio ρ over the
entire replay buffer β. There are two hyper-parameters in
the P3O gradient: the IS truncation threshold c and the
KL regularization co-efficient λ. We use the following
rationale to pick values of c and λ.

If the behavior and target policies are far from each other,
we would like a large λ to push them closer. If they are too
close to each other, we could perform more exploration
and therefore want a smaller regularization co-efficient λ.
We set

λ = 1− ESS (14)

where the ESS in (10) is computed using the current mini-

https://github.com/openai/baselines


batch sampled from the replay buffer β.

The truncation threshold c is chosen to keep the variance
of the second term bounded. Smaller the c less efficient
the off-policy update and larger the c higher the variance
of this update. We set

c = ESS. (15)

This is a very natural way to threshold the IS factor ρ(s, a)
because ESS ∈ [0, 1]. This adaptively chooses a trade-off
between the reduced variance and the inefficiency of a
small IS ratio ρ. Note that the ESS is computed on a
mini-batch of transitions and their respective IS factors
and hence clipping an individual ρ(s, a) using the ESS
tunes c automatically to the mini-batch.

(a) BeamRider

(b) Qbert

Figure 2: Effect of λ on performance. First, a non-zero value
of λ trains much faster than without the KL regularization term
because the target policy is constrained to be close to an entropic
β. Second, for hard exploration games like Qbert, a smaller
value λ = 0.1 works much better than λ = 0.5 while the trend
is somewhat reversed for easy exploration games such as Beam-
Rider. The ideal value of λ thus depends on the environment and
is difficult to pick before-hand. Setting λ = 1− ESS tunes the
regularization adaptively depending upon the particular mini-
batch and works significantly better for easy exploration, it also
leads to gains in hard exploration tasks.

The gradient of P3O in (13) is motivated from the follow-
ing observation. Explicitly controlling the KL-divergence
between the target and the behavior policy encourages
them to have the same visitation frequencies. This is
elaborated upon by Lemma 4 which follows from the
time-dependent state distribution bound proved in (Schul-
man et al., 2015a; Kahn et al., 2017).

Lemma 4 (Gap in discounted state distributions). The
gap between the discounted state distributions dπθ and
dβ is bounded as

‖dπθ − dβ‖1 ≤
2γ

(1− γ)2
√

max
s∈S

KL(β || πθ) (16)

The KL-divergence penalty in (13) is directly mo-
tivated from the above lemma; we however use
Es∼β [KL(πθ || β)] which is easier to estimate.
Remark 5 (Effect of λ). Fig. 2 shows the effect of pick-
ing a good value for λ on the training performance. We
picked two games in Atari for this experiment: Beam-
Rider which is an easy exploration task and Qbert which
is a hard exploration task (Bellemare et al., 2016). As the
figure and the adjoining caption shows, picking the correct
value of λ is critical to achieving good sample complexity.
The ideal λ also changes as the training progress because
policies are highly entropic at initialization which makes
exploration easier. It is difficult to tune λ using annealing
schedules, this has also been mentioned by the authors
in Schulman et al. (2017) in a similar context. Our choice
of λ = 1 − ESS adapts the level of regularization auto-
matically.
Remark 6 (P3O adapts the bias in policy gradients).
There are two sources of bias in the P3O gradient. First,
we do not perform correction of the on-policy term in (11).
Second, the KL term further modifies the descent direc-
tion by averaging the target policy’s entropy over the
replay buffer. If ρ(s, a) > c for all transitions in the
replay buffer, the bias in the P3O update is

E
πθ

[
− c

ρ
∇ log πθÂ

πθ
]
+ E
s∼β,a∈A

[
λ∇ log πθ(a|s)

]
= E

β

[
− ESS∇ log πθÂ

πθ
]

+ E
s∼β,a∈A

[
(1− ESS)∇ log πθ(a|s)

]
(17)

The above expression suggests a very useful feature. If
the ESS is close to 1, i.e., if the target policy is close
to the behavior policy, P3O is a heavily biased gradient
with no entropic regularization. On the other hand, if the
ESS is zero, the entire expression above evaluates to zero.
The choice c = ESS therefore tunes the bias in the P3O
updates adaptively. Roughly speaking, if the target policy
is close to the behavior policy, the algorithm is confident
and moves on even with a large bias. It is difficult to
control the bias coming from the behavior policy, the ESS
allows us to do so naturally.

A number of implementations of RL algorithms such
as Q-Prop and IPG often have subtle, unintentional bi-
ases (Tucker et al., 2018). However, the improved perfor-
mance of these algorithms, as also that of P3O, suggests



that biased policy gradients might be a fruitful direction
for further investigation.

(a) ESS

(b) KL term
Es∼β

[
KL(β(·|s) || πθ(·|s))

]

(c) Entropy of πθ

Figure 3: Evolution of ESS, KL penalty and the entropy
of πθ as training progresses. Fig. 3a shows the evolution of
normalized ESS. A large value of ESS indicates that the target
policy πθ is close to β in its state distribution. The ESS is about
0.85 for a large fraction of the training which suggests a good
trade-off between exploration and exploitation. The KL term
in Fig. 3b is relatively constant during the course of training
because its coefficient λ is adapted by ESS. This enables the
target policy to be exploratory while still being able to leverage
off-policy data from the behavior policy. Fig. 3c shows the
evolution of the entropy of πθ normalized by the number of
actions |A|. Note that using λ = 0 results in the target policy
having a smaller entropy than standard P3O. This reduces its
exploratory behavior and the latter indeed achieves a higher
reward as seen in Fig. 2.

3.4 Discussion of the KL penalty

The KL-divergence penalty in P3O is reminiscent of trust-
region methods. These are a popular way of making
monotonic improvements to the policy and avoiding pre-

mature moves, e.g., see the TRPO algorithm by Schulman
et al. (2015a). The theory in TRPO suggests optimizing
a surrogate objective where the hard KL divergence con-
straint is replaced by a penalty in the objective. In our
setting, this amounts to the penalty λ Es∼β

[
KL(β ||πθ)

]
.

Note that the behavior policy β is a mixture of previous
policies and this therefore amounts to a penalty that keeps
πθ close to all policies in the replay buffer β. This is also
done by the authors in Wang et al. (2016) to stabilize the
high variance of actor-critic methods.

A penalty with respect to all past policies slows down op-
timization. This can be seen abstractly as follows. For an
optimization problem x∗ = arg minx f(x), the gradient
update xk+1 = xk − αk∇f(xk) can be written as

xk+1 = arg min
y

{
〈∇f(x), y〉+ 1

2αk
‖y − xk‖2

}
if the arg min is unique; here xk is the iterate and αk is
the step-size at the kth iteration. A penalty with respect
to all previous iterates

{
x1, x2, . . . , xk

}
can be modeled

as

xk+1 = arg min
y

{
〈∇f(x), y〉+ 1

2αk

k∑
i=1

‖y − xi‖2
}

(18)
which leads to the update equation xk+1 = 1

k

∑k
i=1 x

i −
αk

k ∇f(x
k) which has a vanishing step-size as k → ∞

if the schedule αk is left unchanged. We would expect
such a vanishing step-size of the policy updates to hurt
performance.

The above observation is at odds with the performance of
both ACER and P3O; see Section 4 which shows that both
algorithms perform strongly on the Atari benchmark suite.
However Fig. 3 helps reconcile this issue. As the target
policy πθ is trained, the entropy of the policy decreases,
while older policies in the replay buffer are highly en-
tropic and have more exploratory power. A penalty that
keeps πθ close to β encourages πθ to explore. This ex-
ploration compensates for the decreased magnitude of the
on-policy policy gradient seen in (18).

3.5 Algorithmic details

The pseudo-code for P3O is given in Algorithm 1. At
each iteration, it rolls out K = 16 trajectories of T = 16
time-steps each using the current policy and appends them
to the replay buffer D. In order to be able to compute
the KL-divergence term, we store the policy πθ(·|s) in
addition to the action for all states.

P3O performs sequential updates on the on-policy data
and the off-policy data. In particular, Line 5 in Algo-



(a) Ms. Pac-Man

(b) Gravitar

Figure 4: Effect of roll-out length and GAE. Figs. 4a and 4b
show the progress of P3O with and without generalized ad-
vantage estimation. GAE leads to significant improvements in
performance. The above figures also show the effect of chang-
ing the number of time-steps from the environment used in
on-policy updates: longer time-horizons help in games with
sparse rewards although the benefit diminishes across the suite
after 20 steps.

Algorithm 1: Policy-on Policy-off Policy Optimization
Input: Policy πθ , baseline vφ, replay buffer D

1 Roll out trajectories b = {τ1, τ2, . . . , τK} for T
time-steps each

2 Compute the returns G(τk) and policy πθ(·|st; τk)
∀ t ≤ T, k ≤ K

3 D ← D ∪ b

4 On-policy update of πθ using b; see (13)
5 ξ ← Poisson(m)

6 for i ≤ ξ do
7 bi ← sample mini-batch from D
8 Estimate ESS and KL-divergence term using πθ

and stored policies logµ(·|st; τk)
∀ t ≤ T, τk ∈ bi

9 Off-policy and KL regularizer update of πθ using
bi; see (13)

rithm 1 samples a Poisson random variable that governs
the number of off-policy updates for each on-policy up-
date in P3O. This is also commonly done in the litera-
ture (Wang et al., 2016). We use Generalized Advantage
Estimation (GAE) (Schulman et al., 2015b) to estimate
the advantage function in P3O. We have noticed signifi-
cantly improved results with GAE as compared to without
it, as Fig. 4 shows.

4 Experimental validation

This section presents the experimental validation of our
approach. We evaluate the P3O algorithm against com-
petitive baselines on the Atari-2600 benchmarks from
OpenAI Gym (Brockman et al., 2016) and MuJoCo bench-
mark (Todorov et al., 2012). Our objective in this section
is to demonstrate that P3O achieves performance compa-
rable to state-of-the-art reinforcement learning algorithms
with the ESS-based hyper-parameter choices motivated
in Section 3. Results for MuJoCo are presented in Ap-
pendix A.

4.1 Setup

We used the same 3-layer convolutional neural network
as the one used by Mnih et al. (2015) with last 4 frames
returned by the environment as input to the network.
We compare the P3O algorithm developed in this pa-
per against three competitive baselines: the synchronous
actor-critic architecture (A2C) of Mnih et al. (2016), prox-
imal policy optimization (PPO) from Schulman et al.
(2017) and actor-critic with experience replay (ACER)
from Wang et al. (2016). The first, A2C, is a standard
baseline while PPO is a completely on-policy algorithm
that is robust and has demonstrated good performance
on a variety of tasks including Atari and MuJoCo bench-
marks. ACER combines on-policy updates with off-policy
updates and is closest to P3O, as we have discussed in Sec-
tion 3.

We use the same hyper-parameters as the original authors
of these algorithms and implementations from OpenAI
Baselines3 in order to be consistent and comparable to
existing literature. Details are provided in the Supplemen-
tary Material.

4.2 Summary of results

Table 10 shows a comparison of P3O against the three
baselines averaged over all the games in the Atari-2600
benchmark. We measure progress in two ways: (i) in
terms of the final reward for each algorithm averaged
over the last 100 episodes after 28M time-steps (80M

3https://github.com/openai/baselines

https://github.com/openai/baselines


Figure 5: Comparison of A2C (blue), ACER (red), PPO (green) and P3O (orange) on some Atari games. Comparisons for all
the 49 games are provided in the Supplementary Material.

frames of the game) and (ii) in terms of the reward at 40%
training time and 80% training time averaged over 100
episodes. We average the reward over three random seeds
to compute the numbers in Table 10 and we follow the
evaluation protocol proposed by Machado et al. (2017)
to report the results. The latter compares different algo-
rithms in terms of their sample efficiency. These results
suggest that P3O is an efficient algorithm that improves
upon these competitive baselines both in terms of the fi-
nal reward at the end of training and the reward obtained
after a fixed number of samples. A table with the rewards
for all the 49 games and algorithms is provided in the
Supplementary Material. Fig. 7 shows the reward curves
for some of the Atari games for all these algorithms; sim-
ilar plots for all the 49 Atari games are provided in the
Supplementary Material.

5 Related work

Our work builds upon recent techniques that combine off-
policy and on-policy updates in reinforcement learning.
The closest one to our approach in this paper is the ACER
algorithm (Wang et al., 2016). It builds upon off-policy
actor-critic method of (Degris et al., 2012); it uses the
Retrace operator (Munos et al., 2016) to estimate an off-

Table 1: Number of Atari games “won” by each algorithm
measured by the average reward over 100 episodes across three
random seeds.

Algorithm Won Won @ 40% Won @ 80%
training time training time

A2C 0 0 0
ACER 13 9 11
PPO 9 8 10
P3O 27 32 28

policy action value function and constrains the candidate
policy to be close to the running average of past policies
using a linearized KL-divergence constraint. The P3O
algorithm uses a biased variant of the ACER gradient and
incorporates an explicit KL penalty in the objective. We
discuss this connection in detail in Section 3.

The PGQL algorithm (O’Donoghue et al., 2016a) uses an
estimate of the action value function of the target policy to
combine on-policy updates with those obtained from the
Bellman error objective. QProp (Gu et al., 2016) learns
the action value function using off-policy data which is
used as a control variate for on-policy updates. The au-



thors in Gu et al. (2017) propose the interpolated policy
gradient (IPG) which takes a unified view of these al-
gorithms. It directly combines on-policy and off-policy
updates using a hyper-parameter and shows that, although
such updates may be biased, the bias is bounded.

A key characteristic of all the above algorithms is that
they have numerous hyper-parameters which are critical
to achieving good performance. For instance, the authors
in Oh et al. (2018) report poor results with ACER and
prioritized replay as compared to vanilla actor-critic meth-
ods. Our use of the effective sample size eliminates the
clipping threshold for the importance ratio (IS) which is a
key hyper-parameter.

Policy gradient algorithms with off-policy data are not
new. The importance sampling ratio has been commonly
used by a number of authors such Cao (2005); Levine
and Koltun (2013). Effective sample size is popularly
used to measure the quality of importance sampling and
to restrict the search space for parameter updates (Jie and
Abbeel, 2010; Peshkin and Shelton, 2002). We exploit
ESS to a similar end, it is an effective way to both control
the contribution of the off-policy data and the deviation
of the target policy from the behavior policy. Let us
note there are a number of works that learn action value
functions using off-policy data, e.g.,Wang et al. (2013);
Hausknecht and Stone (2016); Lehnert and Precup (2015)
that achieve varying degrees of success on reinforcement
learning benchmarks.

Covariate shift and effective sample size have been
studied extensively in the machine learning literature;
see Robert and Casella (2013); Quionero-Candela et al.
(2009) for an elaborate treatment. These ideas have also
been employed in reinforcement learning (Kang et al.,
2007; Bang and Robins, 2005; Dudı́k et al., 2011). To
the best of our knowledge, we are the first to use ESS for
combining on-policy updates with off-policy updates.

6 Conclusion

This paper proposed Policy-on Policy-off Policy Opti-
mization (P3O), an algorithm to combine the sample effi-
ciency of off-policy RL algorithms with the ease of use
of on-policy algorithms. We introduced a KL divergence-
based constraint between the behavior policy and the tar-
get policy. We showed that the effective sample size (ESS)
of the behavior policy with respect to the target policy is
a remarkably effective to automatically tune both the reg-
ularization of the constraint and the importance sampling
ratio threshold of the off-policy update. This combination
is typically performed using hyper-parameters and is diffi-
cult to tune in practice; we showed that we can eliminate
these hyper-parameters. We perform extensive ablation

and large-scale experiments to show that P3O, in spite of
its simplicity, consistently achieves good performance.

We have focused on discrete action spaces in this paper.
The P3O algorithm can also be used for continuous ac-
tion spaces without any modifications if we cache the
behavior policy’s logits in the replay buffer to compute
the KL regularization term. Further, the P3O algorithm
leverages time-varying quantities like ESS to robustly
combine off-policy and on-policy updates. This suggests
that understanding the dynamics of reinforcement learn-
ing algorithms might be the key to making them sample
efficient and generalize to new environments.
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A MuJoCo benchmarks

Table 2: P3O hyperparameters for MuJoCo

Hyperparameters Value

Architecture FC(100) - FC(100)
Learning rate 3× 10−4

Replay Buffer size 5× 103

Number of environments 2
Number of steps per iteration 64
Entropy regularization (α) 0.0
Off policy updates per iteration (ξ) Poisson(3)
Burn-in period 2500
Number of samples from replay buffer 15
Discount factor (γ) 0.99
Value loss Coefficient 0.5
Gradient norm clipping coefficient 0.5
Advantage estimation discounting factor (τ ) 0.95
Random Seeds {0 . . . 9}

Table 3: A2C (and A2CG) hyperparameters on MuJoCo

Hyperparameters Value

Architecture FC(64) - FC(64)
Learning rate 13× 10−3

Number of environments 8
Number of steps per iteration 32
Entropy regularization (α) 0.0
Discount factor (γ) 0.99
Value loss Coefficient 0.5
Gradient norm clipping coefficient 0.5
Random Seeds {0 . . . 9}

Table 4: PPO hyperparameters on MuJoCo

Hyperparameters Value

Architecture FC(64) - FC(64)
Learning rate 3× 10−4

Number of environments 1
Number of steps per iteration 2048
Entropy regularization (α) 0.0
Number of training epochs per update 10
Discount factor (γ) 0.99
Value loss Coefficient 0.5
Gradient norm clipping coefficient 0.5
Advantage estimation discounting factor (τ ) 0.95
Random Seeds {0 . . . 9}



Table 5: Performance of agents on MuJoCo continuous-control tasks after 3M time-steps of training.

Games A2CG A2C PPO P3O

HalfCheetah-v2 181.46 1907.42 2022.14 5051.58

Walker2d-v2 855.62 2015.15 2727.93 3770.86

Hopper-v2 1377.07 1708.22 2245.03 2334.32

Swimmer-v2 33.33 45.27 101.71 116.87

InvertedDoublePendulum-v2 90.09 5510.71 4750.69 8114.05

InvertedPendulum-v2 733.34 889.61 414.49 985.14

Ant-v2 −253.54 1811.29 1615.55 4727.34

Humanoid-v2 530.12 720.38 530.13 2057.17

Figure 6: Comparison of A2C (blue), A2CG [A2C with GAE] (magenta), PPO (green) and P3O (orange) on 8 MuJoCo environments.



B Atari benchmarks

Tables 6 to 9 show hyper-parameters for each of the meth-
ods used in our experiments.

Table 6: A2C hyperparameters on Atari games

Hyperparameters Value

Architecture Conv (32-8× 8-4)
Conv (64-4× 4-2)
Conv (64-3× 1-1)
FC (512)

Learning rate 7× 10−4

Number of environments 16
Number of steps per iteration 5
Entropy regularization (α) 0.01
Discount factor (γ) 0.99
Value loss Coefficient 0.5
Gradient norm clipping coefficient 0.5
Random Seeds {0 . . . 2}

Table 7: ACER hyperparameters on Atari games

Hyperparameters Value

Architecture Same as A2C
Replay Buffer size 5× 104

Learning rate 7× 10−4

Number of environments 16
Number of steps per iteration 20
Entropy regularization (α) 0.01
Number of training epochs per update 4
Discount factor (γ) 0.99
Value loss Coefficient 0.5
importance weight clipping factor 10
Gradient norm clipping coefficient 0.5
Momentum factor in the Polyak 0.99
Max KL between old & updated policy 1
Use Trust region True
Random Seeds {0 . . . 2}

Table 8: PPO hyperparameters on Atari games

Hyperparameters Value

Architecture Same as A2C
Learning rate 7× 10−4

Number of environments 8
Number of steps per iteration 128
Entropy regularization (α) 0.01
Number of training epochs per update 4
Discount factor (γ) 0.99
Value loss Coefficient 0.5
Gradient norm clipping coefficient 0.5
Advantage estimation discounting factor (τ ) 0.95
Random Seeds {0 . . . 2}

Table 9: P3O hyperparameters on Atari games

Hyperparameters Value

Architecture Same as A2C
Learning rate 7× 10−4

Replay Buffer size 5× 104

Number of environments 16
Number of steps per iteration 16
Entropy regularization (α) 0.01
Off policy updates per iteration (ξ) Poisson(2)
Burn-in period 15× 103

Number of samples from replay buffer 6
Discount factor (γ) 0.99
Value loss Coefficient 0.5
Gradient norm clipping coefficient 0.5
Advantage estimation discounting factor (τ ) 0.95
Random Seeds {0 . . . 2}



Figure 7: Comparison of A2C (blue), ACER (red), PPO (green) and P3O (orange) on all 49 Atari games.



Table 10: Performance of agents on 49 Atari-2600 games after 28M timesteps (112M frames) of training.

Games A2C ACER PPO P3O

Alien 1425.00 2436.20 2260.43 3124.80

Amidar 439.43 1393.24 1062.73 1787.40

Assault 3897.73 6996.46 5941.23 6222.27

Asterix 12272.50 24414.00 7574.33 25997.00

Asteroids 2052.27 1874.83 2147.33 2483.30

Atlantis 2847251.67 2832752.33 2647593.67 3077883.00

BankHeist 910.43 1281.60 1236.90 864.03

BattleZone 6250.00 10726.67 22856.67 12793.33

BeamRider 5149.29 6486.07 3834.01 11163.49

Bowling 24.19 38.61 31.75 27.04

Boxing 0.21 99.33 98.06 99.44

Breakout 403.25 474.81 328.80 351.81

Centipede 3722.24 6755.41 4530.21 8615.36

ChopperCommand 1389.67 10376.00 9504.33 8878.33

CrazyClimber 111418.67 136527.67 118501.00 168115.00

DemonAttack 65766.90 181679.27 37026.17 331454.95

DoubleDunk −17.86 −8.37 −6.29 −3.83
Enduro 0.00 0.00 1092.52 0.00

FishingDerby 29.54 45.74 29.34 52.07

Freeway 0.00 0.00 32.83 0.00

Frostbite 269.87 304.23 1266.73 312.13

Gopher 3923.13 99855.53 6451.07 29603.60

Gravitar 377.33 387.00 1042.67 987.50

IceHockey −6.39 −3.97 −5.11 −3.50
Jamesbond 453.83 457.50 683.67 475.00

Kangaroo 507.33 1524.67 11583.67 13360.67

Krull 8935.40 9115.73 8718.40 7812.03

KungFuMaster 25395.00 30002.33 34292.00 46761.67

MontezumaRevenge 0.00 0.00 0.00 805.33

MsPacman 2220.63 4892.33 3502.20 7516.21

NameThisGame 5977.63 15640.83 6011.03 9232.70

Pitfall −65.50 −7.64 −1.94 −7.40
Pong 20.21 20.80 20.69 20.95

PrivateEye 49.24 99.00 97.33 92.61

Qbert 16289.08 22051.67 21830.17 27619.33

Riverraid 9680.33 17794.03 11841.03 13966.67

RoadRunner 35918.33 40428.67 50663.33 58728.00

Robotank 4.30 4.89 18.54 33.69

Seaquest 1485.33 1739.87 1953.53 1851.87

SpaceInvaders 1894.02 3140.17 2124.57 2699.33

StarGunner 55469.33 65005.00 63375.67 63905.00

Tennis −22.22 −11.26 −6.72 −5.27
TimePilot 3359.00 7012.00 7535.67 10789.00

Tutankham 105.28 291.09 206.42 268.24

UpNDown 30932.20 159642.17 173208.13 279107.53

Venture 0.00 0.00 0.00 0.00

VideoPinball 21061.76 373803.36 220680.47 377935.99

WizardOfWor 1256.33 2973.00 5744.67 10637.33

Zaxxon 17.00 89.33 8872.67 16801.33


	Introduction
	Background
	Notation
	Policy gradients
	Off-policy policy gradient
	Covariate shift

	Approach
	Combining on-policy and off-policy policy gradients
	Combining on-policy and off-policy data with control variates
	P3O: Policy-on Policy-off Policy Optimization
	Discussion of the KL penalty
	Algorithmic details

	Experimental validation
	Setup
	Summary of results

	Related work
	Conclusion
	MuJoCo benchmarks
	Atari benchmarks

