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ABSTRACT

We present a new method for improving the performances of variational autoen-
coder (VAE). In addition to enforcing the deep feature consistency principle thus
ensuring the VAE output and its corresponding input images to have similar deep
features, we also implement an adversarial generative training mechanism to force
the VAE to output realistic and natural images. We present experimental results
to show that the VAE trained with our new method outperform state of the art in
generating face images with much clearer and more natural noses, eyes, teeth, hair
textures as well as reasonable backgrounds. We also show that the VAE trained
with the new method can extract more effective features that outperform state of
the art in facial attribute recognition.

1 INTRODUCTION

Generative models, as a branch of unsupervised learning technique in machine learning, have be-
come an area of active research in recent years. A generative model trained with a given image
database can be useful in several ways. One is to learn the essence of a dataset and generate realistic
images similar to those in the dataset from random vectors.The other is to learn reusable feature rep-
resentations from unlabeled image datasets for a variety of supervised learning tasks such as image
classification. In this paper, we propose a new method to train the variational autoencoder (VAE)
(Kingma & Welling, [2013) to improve its performances in the aforementioned two applications.
First, we use a deep feature consistent principle to ensure that the output image of the VAE to have
deep features that are consistent with those of the input, and this is called DFC-VAE (Hou et al.,
2017). Second, we use the principle of generative adversarial network (GAN) (Goodfellow et al.
(2014)) to enforce the VAE output to resemble natural real images. We introduce several techniques
to improve convergence of GAN training in this context. We present experimental results to show
that our new method can generate face images with much clearer facial features such as eyes, nose,
mouth, teeth, ears and hairs. We also show that the VAE trained by our method can extract much
more effective features that outperform state of the art in facial attribute recognition.

2 RELATED WORK

Several methods have been proposed to improve the performance of VAE. Kingma et al.[ (2014)
proposes to build variational autoencoders by conditioning on either class labels or on a variety of
visual attributes. Ridgeway et al.| (2015) and [Hou et al,| (2017) consider replacing per-pixel loss
with perceptual similarities using either multi-scale structural similarity score or a perceptual loss
based on deep features extracted from pretrained deep networks. In addition, several recent papers
(Denton et al., 2015} Radford et al.l [2015; Im et al., 2016} [Salimans et al., [2016;|Chen et al.| [2016;
Arjovsky et al., 2017) have focused on improving the perceptual quality of the output of GAN and
the training stability of GAN through architectural innovation and new training techniques. Our
model combines the advantages of deep feature consistent VAE (DFC-VAE) (Hou et al., 2017 and
Wasserstein GAN (WGAN) (Arjovsky et al.,2017) to improve the variational autoencoder.
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Figure 1: Model overview. From left to right: The Variational autoencoder (VAE), the VGGNet used
for computing perceptual loss to enforce deep feature consistency between the VAE’s output and the
input images, the discriminator trained based on the principle of WGAN. Note that the inputs to the
discriminator come from the first convolutional layer of the VGGNet.

3 DEEP FEATURE CONSISTENCY, VAE AND WGAN

As shown in Figure |1} our model consists of three components: a variational autoencoder, a pre-
trained VGGNet (Simonyan & Zisserman, [2014) for feature extraction and a classifier network used
as discriminator. It is used to improve the VAE using the deep features extracted by the VGGNet
and use the principle of GAN to enforce the VAE to output natural and realistic images. Both the
encoder and the decoder are deep residual convolutional neural networks with a 100-dimensional
latent vector. The encoder compresses the input image into the latent feature which is decoded to
an output image. The VGGNet is used to extract deep features to construct the perceptual loss. The
VAE also serves as a generator and works with discriminator to perform the GAN game. Instead of
feeding the pixels to the discriminator, we use the first layer output of the VGGNet as the input of
the discriminator and found that this can significantly improve the stability of the GAN training.

Similar to Johnson et al.| (2016)), our feature reconstruction loss is also defined as the Euclidean
distance between the feature maps of a reconstruction image and a reference image. Instead of only
using a single layer features, we leverage visual features at multiple scales and use the outputs of the

five convolutional layers of the VGGNet, i.e., Lyc. = Zle :LC%OLi, where L; and C; are the feature

loss and the number of filters at 5*" layer, respectively.

In order to improve the stability of WGAN training (Arjovsky et al.,[2017), unlike traditional GAN
that directly feeds the raw real images and the generated images to a discriminator, we first extract the
first layer features of the pretrained VGGNet and feed them to the discriminator network. Another
technique is to further relax the constraint on the output of the discriminator network. WGAN
proposes to remove the last Sigmoid layer in the generator and use 1 and -1 as ground-truth for real
and generated images. In our experiments, we found that GAN training could collapse and the VAE
training tends to dominate when using the default setting of WGAN. Instead, by simply using bigger
values to represent ground-truth (10 and -10), we can achieve a good balance between the VAE and
GAN training, producing better results.

4 EXPERIMENT

Image generation. Our model is evaluated on the CelebA dataset (Liu et al., 2015). Figure E] (a)
gives some qualitative examples of the generated images by DCGAN (Radford et al.| 2015), DFC-
VAE (Hou et al.| [2017) and our new VAE-WGAN from random vectors. We can see that our new
method can generate more consistent and realistic human faces with much clearer noses, eyes, teeth,
hair textures as well as reasonable background. Furthermore, we have conducted experiments to
manipulate the facial attributes in the learned latent space. For a given attribute like smiling, 2,000
smiling face samples are fed into the trained encoder to generate 2000 latent vectors. The average
of these 2000 latent features forms latent feature zsni1ing+. Similarly, we use 2000 non smiling
face samples to generate a non-smiling latent vector zspiing—. Finally the difference zgi1ing =
Zsmile+ — Zsmile—, Which in effect takes away any non-smiling attributes from the smiling latent
feature, is used as the semantic representation for the attribute smiling. Similarly, we use the same
approach to constructing other semantic attribute latent features for Bald, Black hair, Eyeglass,



Workshop track - ICLR 2018

DCGAN

Smiling

EEE] -

@ . A ) ) ‘(l%)

Figure 2: Qualitative results. (a) shows the faces generated from random vectors. (b) shows the
results for facial attributes manipulation in the latent space, e.g. z = 2 + QZsmiling-

Table 1: Performance comparison of 40 facial attributes prediction.
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Male, Smiling, Mustache. Thus, for a given image with latent vector z, we can manipulate the facial
attribute with the corresponding attribute vector arithmetically, e.g. z = z + azsmiting- Figure|2|(b)
shows the results for 6 attributes, i.e., Bald, Black hair, Eyeglass, Male, Smiling, and Mustache. We
can see that our method can achieve smooth transitions for different facial attributes, demonstrating
that the face attributes can be modeled linearly in the learned latent space.

Facial attributes prediction. We further evaluate the quality of the learned latent representations of
the VAE by applying them to facial attributes prediction. Like (2015), 20,000 face images
in the CelebA dataset are used for testing while the remaining are used as training
data. We used a multi-level feature extraction strategy to extract robust features that cover different
image scales. Specifically, 5 VAE-WGAN models are trained independently, each using a different
convolutional layer of the VGGNet for computing the perceptual loss. The latent vectors for all the 5
models are concatenated as the final extracted features which are used to train standard linear SVM
classifiers to predict the 40 facial attributes in the dataset. Results are shown in Table[I] It is seen
that our method outperforms all the previous methods.

5 CONCLUDING REMARKS

In this paper, We propose a more stable architecture and several simple yet effective techniques
to incorporate variational autoencoder in the framework of generative adversarial network. Our
model can generate more consistent and realistic human faces with clearer noses, eyes, teeth, hair
textures as well as reasonable background. In addition, we further study the quality of the learned
representation and achieve new state-of-the-art performance for facial attribute prediction.
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