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Abstract

Effectively exploring the environment is a key challenge in reinforcement learning
(RL). We address this challenge by defining a novel intrinsic reward based on a
foundation model, such as contrastive language image pretraining (CLIP), which
can encode a wealth of domain-independent semantic visual-language knowledge
about the world. Specifically, our intrinsic reward is defined based on pre-trained
CLIP embeddings without any fine-tuning or learning on the target RL task. We
demonstrate that CLIP-based intrinsic rewards can drive exploration towards seman-
tically meaningful states and outperform state-of-the-art methods in challenging
sparse-reward procedurally-generated environments.

1 Introduction

Exploration is a key challenge in reinforcement learning (RL), especially when extrinsic feedback is
sparsely provided by the environment. Intrinsic motivation provides an effective way for agents to
explore the environment by rewarding the visitation of novel states [Oudeyer and Kaplan, 2009, Aubret
et al., 2019]. An important question is then the definition of state novelty. Most existing methods
compute novelty scores based on some form of distance function in a learned state representation,
which is typically learned simultaneously with the policy [Bellemare et al., 2016a, Pathak et al.,
2017]. For example, a popular recent approach RIDE [Raileanu and Rocktäschel, 2020] defines
novelty as the distance of consecutive states in the embedding space of a dynamics model learned
alongside the policy.

In this paper we propose a foundation model based intrinsic motivation scheme for RL, FoMoRL. In-
stead of computing novelty scores based on a domain-specific learned state representations, FoMoRL
uses the pre-trained state representation of a foundation model, i.e., a generic model trained on large
domain-independent visual-language data, such as contrastive language image pretraining (CLIP)
[Radford et al., 2021]. In this manner FoMoRL may incorporate semantic knowledge about the state
space without requiring any domain-specific pre-training, and thus help guide exploration towards
semantically meaningful states such as picking up keys, opening the doors, and interacting with other
useful objects relevant to the task.

The idea of FoMoRL is general to the choice of RL algorithm, motivation scheme, and the choice of
foundation model. We apply FoMoRL on top of RIDE [Raileanu and Rocktäschel, 2020] and the
IMPALA distributed off-policy RL algorithm [Espeholt et al., 2018]; and use CLIP as our foundation
model [Radford et al., 2021]. Formally, FoMoRL can be applied to any visual RL tasks, with or
without language conditioning; however, FoMoRL is expected to be effective in domains where
human-interpretable semantic knowledge is useful to succeed.

We evaluate FoMoRL on the challenging sparse-reward procedurally-generated MiniGrid domain
[Chevalier-Boisvert et al., 2018]. Procedurally generated environments present a significant learning
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challenge as an agent is unlikely to visit a state more than once, and therefore the learning method
needs to generalize to unseen scenarios. Somewhat surprisingly, our results suggest that CLIP
representations can be very effective even in grid-world environments, despite that CLIP was trained
on general human language-vision data that contains little (if any) grid-world like data points. Our
analysis shows that CLIP representations encode fine-grained discrimination between different
objects, colors, counts, and other visual attributes, which makes them effective for novelty based
exploration even in grid-worlds. FoMoRL significantly outperforms state-of-the-art RIDE [Raileanu
and Rocktäschel, 2020] method in 6 out of 9 challenging MiniGrid exploration tasks, and performs
similarly in the rest of the tasks. FoMoRL learns to solve the tasks 20% faster, and achieve over 86%
higher average return per episode across all tasks.

2 Related Work

Exploration in RL: There are many techniques for efficient exploration in model-free single-agent
RL, including but not limited to intrinsic novelty reward [Bellemare et al., 2016b, Tang et al., 2017],
predictability [Pathak et al., 2017, Oudeyer et al., 2007, Stadie et al., 2015], pure curiosity [Burda
et al., 2019], Bayesian posteriors [Osband et al., 2016, Gal et al., 2017, Fortunato et al., 2018,
O’Donoghue et al., 2018], information gain [Houthooft et al., 2016] or empowerment [Klyubin et al.,
2005, Choshen et al., 2018].

For intrinsic motivation-based exploration, a key problem is defining the novelty score. Raileanu and
Rocktäschel [2020] proposed RIDE which computes novelty scores based on differences between
state representations of consecutive states. The state representations are learned from learning a
transition function via forward and inverse dynamics model. Another work on random network
distillation (RND) [Burda et al., 2018] uses a fixed randomly initialized neural network to represent
the states and reward the exploration based on the error of a neural network predicting the fixed
features. Never Give Up (NGU; [Badia et al., 2020]) combines an episodic novelty module based on
inverse dynamics features with RND as a lifelong novelty module. DIAYN [Eysenbach et al., 2018]
performs unsupervised exploration independent of the task and models the policies conditioned on a
latent skill variable. In contrast to these works we propose to use pre-trained foundation models to
define intrinsic rewards.

Concurrent to our efforts, Tam et al. [2022] proposed the idea of using pretrained representations
from foundation models for exploration in RL. The high-level idea in the concurrent work is the same
as ours; however, there are important differences in its application. The concurrent work builds on
top of RND [Burda et al., 2018] and NGU [Badia et al., 2020] whereas we use RIDE [Raileanu and
Rocktäschel, 2020]; and the concurrent work mostly focuses on Unity based 3D environments with
language oracles, whereas we experiment with procedurally-generated long-horizon grid-world tasks
that have no language oracle, and whose visual appearance differs significantly from the visual data
used to pretrain the CLIP model.

Foundation Models in RL: Mu et al. [2022] uses language to improve exploration via intrinsic
rewards instead of using raw states, however their method requires a oracle language annotator
which is not easily available for many RL environments. Khandelwal et al. [2022] investigate the
effectiveness of CLIP visual representations directly for control on Embodied AI tasks [Batra et al.,
2020] by bypassing the learning of policy representations with CLIP embeddings. Their results
demonstrated the effectiveness of CLIP representations for control on navigation-heavy Embodied
AI tasks. Shridhar et al. [2022] proposed CLIPort which uses CLIP representations with imitation
learning for robotic manipulation tasks, adding spatial understanding of the scenes as well. SayCan
[Ahn et al., 2022] uses a Large Language Model (LLM) to supply high-level instructions to solve
the tasks and pair it with an affordance based value function to see if the robot has required skills
to perform those instructions. Similarly another paper [Patel and Pavlick, 2021] shows that LLMs
such as GPT-2 [Radford et al., 2019] or GPT-3 [Brown et al., 2020] can learn to ground the concepts
such as direction or colour that it is explicitly taught and also generalise to several instances of
unseen concepts as well. In contrast to the above works we explore using intrinsic rewards based on
foundational models for efficient semantic exploration in visual RL tasks.
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3 Problem Formulation

A partially-observable Markov decision process (POMDP) is defined as a tuple G =
⟨S,A, P,R,Ω, O, γ⟩. The true state of the environment is denoted by s ∈ S. At each time step,
an agent chooses an action a ∈ A, which causes a transition in the environment according to the
state transition kernel P (s′|s, a) : S × A × S → [0, 1], and the agent receives an extrinsic reward
Rext : S ×A → R. γ ∈ [0, 1) is a discount factor.

Due to partial observability, the agent cannot observe the true state s, but receives a partially
observable visual image o ∈ Ω drawn from observation kernel o ∼ O(s, a). At time t, the agent
has access to its action-observation history τt ∈ Tt ≡ (Ω × U)t × Ω, on which it conditions a
stochastic policy π(at|τt). The stochastic policy induces an action-value function : Qπ(st, τt, at) =
E [Gt|st, τt, at], where Gt =

∑∞
i=0 γ

irt+i is the discounted return.

4 FoMoRL

FoMoRL assigns an intrinsic reward based on CLIP’s [Radford et al., 2021] visual encoder embed-
dings. CLIP embeddings enable semantic understanding of the images as it has been contrastively
trained with image captioned large scale human data, thereby incorporating language abstractions.
These language abstractions can summarise the images with important fine grained details and yet
being very concise, much like our natural languages [Borghi and Binkofski, 2014].

4.1 Semantic Intrinsic Motivation

We define the representation of the current observation ϕ(ot) as the pretrained representation from
the CLIP encoder i.e. ϕ(ot) = clip(ot). The intrinsic reward Rint at time step t is computed as the
L2-norm ||ϕ(ot+1)− ϕ(ot)||2 of the difference in the clip representation between consecutive states
discounted by episodic state visitation counts similar to Raileanu and Rocktäschel [2020]:

rint(st, at, ot) =
||clip(ot+1)− clip(ot)||2√

Nep(st+1)
,

where Nep(st+1) is the visitation count of state st+1 during the current episode, which is initialized
to 1 in the beginning of the episode. The state visitation count can be directly computed for MDPs
with small number of discrete states, but can also be approximated for MDPs with large discrete
or continuous state spaces [Martin et al., 2017, Machado et al., 2020]. The above intrinsic reward
encourages the visitation of states which have significantly different CLIP representations from the
current state. CLIP representations can perform fine-grained classification of abstract concepts in
the visual observations and can therefore guide exploration towards semantically meaningful states
which are useful for the downstream task. The division by state counts ensures that the agent does
not exploit the intrinsic reward function by swinging between two states with large difference in
CLIP embeddings. For this paper, we use the officially released ResNet50× 16 model for the CLIP
encoder which outputs state representations of dimension 1024.

4.2 Training Setup

We train our policy using IMPALA [Espeholt et al., 2018] in a distributed off-policy setup with
multiple actors. The policy is trained to maximize the combined reward i.e. r(st, at) = αri(st, at) +
re(st, at), where α is a hyperparameter. The policy learns its own state representations from scratch,
while the pretrained representations are just used for guiding exploration through intrinsic rewards.
The total loss Ltot function is composed of four components: Lpg: policy gradient loss, Lbase: value
function loss, and Lent: entropy loss, with respective hyper parameter coefficients i.e.

Ltot = Lpg + cbaseLbase + centLent

Since our policy is conditioned on partial observations, we use an LSTM [Hochreiter and Schmidhu-
ber, 1997] to summarize the action-observation history τt.
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(a) MultiRoomN12S10 (b) KeyCorridorS3R3 (c) ObstructedMaze2Dlh

Figure 1: Representative examples of different MiniGrid environments. The highlighted area
showcases the partial observations the agent receives.

5 Experiments

5.1 MiniGrid Domain

We evaluate our proposed method on three types of hard exploration tasks from the MiniGrid domain
[Chevalier-Boisvert et al., 2018]: MultiRoomNXSY , KeyCorridorS3R3, and ObstructedMaze2Dlh.
The environment consists of an N ×M grid world with each cell is either empty or consist one of the
objects such as wall, floor, lava, door, key, ball, box and goal. The agent can pick up and carry exactly
one object, and each object has a discrete color. In order to open up a locked door, the agent has to
pick up and carry the key matching the color of the door. The action space is discrete and allows
agent to move forward, turn left/right, pick up an object, drop the object being carried, toggle (open
doors or interact with objects), and a done action to mark the task complete. At each time step, the
agent receives a partial and egocentric observation and the agent cannot see through walls or closed
doors.

The MultiRoomNXSY task (Figure 1a) consists of X rooms, with size at most Y , connected in
random orientations in every episode. This task has a series of connected rooms with doors that must
be opened in order to get to the next room with the green goal square as the final destination the agent
must get to. In the KeyCorridorS3R3 task (Figure 1b), the agent has to explore the environment to
find a key hidden in another room, and then use the key to open the corresponding door and pickup
the ball. In the ObstructedMaze2Dlh task (Figure 1c), the agent has to pick up a box which is placed
in a corner of a maze. The doors are locked, the keys are hidden in boxes and doors are obstructed
by balls. The NoisyTV [Burda et al., 2018] version of MultiRoomNXSY adds stochasticity to the
environment by adding a random ball which changes color everytime the agent takes a particular
action. The agents need to learn to avoid this distraction as it is irrelevant to the task.

The environment provides different input representations of the state: (1) compact grid encoding
using 3 integer values: describing the type and color of the object in the cell, and a flag indicating
whether doors are open or closed; (2) raw RGB visual observations from the procedurally generated
environment.

5.2 Baseline

For all our experiments, we use IMPALA [Espeholt et al., 2018] as the base RL algorithm, and
compare against the popular RIDE method by Raileanu and Rocktäschel [2020]. RIDE also uses
IMPALA to train the policy with the intrinsic reward based on learning state representations which
minimizes the forward and inverse dynamics loss. In the original paper, the authors use the compact
grid encoded representation (see Section 5.1 for definition), which already contains all key required
information about the visual observation, thereby making it simpler to learn a transition function
and the state representations. In this paper, we instead use the raw visual RGB observations, which
makes the task significantly harder as agents need to extract the features from raw images. Both the
policy and intrinsic reward modules for RIDE and FoMoRL method receives a partial egocentric
observation as input.
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Table 1: Performance of RIDE and FoMoRL on a variety of hard exploration problems in MiniGrid.
Both methods receive partially observable RGB images as input to the policy and intrinsic reward
module. The values indicate the final mean episodic return averaged over multiple seeds after training
on [xM] frames. The bracketed values (xM) indicate the average number of training frames (in
millions) required to achieve the convergence value. The (-) indicates no convergence in [xM] frames.

RIDE FoMoRL

DoorKey-5x5 [15M] 0.96 (5M) 0.96 (2.5M)
MultiRoom-N7-S4 [30M] 0.71 (15M) 0.76 (7M)
MultiRoomNoisyTV-N7-S4 [30M] 0.7 (20M) 0.74 (19M)
MultiRoom-N7-S8 [30M] 0.0 (-) 0.59 (29M)
MultiRoom-N10-S4 [30M] 0.66 (10M) 0.75 (6M)
MultiRoom-N10-S10 [80M] 0.0 (-) 0.0 (-)
MultiRoom-N12-S10 [80M] 0.0 (-) 0.0 (-)
ObstructedMaze-2Dlh [80M] 0.0 (-) 0.96 (45M)
KeyCorridorS3R3 [30M] 0.0 (-) 0.9 (18M)

Table 2: Performance of FoMoRL on very-hard exploration tasks N10-S10 and N12-S10 in MiniGrid
with partially observable RGB images as input to the policy and fully observable RGB images as
input to the intrinsic reward module. The values indicate the final mean episodic return averaged
over multiple seeds after training on [xM] frames. The bracketed values (xM) indicate the average
number of training frames (in millions) required to achieve the convergence value.

FoMoRL

MultiRoom-N10-S10 [80M] 0.63 (22M)
MultiRoom-N12-S10 [80M] 0.64 (24M)

5.3 Results

Table 1 summarizes the results for various MiniGrid tasks. As shown in the table, FoMoRL consis-
tently outperforms the original baseline method RIDE both with respect to better final average return
and time to reach convergence. RIDE fails to learn efficient state representations in the partially
observable RGB space and therefore completely fails to learn in a number of scenarios. On the other
hand, FoMoRL directly uses CLIP representations as state embeddings for intrinsic motivation and
thereby completely bypass the representation learning altogether.

As shown in the table, both RIDE and FoMoRL failed to learn anything on larger versions of
MultiRoom environment i.e. MultiRoom-N10-S10 and MultiRoom-N12-S10 with 10 and 12 rooms
respectively having a maximum room size of 10. We analyzed the training logs of these failed tasks
and found that the failure is attributed to the partial observability of the RGB input image. Since
intrinsic reward module only sees a partial observable egocentric observation, it tries to generate
diversity within that restricted view and gather intrinsic reward. Therefore, the agent learns to move
around from one cell to another and open doors only when it is within the observable area. The
moving around from cell to cell ends up taking most of the horizon time before the agent can reach
the final destination. We therefore tried to resolve this by allowing only the intrinsic module to access
the full RGB image of the environment, and keeping the policy input partially observable. Table 2
clearly shows that providing the intrinsic reward module access to fully observable RGB images
resolves the issue for FoMoRL.

For some tasks, we noticed that higher value of intrinsic reward coefficient led to the agent getting
distracted from solving the original task and rather focus on generating more and more diversity,
thereby making both RIDE and FoMoRL fail to learn. However, most environments were solvable by
α={0.1, 0.5} for RIDE and α={0.02, 0.005} for FoMoRL.
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5.4 CLIP Analysis on MiniGrid

In the previous section, we showed that CLIP representations are remarkably effective across multiple
MiniGrid exploration tasks. We perform a small experiment to check what exactly CLIP understands
from these RGB grid images. We input the RGB images to the CLIP’s visual encoder and then input
proposed language descriptions through the CLIP’s language encoder and compute a similarity score.
The higher score of similarity implies that CLIP representations prefer that description over others.
Figure 2 shows the test image which is inputted to the CLIP’s visual encoder. The proposed language
descriptions and the similarity scores are shown in 3.

Figure 3 shows the results for testing the CLIP representations to encode the color and count of
objects, their spatial information, and more fine-grained information. We test the color understanding
of the CLIP representations by comparing a correct description of the color of squares with an
incorrect one, as there are no green squares present in the test image (Figure 2). We then inspect if
CLIP representations prefers a description with spatial information of the key shaped object or not.
To check the understanding of CLIP representations to represent the count of objects, we compare the
number of blue squares with an incorrect description of three blue squares. Lastly, we test for more
fine grained information within the yellow squares. One of the yellow squares has a circle within it
and other one has a dash within (semantically meaning that the door is unlocked/locked).

Figure 2: RGB Input Image for
CLIP Embedding Analysis

Figure 3 indicates that CLIP representations can clearly dis-
criminate between different colors and counts of objects, their
spatial understanding, and even more fine grained information
like whether a square has a mini circle or minus within. CLIP
representations does not directly understand the significance
of the objects within the RGB image, for example, it does not
directly understand that a square indicates a door, or a square
with a mini circle indicates an unlocked door. However, the
representations can understand and distinguish between the ge-
ometrical shapes very well which is enough for diversity based
semantic exploration. On the contrary, CLIP representations
have already shown to be very effective for large range of tasks
from text based video retrieval [Fang et al., 2021, Luo et al.,
2021], text driven image manipulation [Patashnik et al., 2021]
to embodied AI tasks [Khandelwal et al., 2022] based on realis-
tic visual observations, for example, a kitchen scene containing
a microwave.

6 Conclusion

We showcase that language abstractions incorporated within foundation models such as CLIP can be
very useful for semantic exploration in RL, even on grid based environments. Our proposed method
FoMoRL can be applied independent of the choice of RL algorithm, intrinsic motivation scheme,
or the type of foundation model. FoMoRL achieves state-of-the-art performance with significantly
higher average return and solving the task much faster than the baseline RIDE method. This work
shows a proof of concept for leveraging foundation models for semantic novelty in RL. Future work
may investigate realistic 3D environments like Habitat ObjectNav Challenge [Batra et al., 2020] and
language conditioned tasks such as CALVIN [Mees et al., 2022]. It would be also interesting to
leverage the language encoder from CLIP alongside the visual encoder to enable semantic exploration
in language conditioned tasks.
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