
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEQUIFY YOUR FORCE FIELD: MORE EFFICIENT SIMU-
LATIONS USING DEEP EQUILIBRIUM MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning force fields show great promise in enabling more accurate force
fields than manually derived ones for molecular dynamics simulations. State-of-
the-art approaches for ML force fields stack many equivariant graph neural network
layers, resulting in long inference times and high memory costs. This work aims
to improve these two aspects while simultaneously reaching higher accuracy. Our
key observation is that successive states in molecular dynamics simulations are
extremely similar, but typical architectures treat each step independently, disregard-
ing this information. We show how deep equilibrium models (DEQs) can exploit
this temporal continuity by recycling intermediate neural network features from
previous time steps. Specifically, we turn a state-of-the-art force field architecture
into a DEQ, enabling us to improve both accuracy and speed by 10%− 20% on the
MD17, MD22, and OC20 200k datasets. Compared to conventional approaches,
DEQs are also naturally more memory efficient, facilitating the training of more
expressive models on larger systems given limited GPU memory resources.

1 INTRODUCTION

With increasingly more available compute, molecular dynamics (MD) simulations emerged as
an integral tool for studying the behaviour of molecules to develop a mechanistic understanding
of a large class of processes in drug discovery and molecular biology Lin & MacKerell (2019);
Hollingsworth & Dror (2018); Sinha et al. (2022); Durrant & McCammon (2011). The backbone
of an MD simulation is a force field, which predicts the forces acting on each of the atoms in a
molecule, given the current atom positions. These forces are then used to integrate the equations
of motion numerically by multiplying the forces with a small time step dt to obtain velocities,
which in turn is used to update the atom’s positions. Traditionally, force fields were designed by
hand to capture known physical effects such as covalent bonds, electrostatics, and van der Waals
forces Weiner & Kollman (1981); Pearlman et al. (1995). These hand-crafted force fields are
compact and fast but lack the expressivity to capture more complex quantum mechanical many-body
interactions. Alternatively, force fields can be calculated from highly accurate but costly quantum
mechanical calculations, so-called ab-initio methods. Therefore, a new approach has gained traction
over recent years: Training an expressive machine learning model on data from expensive ab-
initio methods. This results in models at near-quantum chemical accuracy at only a fraction of the cost.

Some early works on machine learning force fields used local atom environment descrip-
tors in combination with linear regression Thompson et al. (2015); Shapeev (2016), Gaussian
processes Bartók et al. (2010), and feed-forward neural networks Behler & Parrinello (2007). The
pioneering work SchNet Schütt et al. (2017) used a rotation invariant graph neural network to
predict energies, forces and other properties. This was later improved by the use of equivariant
neural networks that model angular dependencies more directly, such as Cormorant Anderson
et al. (2019), DimeNet Gasteiger et al. (2020), PaiNN Schütt et al. (2021), GemNet Gasteiger et al.
(2021), SphereNet Liu et al. (2022), and NequIP Batzner et al. (2022). Recent models have further
improved the expressivity and scalability of equivariant models. Equiformer introduces an attention
mechanism Liao & Smidt (2023), Allegro focuses on edge features with non-growing receptive
fields Musaelian et al. (2023), MACE introduces an efficient mechanism to calculate many-body
interactions with high-order tensor polynomials Batatia et al. (2022), eSCN improves the scaling of
Clebsch-Gordan products involved in equivariant convolutions Passaro & Zitnick (2023), and ViSNet

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Wang et al. (2022) and QuinNet Wang et al. (2024) derive ways to incorporate four and five body
terms much more efficiently. CHGNet Deng et al. (2023) incorporates magmoms for extra physical
supervision. VisNet-LSRM Li et al. (2023) and 4G-HDNNP Ko et al. (2021) focus on modelling
long-range and non-local effects. The latter is the most related to our current works, as it employs a
physically motivated charge equilibration scheme to construct input features to their neural network.
All the works mentioned above are neural networks built on message-passing schemes that respect
permutation, translation, rotation and optionally inversion symmetries, leading to much-improved
sample efficiency.

Despite these advancements, the computational cost of accurate predictions remains a sig-
nificant challenge. Even though machine learning force fields are much faster than quantum chemical
calculations, simulating systems with these models is still expensive. This is because, over the course
of a full MD simulation, the force field has to be called millions to billions of times Hollingsworth
& Dror (2018). Even for relatively cheap machine-learning force fields, this incurs a high cost.
Additionally, equivariant networks are memory-consuming due to the nature of the equivariant
message-passing operation Passaro & Zitnick (2023), complicating the training of expressive models
on large systems. Thus, compute-efficient models are of great interest.

This work addresses the challenge of fast inference speed, low memory footprint, and high
accuracy by introducing the Deep Equilibrium Networks (DEQ) formalism Bai et al. (2019) to
equivariant architectures. DEQs replace the typical deep stack of layers with fewer layers and a
fixed-point solver (see section 2.3), which results in more expressive models given a fixed parameter
count. Memory efficient gradient computation is enabled by the implicit function theorem, with
constant cost independent of number of function calls in the solver. Crucially, we exploit the temporal
correlation between successive states in MD simulations to reduce the number of solver steps to find
the fixed-point, gaining a speedup. By reusing the fixed-point from the previous MD state as an
initial guess to warm start the following fixed-point solver iteration, we effectively ”share compute”
between time steps (see figure 1).

We implement our method by adapting the EquiformerV2 architecture Liao & Smidt (2023); Liao
et al. (2024) since at the time of writing it holds the top spots on the Open Catalyst Project leaderboard.
1 In principle however, the methodology is compatible with other similar force field architectures
Gasteiger et al. (2021).

Our results show that, compared to the original EquiformerV2, DEQuiformer achieves (1) 10-20%
faster inference and equally or higher accuracy on the MD17/MD22 dataset, (2) significantly improved
accuracy for the OC20 200k dataset, (3) all at reduced training memory cost and (4) with 2-5x fewer
model parameters.

We summarize our contributions as follows:

1. This is the first work to propose the use of DEQ with equivariant networks, and its application
to ML force fields

2. We demonstrate that it is possible to exploit the temporal continuity in molecular dynamics,
by reusing sequential fixed-points in DEQs, on common datasets and practical simulations

3. Show that implicit models for ML force fields can improve upon speed, accuracy, training
memory, and parameter efficiency compared to their explicit counterparts

2 PRELIMINARIES

State-of-the-art ML force fields like EquiformerV2 belong to the class of equivariant graph neural
networks (GNN) Batatia et al. (2022); Musaelian et al. (2023); Liao et al. (2024); Batzner et al. (2022).
The central shared feature is the stacking of equivariant message passing layers, typically between
five Batzner et al. (2022) and twenty Liao et al. (2024). 3D rotational and translational equivariance
is achieved by building on irreducible representations and spherical harmonics, improving data
efficiency Batzner et al. (2022). We briefly introduce the idea of these equivariant GNNs.

1https://opencatalystproject.org/leaderboard.html

2

https://opencatalystproject.org/leaderboard.html

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 EQUIVARIANT GRAPH NEURAL NETWORKS

Molecules can be seen as graphs living in Euclidean 3-dimensional space. As such, they adhere to
a set of known symmetries that a equivariant models exploit. Such symmetry exploiting networks
have emerged as the SOTA for molecular data Passaro & Zitnick (2023); Musaelian et al. (2023);
Batatia et al. (2022); Liao et al. (2024); Thomas et al. (2018). For example, the energy of a molecule
does not change if we rotate it or if we permute the index of two atoms; therefore, we call the energy
rotation and permutation invariant. Forces, on the other hand, rotate along with the molecule, which
we call rotation equivariant.
A Graph Neural Network (GNN) takes in a graph G and maps it to a target space in a permutation
equivariant way. If the graph is embedded in 3d space as molecules are, we use O(3)−Equivariant
graph neural networks, which are equivariant to translations, rotations and optionally inversions. In
these networks, node features ht of node t, are concatenations of irreducible representations (irreps)
hl
t ∈ R2l+1, organized by their degree l (we omit an additional channel dimension for simplicity).

Irreps transform under rotation R as

hl(R · (r1, ..., rN)) = Dl(R) · hl(r1, ..., rN) (1)

where r1, ..., rN are the coordinates of the atoms, and Dl(R) ∈ R(2l+1)×(2l+1) is the Wigner-D
matrix. Intuitively, higher-degree features rotate faster with rotation of the input features. l = 0
features are rotation invariant scalars, and l = 1 are ordinary vectors. A vector r ∈ R3 can be mapped
to an l graded feature using the spherical harmonics Yl(r/||r||) ∈ R2l+1.
Two irreps f l1 and gl2 of different degrees interact using the Clebsch-Gordan tensor product Thomas
et al. (2018)

hl3
m3

=
(
f l1
m1
⊗l3

l1,l2
gl2m2

)
m3

=

l1∑
m1=−l1

l2∑
m2=−l2

C
(l3,m3)
(l1,m1),(l2,m2)

f l1
m1

gl2m2
(2)

where we index the elements within the 2l + 1 dimensional tensor by m, and C
(l3,m3)
(l1,m1),(l2,m2)

are
the Clebsch-Gordan coefficients. Every combination of l1, l2, l3 is called a path, and every path is
weighted individually by wl1,l2,l3(·). The weight itself is predicted by a neural network, conditioned
on rotation invariant features like the distance ||rts||.
An equivariant GNN builts on top of equation 2 to define an equivariant message passing scheme:
Given a target node ht and a source node hs with a relative coordinate vector rts, an equivariant
GNN sends a message from the source to the target using

vl3ts = vl3(ht, hs, rts) =
∑
l1,l2

wl1,l2,l3(||rts||)
(
f l1(ht, hs)⊗l3

l1,l2
Y l2(rts/||rts||)

)
(3)

where f(ht, hs) is a function of both target and source node features; in EquiformerV2, it is simply
the concatenation operation. Instead of using equation 3 directly, EquiformerV2 relies on eSCN
convolutions, which calculates basically the same expression but in a more efficient way; please refer
to Passaro & Zitnick (2023) and Liao et al. (2024) for details.

2.2 EQUIFORMERV2

EquiformerV2 Liao et al. (2024) in particular is a graph transformer, where each message passing
layer is an equivariant transformer block. To initialize the node features, the embedding block first
encodes the input molecule, based the atom numbers z and positions r.

h
(0)
i = Embed(xi) = Embed(zi, {rij}j∈N (i)) (4)

The L transformer layers then perform repeated attention-weighted message passing to update the
node features based on nodes in the neighbourhood.

h
(l+1)
i = f

(l)
θ

(
h
(l)
i , {h(l)

j , rij}j∈N (i)

)
(5)

After several transformer blocks update the node features, they are passed to two separate output
heads for the final force and energy predictions. The total energy of the molecule is just the sum of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

a) EquiformerV2 b) DEQuiformer

Fixed
Point+

Warm start from old fixed point
 shares compute between steps

Repeat until convergence

Compute not shared

E
m

bedding

Force
Head

Energy
Head

 + 1 + 1

Fixed
Point+

Force
Head

Energy
Head

Equiformer
Layer

Equiformer
Layer

Force
Head

Energy
Head

Force
Head

Energy
Head

Equiformer
Layer

Equiformer
Layer

E
m

bedding

E
m

bedding
E

m
bedding

Figure 1: Comparison of the EquiformerV2 and DEQuiformer architectures. While the Equiformer
model considers every input state independently, the DEQuiformer exploits the temporal continuity
between input states to share compute. This works because neighbouring time steps in an MD
simulation are highly similar. Therefore, we drastically reduce the required compute by reusing the
fixed-point from the previous step.

the energies of the individual nodes.

E =
∑
i

Outscalar
(
h
(L)
i

)
(6)

Fi = Outvector
(
h
(L)
i , zi, rij

)
j∈N (i)

(7)

We provide more details on equivariant GNNs and EquiformerV2 in section A.1.1.

2.3 DEEP EQUILIBRIUM NETWORKS

Implicit models Most machine learning models, like EquiformerV2, are explicit. Explicit models
are defined by mapping the input to an output via a fixed computational graph. For example, most
traditional deep learning models stack a fixed number L of layers such that the depth of the model does
not change during runtime. In contrast, implicit models, which have recently surged in popularity,
define their output as the solution to a learned dynamical system. Two prominent examples of implicit
models are Neural ODEs and Deep Equilibrium Models (DEQ).

DEQs compute their output as the fixed-point of an input-conditioned mapping. In contrast to explicit
models, this cannot be expressed as a fixed computational graph. We can use different root solvers,
each yielding different performance characteristics. If we roll out the solver trajectory, the iterations
take the form of weight-tied layers. Therefore, one often says these models have ”continuous layers”
or ”infinite depth”. One of the main selling points of implicit models is that they require constant
memory with respect to their ”depth” during training, independent of the solver used. This starkly
contrasts explicit models, where the memory complexity grows linearly with each layer.

Implicit layer Deep Equilibrium models drastically reduce the model size by replacing the deep
stack of layers with just one or two layers and a fixed-point solver. In early work Bai et al. (2018),
it was first shown that a stack of L residual layers yields very competitive results even if all layers
are weight-tied. In Bai et al. (2019), the authors showed empirically that the network converges to a
fixed-point in the limit of infinite depth L→∞. To formalize this, consider a function fθ, usually a
small neural network. Given some input x, repeated passes through fθ updates the features hs

hi+1 = fθ(h
s, x) (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

until the features converge to a fixed-point h∗ = fθ(h
∗, x). The ”fixed-point” or ”equilibrium point”

is then considered the output of the fixed-point layer. This replaces the intermediate features h(l)

after l layers with a fixed-point estimate of the features hs. Notice that the neural network layer fθ
has to take in the input x, in addition to the current features hs, at every pass, which is called the
input injection. This setup reduces the model from many layers to just a few. Naively passing h
through the NN layer fθ many times renders this approach slow, though. Instead, we search for the
fixed-point directly by using a root-solving algorithm like Anderson acceleration Anderson (1965) or
Broyden’s method Broyden (1965), which computes more sophisticated updates of h to reduce the
number of passes until the fixed-point is reached.

Memory efficient gradient Backpropagating through this solver trajectory would incur a pro-
hibitive memory cost. Fortunately, a unique feature of DEQs is that the gradient can be computed by
the Implicit Function Theorem (IFT) Bai et al. (2019):

∂L

∂θ
=

∂L

∂h∗

(
1− ∂fθ

∂h∗

)−1
∂fθ (h

∗, x)

∂θ
(9)

Using IFT, the forward passes is performed without tracking gradients, i.e. without storing the layer
activations. Thus, the memory cost during training, usually dominated by the gradient, becomes
independent of the DEQ’s ”depth.”

With the Implicit Function Theorem (IFT) the gradient is computed by solving a second fixed-point
system, for which we again use a root solver Bai et al. (2019).

g∗ = g∗ ∂f

∂h∗ +
dL

dh∗ (10)

Computing the gradient via IFT reduces the memory requirements during training, at the cost of extra
time to solve equation 10.

Many DEQ works circumvent solving equation 10 by the so-called 1-step gradient approximation
Fung et al. (2022) . Crucially we found that the 1-step gradient led to suboptimal accuracy in
combination with EquiformerV2. Improving the stability of DEQ training and its gradients is an
ongoing open problem that could improve the extended training times. We discuss this in more detail
in section A.1.2.

3 METHOD: DEQUIFORMER

The central step to ”DEQuify” EquiformerV2 is to replace the L Equiformer layers with a fixed-point
solver over LDEQ ≪ L Equiformer layers, as shown figure 1. We now go through the steps necessary
to make this work in practice.

Embedding block for input injection Equiformer initializes the node features via an embedding
block emb = Embed (x). Using the embedding to initialize the initial fixed-point estimate h0 however
would stop gradients to flow to the encoder, since the gradient calculated via IFT is independent of
the solver trajectory. Instead, we use the embedding block’s output as the input injection, by adding
the embedding to the fixed-point estimate hs at every solver step before passing it through the layer
gθ

fθ(h
s, x) = gθ

(
(hs + emb)

∥emb∥
∥hs + emb∥

)
(11)

To prevent the norm of the features to grow with depth, we rescale the vector 2-norm ∥·∥ to be the
same as before the addition. Following Bai et al. (2019), the node features are initialized as all zeros
h0 = 0.

Output head Like the embedding block, the output block itself remains unchanged. EquiformerV2
predicts the forces and energy via separate output heads, by acting on the node features after L layers
h(L). The node features are instead replaced by the fixed-point estimate of the node features h∗ from
the root solver, which we pass as input to the output heads.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Recurrent dropout Dropout is a widely used regularization that tends to hurt DEQ performance.
This is because dropout samples a new mask for each pass through the implicit layer, which hinders
finding a fixed-point Bai et al. (2019). EquiformerV2 uses two types of dropout, alpha dropout (acting
on nodes) and path dropout, also known as stochastic depth (acting on edges). For DEQuiformer we
instead use recurrent dropout, which applies the same mask at each step of the fixed-point solver, but
a different mask for each sample Bai et al. (2019); Gal & Ghahramani (2016). While recurrent path
dropout improved the generalisation of DEQuiformer, adding alpha dropout, either the recurrent or
regular version, reduced the accuracy in DEQuiformer. We hypothesise this is because dropout is
designed to reduce overfitting in large models, to which DEQs are less prone to due to their fewer
parameters. We subsequently remove alpha dropout from DEQuiformer but keep alpha dropout in
EquiformerV2.

Training stability with fixed-point correction loss Without further regularization, DEQs may
become unstable over the course of training, noticeable by increasing number of root solver steps Bai
et al. (2022; 2021); Geng & Kolter (2023). A simple yet effective remedy is the sparse fixed-point cor-
rection regularization loss Bai et al. (2022). Given a fixed-point solver trajectory h0, · · · ,hs, · · · ,h∗

we pick some fixed-point estimates hs, s ∈ I and add their gradient as if they were the final
fixed-point estimate. We follow Bai et al. (2022) and uniformly pick three hs along the solver
trajectory.

Fast inference via fixed-point reuse Our main observation is that consecutive time steps in a
molecular dynamics simulation are highly similar; thus, their fixed-points should also be similar. At
inference time, the number of solver steps can therefore be significantly reduced by initializing the
fixed-point estimate not from all zeros but the fixed-point of the previous time step: h0

t+1 = h∗
t . The

same idea was successfully demonstrated before in the context of optical flow prediction from videos
Bai et al. (2022).

Accuracy-compute tradeoff in the root solver To quickly reach a fixed-point we use Anderson
acceleration as a root solver, since it is faster than naive fixed-point iteration while being more stable
than Broyden’s method. During training, we require low fixed-point errors to ensure that gradients
can be calculated with the IFT. However, we can trade off performance and time during inference
by relaxing the error threshold for the root solver Bai et al. (2022). With the right threshold, this
significantly speeds up inference while only marginally affecting performance. For simplicity, we
adhere to the settings of Bai et al. (2022). During training we stop after the absolute fixed-point error
falls below a relative threshold |fθ (hs)− hs|/∥hs∥ < ϵtrain = 10−2 or a maximum of 40 steps is
reached. During inference, we compute the first fixed-point at the same tight tolerance ϵtest = ϵtrain,
but then relax the threshold for the following time steps to ϵFPreuse

test = 10−1. Relaxing the tolerance
further reduces the number of forward steps and thus inference time, without sacrificing accuracy, as
we show later.

4 EXPERIMENTS

In our experiments, we are focusing on the direct comparison between EquiformerV2 and it’s DEQ-
variant DEQuiformer on the most common MD dataset. In particular, we compare a 1 and 2-layer
DEQuiformer with a 1, 4, and 8-layer EquiformerV2 on the MD17/MD22 dataset and up to 14 layers
on the OC20 200k dataset. Our goal is to experimentally demonstrate the following points:

1. DEQs work with equivariant networks, with l−graded features and converge in a stable
manner

2. Reusing fixed-points speeds up DEQuiformer, pushing the accuracy-speed Pareto front

3. DEQs scales to large datasets like OC20 200k, significantly improving peak accuracy

4. While using much fewer model parameters

Due to computational constraints, we use slightly smaller versions of EquiformerV2 and only the
smaller 200k data split for OC20. We also reduce the model size for the much smaller MD17/MD22
datasets. For details, please refer to section A.2 in the appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

MD17 MD17 contains trajectories of molecular dynamics simulations of eight small molecules
with 9 to 21 atoms. For each molecule, there are between 100,000 to 1,000,000 data points. Following
Equiformer, a random subset of 950 data points is used for training, 50 for validation, and test on all
the remaining samples.

Like EquiformerV2, we use the original MD17 instead of the revised MD17 dataset Christensen &
von Lilienfeld (2020), which contains more accurate forces. The data points in rMD17 are not from
sequential MD timesteps, which makes rMD17 unsuitable for benchmarking with fixed-point reuse.
Since we are only interested in the direct comparison with EquiformerV2, using the lower-quality
MD17 dataset does not favor one model over the other.

MD22 The MD22 dataset extends MD17 by seven larger molecules with 42 to 370 atoms Chmiela
et al. (2023). We use the same datasplit for MD22 as for MD17. The double-walled nanotube is
much larger than the other systems, causing the 8-layer EquiformerV2 to run out of memory on our
compute setup. We, therefore, excluded the nanotube from the benchmark. However, this shows one
of the strengths of DEQs, as it allows us to train expressive models even on large systems.

OC20 The Open Catalyst Project (OC20) offers a much larger dataset, containing 1.3 million
molecular relaxations from 260 million DFT calculations. We restrict ourselves to the structure to
energy and forces (S2EF) 200k split. While effective for evaluating the accuracy of our approach, the
speedup with fixed-point reuse cannot be tested, since the samples are not temporally ordered and no
time information is available.

Evaluation The error is computed as the mean average error (MAE) over the test set. The energies
and forces are in units of kcal/mol and kcal/mol/Å. Time is measured as the forward pass on an AMD
MI100, averaged over the test set.

To aggregate the results over all molecules in MD17/MD22, we use minmax normalization per
molecule, and report the mean and standard deviation of the mean. We describe the procedure in
section A.2.

Training Following previous work, we train separate models for each molecule. For MD17/MD22,
we use a smaller model than the original EquiformerV2, which focuses on larger splits of OC20 (2M
and above). For OC20 200k we use the default hyperparameters in the EquiformerV2 repository.
For MD17/MD22 each model is trained on a single AMD MI100 GPU with 32GB GPU RAM for
500 epochs, which takes 10 to 30 hours. For OC20 200k training takes about 20 to 60 hours for
three epochs. For simplicity, we use the same training hyperparameters from EquiformerV1 and
EquiformerV2, without optimizing them for DEQuiformer specifically. A detailed discussion can be
found in section A.2.

4.1 RESULTS

Training dynamics Our first question is whether or not our DEQuiformer converges to a fixed-point.
Since no prior work has combined DEQs with a rotation equivariant architecture, this is not at all
obvious. To answer this question, we look at the relative fixed-point error on the Aspirin molecule as
a function of the fixed-point solver steps at different steps in training; see figure 2a. We see that the
fixed-point error decreases with the number of solver steps, as expected. The fixed-point iteration
is stable over the training, even slightly improving, resulting in slightly faster convergence later in
training.
Additionally, we look at the loss curves of aspirin as an example, figure 2b and figure 2c. We see
that the training stability of DEQuiformer is similar to that of EquiformerV2. The same holds for
OC20 200k; see figure 5a in the supplementary material. We can also see that our DEQuiformer has
both better training and better test errors, indicating that the improvements are not just due to reduced
overfitting from a lower parameter count.

Speedup on sequential MD data Our second question is if DEQuiformer provides a speedup
on the molecular dynamics data across MD17/MD22. Indeed, DEQuiformer achieves consistently
faster inference speeds at better accuracy than EquiformerV2, see figure 3a. Focusing on a 1-layer
DEQuiformer vs. a 4-layer EquiformerV2, we measure an average inference time improvement of 19

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) DEQuiformer converges to a
fixed-point and is stable over train-
ing.

(b) DEQuiformer trains faster,
achieving lower train error.

(c) Lower train error translates to
lower test error in DEQuiformer.

Figure 2: DEQuiformer enjoys stable training dynamics, reaching lower train and test error.

(a) Results for MD17/MD22: DEQuiformer is faster
than Equiformer during inference at the same or better
accuracy.

(b) Results for OC20 200k: DEQuiformer outperforms
EquiformerV2 despite using much fewer parameters.
Even with 14 layers (maxing out our memory), DE-
Quiformer still performs much better, indicating that
DEQs are more data efficient for force fields.

Figure 3: Results on MD17/22 and OC20 200k: DEQuiformer is faster and more accurate than
EquiformerV2 while also using much fewer parameters.

%, at 15 % better accuracy. The error bars are computed according to equation 20. A full breakdown
of the force test errors and inference time can be found in table 1. Energy predictions are listed in the
supplementary material under table 4, although note that there was a significantly higher weight on
the force loss.

The speedup is possible through fixed-point reuse. We examine the impact of this in more detail: In
figure 4b, we plot the number of solver steps needed to find the fixed-point in the test set on Aspirin
with and without reusing the fixed-point from the previous time step. While DEQuiformer takes
about 5-6 steps to find the fixed-point when starting from h0 = 0; this gets reduced to 3 steps if we
warm-start the solver, supporting our claim that we ”share compute” between successive time steps.

Accuracy on larger dataset Since MD17/MD22 is a comparatively small dataset, where more
expressive models often may not perform better Liao et al. (2024), we validate the DEQ approach on
OC20 200k. In figure 3b, we plot the force error over the number of layers, using a maximum of
14 layers for EquiformerV2, the maximum our GPU memory could support. DEQuiformer reaches
significantly better accuracy than EquiformerV2 while using far fewer parameters. Interestingly,
EquiformerV2 seems not to benefit much from an increase in depth after a certain point, such that
a one- or two-layer DEQuiformer is outperforming even an 14-layer EquiformerV2. Quantitative
results are in table 2b.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Ethanol Malonaldehyde Benzene Uracil Toluene Salicylic acid Naphthalene Aspirin

MD17 Force Time Force Time Force Time Force Time Force Time Force Time Force Time Force Time

EquiformerV2 (1 layer) 0.29 0.04 0.43 0.05 0.21 0.02 0.39 0.03 0.17 0.04 0.42 0.03 0.15 0.03 0.53 0.04
EquiformerV2 (4 layers) 0.22 0.12 0.31 0.15 0.20 0.13 0.30 0.10 0.13 0.12 0.33 0.12 0.12 0.13 0.42 0.11
EquiformerV2 (8 layers) 0.22 0.23 0.32 0.25 0.18 0.24 0.30 0.25 0.13 0.25 0.34 0.25 0.12 0.25 0.42 0.25

DEQ (1 layer) 0.22 0.09 0.31 0.09 0.22 0.13 0.35 0.09 0.15 0.09 0.31 0.06 0.15 0.09 0.40 0.09
DEQ (2 layers) 0.21 0.18 0.31 0.19 0.21 0.18 0.30 0.20 0.14 0.20 0.27 0.53 0.11 0.18 0.39 0.17

Ac-Ala3-NHMe DHA AT-AT Stachyose AT-AT-CG-CG Buckyball catcher

MD22 Force Time Force Time Force Time Force Time Force Time Force Time # Weights

EquiformerV2 (1 layer) 0.70 0.03 0.28 0.05 0.40 0.03 0.35 0.04 0.33 0.04 0.15 0.05 670k
EquiformerV2 (4 layers) 0.32 0.13 0.21 0.11 0.29 0.11 0.23 0.10 0.23 0.12 0.09 0.12 1.7M
EquiformerV2 (8 layers) 0.31 0.25 0.21 0.25 0.29 0.25 0.22 0.25 0.20 0.23 0.08 0.25 3M

DEQ (1 layer) 0.32 0.10 0.19 0.16 0.30 0.15 0.22 0.09 0.21 0.10 0.14 0.09 670k
DEQ (2 layers) 0.29 0.19 0.20 0.33 0.27 0.28 0.20 0.19 0.18 0.20 0.15 0.25 1M

Table 1: Accuracy and speed on MD17 and MD22. DEQuiformer is faster at comparable accuracy.
Force MAE is in units of kcal/mol/Å. Time is measured as the average seconds per batch on a
AMD MI100 GPU. Lower is better. We highlight the lowest error and time per batch comparing
EquiformerV2 (4 layers) to DEQuiformer (1 layer), and EquiformerV2 (8 layers) to DEQuiformer (2
layers), since they respectively require a comparable amount of inference time.

(a) Compute-accuracy-tradeoff at inference time. DE-
Quiformer is remarkably robust to its fixed-point error
up to a threshold of about 10−1, where the error starts
to rapidly increase. As expected, higher fixed-point
tolerances lead to faster inference speed.

(b) Reusing the fixed-point significantly reduces the
number of solver steps in DEQuiformer to enable
a speedup. Percentage denotes relative number of
samples in the test set that required a given number of
solver steps.

Figure 4: Examining DEQuiformers fixed-point behaviour.

Trading off accuracy for speed A unique feature of DEQs is that we can trade off accuracy for
extra speed post-training by loosening the fixed-point error threshold. The looser this threshold, the
faster the model, since the fixed-point solver terminates earlier. We are examining how sensitive
the force error is with respect to this fixed-point error tolerance. We calculate the validation error
and time per batch for different solver tolerances on a logarithmic scale, with the Aspirin molecule
as an example. The results are plotted in figure figure 4a. As expected, looser thresholds lead to
faster inference time but higher force errors. Remarkably, the model’s predictions seem robust until a
threshold of about 10−1, after which the force error shoots up. Thus, 10−1 is the threshold we used
in our inference experiments.

Speedup in simulation To test the speedup of DEQuiformer in realistic simulation, we run
relaxations based on configurations from OC20. Each sample includes a slab model for the surface
and an adsorbate on it as an initial guess. Starting from 100 samples of the OC20 200k train set we
run 100 relaxation steps each to get the lowest energy geometry. We use the same checkpoint as in
figure 3b and table 2b and compare a one-layer DEQuiformer to a 14-layer EquiformerV2, since the
latter is the closest to DEQuiformer’s accuracy. The results are summarized in 2a. DEQuiformer is
faster than EquiformerV2 in practical scenarios, while being much smaller and more accurate on the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

OC20 Relaxation FP reuse ϵFPreuse
test Time [s] # Solver steps

EquiformerV2 (14 layers) 12.92± 0.26 -

DEQ (1 layer) ✗ ✗ 32.98± 0.41 29.37± 7.03
DEQ (1 layer) ✓ ✗ 20.37± 0.43 18.05± 2.19
DEQ (1 layer) ✓ ✓ 12.38± 0.33 11.03± 2.91

(a) Speed in relaxation simulation. DEQuiformer is faster
than EquiformerV2 in simulation when fixed-point reuse and
a relaxed solver threshold ϵFPreuse

test (section 3) are combined.

OC20 200k Force Energy # Weights

EquiformerV2 (1 layer) 0.052 0.58 4.8M
EquiformerV2 (4 layers) 0.045 0.52 11.7M
EquiformerV2 (8 layers) 0.045 0.49 21.1M
EquiformerV2 (14 layers) 0.044 0.50 35.1M

DEQ (1 layer) 0.043 0.48 4.8M
DEQ (2 layers) 0.042 0.47 7.1M

(b) Accuracy on OC20. DEQuiformer is more
accurate than EquiformerV2 on forces and en-
ergy. Force MAE is in units of kcal/mol/Å,
energy MAE in kcal/mol. Lower is better.

Table 2: DEQuiformer is (a) faster in relaxation simulations (b) more accurate on OC20.

test set. Both reusing previous fixed-points and relaxing the solver threshold are necessary to gain a
speedup, reducing the number of layer evaluations from roughly 29 to 11.

5 LIMITATIONS

The training time for DEQuiformer can be about twice as long as for EquiformerV2. This has been
an issue for DEQs in general and is caused by the second fixed-point problem in the implicit function
theorem. Since DEQuiformer require less memory, longer training times can be offset to a certain
extent by increasing the batch size,. We did not increase the batch size in our experiments, though, as
it could have obscured the direct comparison to EquiformerV2.
DEQs are fastest if the data has a temporal structure like that of molecular dynamics simulations,
such that fixed-points can be reused between time steps. This is usually the case in simulations,
since modeling faster changing events requires proportionally smaller time steps. If only individual
configurations are evaluated, DEQs are slower, but still might offer higher accuracy and smaller
model sizes, as on the OC20 benchmark.
While converting EquiformerV2 into a DEQ worked remarkably well, it remains to be tested if every
machine learning force field can be ”DEQuified”. Specifically, EquiformerV2 predicts forces via a
separate output head, while some models compute forces as gradients of the energy. EquiformerV2
and others demonstrated that predicting the forces directly reaches state-of-the-art accuracy. In some
cases, predicting forces through gradients might be preferable since it ensures energy conservation,
which can improve MD simulation stability. Predicting forces via gradients in DEQ-style models
could simply be done by backpropagating through the solver; however, this would sacrifice the
training memory savings that we obtain in the current work. To save memory, one could use the
implicit function theorem and potentially similarly warm-starting the gradient fixed-point solver from
the previous time step. We leave this to future work.

6 CONCLUSION

In this work, we explored the integration of Deep Equilibrium models and machine learning force
fields to enhance the efficiency of molecular dynamics (MD) simulations. We ”DEQuify” the state-
of-the-art model EquiformerV2 with minimal changes by replacing its deep stack of layers with a
more compact fixed-point layer. This approach allows us to leverage the temporal similarity between
successive MD simulation states by reusing fixed-points, as well as the ability to trade off accuracy and
speed. On the MD17 and MD22 datasets, our DEQuiformer model achieves substantial improvements
in parameter efficiency and inference speed at similar or better accuracy compared to the original
EquiformerV2. On the much larger OC20 200k dataset, DEQuiformer reaches significantly higher
accuracy compared to the base model. This suggests a promising new research direction for machine
learning force fields, focusing on exploiting the temporal nature of MD simulations to enhance
computational efficiency. Since DEQs are in principal orthogonal to the base model, we expect that
any improvements in the base architectures or DEQs in the future should complement each other and
propel the performance of DEQ force fields even further.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural networks.
Advances in neural information processing systems, 32, 2019. 1

Donald G. Anderson. Iterative procedures for nonlinear integral equations. J. ACM, 12(4):547–560, October
1965. ISSN 0004-5411. doi: 10.1145/321296.321305. URL https://doi.org/10.1145/321296.
321305. 2.3, A.3

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Trellis networks for sequence modeling. arXiv preprint
arXiv:1810.06682, 2018. 2.3

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep Equilibrium Models. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019. 1, 2.3, 2.3, 2.3, 3, 3, A.3

Shaojie Bai, Vladlen Koltun, and Zico Kolter. Stabilizing Equilibrium Models by Jacobian Regularization. In
Proceedings of the 38th International Conference on Machine Learning, pp. 554–565. PMLR, July 2021. 3

Shaojie Bai, Zhengyang Geng, Yash Savani, and J. Zico Kolter. Deep Equilibrium Optical Flow Estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 620–630, 2022.
3, 3, 3, A.1.2, A.3

Albert P Bartók, Mike C Payne, Risi Kondor, and Gábor Csányi. Gaussian approximation potentials: The
accuracy of quantum mechanics, without the electrons. Physical review letters, 104(13):136403, 2010. 1

Ilyes Batatia, David P. Kovacs, Gregor Simm, Christoph Ortner, and Gabor Csanyi. MACE: Higher Order
Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields. Advances in Neural
Information Processing Systems, 35:11423–11436, December 2022. 1, 2, 2.1

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth, Nicola
Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for data-efficient and
accurate interatomic potentials. Nature Communications, 13(1):2453, May 2022. ISSN 2041-1723. doi:
10.1038/s41467-022-29939-5. 1, 2

Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-dimensional potential-
energy surfaces. Physical review letters, 98(14):146401, 2007. 1

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv preprint
arXiv:2105.14491, 2021. A.1.1

C. G. Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations. Mathematics of Computation,
19(92):577–593, 1965. ISSN 0025-5718. doi: 10.2307/2003941. 2.3

Jiezhang Cao, Yue Shi, Kai Zhang, Yulun Zhang, Radu Timofte, and Luc Van Gool. Deep equilibrium diffusion
restoration with parallel sampling. In CVPR, 2024. A.1.2

Stefan Chmiela, Valentin Vassilev-Galindo, Oliver T. Unke, Adil Kabylda, Huziel E. Sauceda, Alexandre
Tkatchenko, and Klaus-Robert Müller. Accurate global machine learning force fields for molecules with
hundreds of atoms. Science Advances, 9(2):eadf0873, 2023. doi: 10.1126/sciadv.adf0873. URL https:
//www.science.org/doi/abs/10.1126/sciadv.adf0873. 4

Anders S Christensen and O Anatole von Lilienfeld. On the role of gradients for machine learning of molecular
energies and forces. Machine Learning: Science and Technology, 1(4):045018, oct 2020. doi: 10.1088/
2632-2153/abba6f. URL https://dx.doi.org/10.1088/2632-2153/abba6f. 4, A.3

Bowen Deng, Peichen Zhong, KyuJung Jun, Janosh Riebesell, Kevin Han, Christopher J. Bartel, and Gerbrand
Ceder. Chgnet as a pretrained universal neural network potential for charge-informed atomistic modelling. Na-
ture Machine Intelligence, 5(9):1031–1041, Sep 2023. ISSN 2522-5839. doi: 10.1038/s42256-023-00716-3.
URL https://doi.org/10.1038/s42256-023-00716-3. 1

Jacob D Durrant and J Andrew McCammon. Molecular dynamics simulations and drug discovery. BMC biology,
9:1–9, 2011. 1

Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley Osher, and Wotao Yin. Jfb: Jacobian-free
backpropagation for implicit networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 6648–6656, 2022. 2.3, A.1.2

11

https://doi.org/10.1145/321296.321305
https://doi.org/10.1145/321296.321305
https://www.science.org/doi/abs/10.1126/sciadv.adf0873
https://www.science.org/doi/abs/10.1126/sciadv.adf0873
https://dx.doi.org/10.1088/2632-2153/abba6f
https://doi.org/10.1038/s42256-023-00716-3

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent neural networks.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Process-
ing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/
paper_files/paper/2016/file/076a0c97d09cf1a0ec3e19c7f2529f2b-Paper.pdf. 3

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molecular graphs.
arXiv preprint arXiv:2003.03123, 2020. 1

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. GemNet: Universal Directional Graph Neural
Networks for Molecules. In Advances in Neural Information Processing Systems, volume 34, pp. 6790–6802.
Curran Associates, Inc., 2021. 1

Zhengyang Geng and J. Zico Kolter. TorchDEQ: A Library for Deep Equilibrium Models, October 2023. 3, A.2,
A.3

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit models.
Advances in Neural Information Processing Systems, 34:24247–24260, 2021. A.1.2

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep equilibrium models.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. A.1.2

Scott A Hollingsworth and Ron O Dror. Molecular dynamics simulation for all. Neuron, 99(6):1129–1143,
2018. 1

Tsz Wai Ko, Jonas A. Finkler, Stefan Goedecker, and Jörg Behler. A fourth-generation high-dimensional neural
network potential with accurate electrostatics including non-local charge transfer. Nature Communications,
12(1):398, Jan 2021. ISSN 2041-1723. doi: 10.1038/s41467-020-20427-2. URL https://doi.org/10.
1038/s41467-020-20427-2. 1

Yunyang Li, Yusong Wang, Lin Huang, Han Yang, Xinran Wei, Jia Zhang, Tong Wang, Zun Wang, Bin Shao,
and Tie-Yan Liu. Long-short-range message-passing: A physics-informed framework to capture non-local
interaction for scalable molecular dynamics simulation. arXiv preprint arXiv:2304.13542, 2023. 1

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs,
February 2023. 1, A.1.1, A.1.1, A.2, A.2

Yi-Lun Liao, Brandon Wood, Abhishek Das, and Tess Smidt. EquiformerV2: Improved Equivariant Transformer
for Scaling to Higher-Degree Representations, March 2024. 1, 2, 2.1, 2.1, 2.2, 4.1, A.1.1, A.2, A.3, A.3

Fang-Yu Lin and Alexander D MacKerell. Force fields for small molecules. Biomolecular simulations: Methods
and protocols, pp. 21–54, 2019. 1

Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical message
passing for 3d molecular graphs. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=givsRXsOt9r. 1

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J. Owen, Mordechai Kornbluth,
and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic dynamics. Nature
Communications, 14(1):579, February 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-36329-y. 1, 2, 2.1

Saro Passaro and C. Lawrence Zitnick. Reducing SO(3) convolutions to SO(2) for efficient equivariant GNNs.
In Proceedings of the 40th International Conference on Machine Learning, volume 202 of ICML’23, pp.
27420–27438. JMLR.org, July 2023. 1, 2.1, 2.1

David A Pearlman, David A Case, James W Caldwell, Wilson S Ross, Thomas E Cheatham III, Steve DeBolt,
David Ferguson, George Seibel, and Peter Kollman. Amber, a package of computer programs for applying
molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the
structural and energetic properties of molecules. Computer Physics Communications, 91(1-3):1–41, 1995. 1

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko,
and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network for modeling quantum
interactions. Advances in neural information processing systems, 30, 2017. 1

Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction of tensorial
properties and molecular spectra. In International Conference on Machine Learning, pp. 9377–9388. PMLR,
2021. 1

Alexander V Shapeev. Moment tensor potentials: A class of systematically improvable interatomic potentials.
Multiscale Modeling & Simulation, 14(3):1153–1173, 2016. 1

12

https://proceedings.neurips.cc/paper_files/paper/2016/file/076a0c97d09cf1a0ec3e19c7f2529f2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/076a0c97d09cf1a0ec3e19c7f2529f2b-Paper.pdf
https://doi.org/10.1038/s41467-020-20427-2
https://doi.org/10.1038/s41467-020-20427-2
https://openreview.net/forum?id=givsRXsOt9r

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Siddharth Sinha, Benjamin Tam, and San Ming Wang. Applications of molecular dynamics simulation in protein
study. Membranes, 12(9):844, 2022. 1

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor
field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint
arXiv:1802.08219, 2018. 2.1, 2.1

Aidan P Thompson, Laura P Swiler, Christian R Trott, Stephen M Foiles, and Garritt J Tucker. Spectral
neighbor analysis method for automated generation of quantum-accurate interatomic potentials. Journal of
Computational Physics, 285:316–330, 2015. 1

Yusong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng, Bin Shao, Tie-Yan Liu, and
Tong Wang. Visnet: an equivariant geometry-enhanced graph neural network with vector-scalar interactive
message passing for molecules. arXiv preprint arXiv:2210.16518, 2022. 1

Zun Wang, Guoqing Liu, Yichi Zhou, Tong Wang, and Bin Shao. Efficiently incorporating quintuple interactions
into geometric deep learning force fields. Advances in Neural Information Processing Systems, 36, 2024. 1

Paul K Weiner and Peter A Kollman. Amber: Assisted model building with energy refinement. a general program
for modeling molecules and their interactions. Journal of Computational Chemistry, 2(3):287–303, 1981. 1

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL BACKGROUND

A.1.1 EQUIFORMERV2 ARCHITECTURE

We provide some further detail on the EquiformerV2 architecture and its three main components:
the embedding, the transformer layers, and the output heads. A complete description with additional
details on layer norm, multi-head-attention and non-linearities can be found in the original papers
Liao & Smidt (2023); Liao et al. (2024).

Embedding An input sample consists of the positions and types of all the atoms in the molecule.
The embedding block maps each atom i to a higher dimensional node embedding h()i, consisting of
atom and edge-degree embeddings. The edge-degree embeddings transform a constant one vector
with an message passing SO(2) layer, multiplied with edge distance embeddings, and aggregated
by summing. Edge distance embeddings are the relative distances between the nodes, encoded by a
learnable radial function on top of a Gaussian radial basis. This sum is rescaled by a scalar α and
added to an linear embedding of the one-hot atom number z:

ut = α
∑

s∈N (i)

v(1, 1, ris) (12)

h()i = Embed(G)i = linear(one-hot(zi)) + ui (13)

N (t) means the neighbourhood of atom i, defined by the set of atoms that are within a user-specified
cutoff radius from the atom i.

EquiformerBlock We write EquiformerBlock(G) to refer to a stack of L Equiformer layers. Each
layer consists of equivariant graph attention, layer norm and feed-forward networks. The equivariant
graph attention updates the node features h using equivariant messages (equation 3). However, instead
of just summing up the messages directly to update a target node, Equiformer weights each message
with an attention weight to get the final message which is then summed over all source nodes:

mts = ats · vts (14)

h′
t = ht + linear

 ∑
s∈N (t)

mts

 (15)

The attention weights are calculated using MLP attention Liao & Smidt (2023); Brody et al. (2021)
operating only on the rotation invariant L = 0 features:

zts = k⊤LeakyReLU(f(h0
t , h

0
s)) (16)

ats =
exp (zts)∑

k∈N (t) exp (ztk)
(17)

with a learnable weight vector k.

Output Heads The output heads take all the node features and process them depending on the type
of target. For the energy, the l = 0 features of each node are transformed by an MLP and summed
together for the final prediction. For the forces, an additional layer of equivariant graph attention is
used, and the l = 1 features of each atom are directly treated as the prediction for the force.

A.1.2 INEXACT GRADIENTS IN DEQ

The computational bottleneck in equation 9 is to compute the inverse. Previous work has therefore
explored approximating it via its Neumann series, sometimes called the phantom gradient Fung et al.
(2022); Geng et al. (2021). Often, keeping only the first term (the identity) is good enough, which
leads to the so-called 1-step gradient

∂L

∂θ
≈ ∂L

∂h∗
∂fθ (h

∗, x)

∂θ
(18)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The 1-step gradient can be implemented by simply passing the fixed-point through the implicit layer
one additional time, this time with tracked gradients using autograd. Many recent works have used
the 1-step gradient with great success Cao et al. (2024); Bai et al. (2022); Geng et al. (2023). We
found however that while the 1-step gradient leads to 2-3x faster training compared to solving the
fixed-point system in equation 10, it resulted in a significant reduction in accuracy, which is why we
do not use the 1-step gradient in this paper.

A.2 METHOD

Aggregated metric over MD17/MD22 (paragraph moved from the main text to save space)

We use minmax normalization to rescale the errors of the different models on each molecule to
[0, 1], where the models are DEQuiformer and EquiformerV2 with various number of layers M ∈
{DEQ1, DEQ2, E1, E4, E8} . To get summary statistics per model, we then take the mean (Avg)
and standard error of the mean (Sem) over all normalized molecules.

NormMAEmol
M =

MAEmol
M −minM

(
MAEmol

M

)
maxM

(
MAEmol

M

)
−minM

(
MAEmol

M

) (19)

AvgM =
1

Nmol

∑
mol

NormMAEmol
M (20)

SemM =
1√
Nmol

√
1

Nmol

∑
mol

(
NormMAEmol

M − AvgM

)2
(21)

Hyperparameters for MD17/MD22 To facilitate a fair and straightforward comparison, we follow
the hyperparameters set out by EquiformerV1 Liao & Smidt (2023) and EquiformerV2 Liao et al.
(2024).

Since EquiformerV2 did not evaluate on MD17/MD22, we refer to the EquiformerV1 Liao & Smidt
(2023) codebase for training settings, which also provided the training loop for MD17/MD22 of our
implementation. To facilitate training on the smaller MD dataset and be economical with our GPU
resources, we made our EquiformerV2 significantly smaller than the original settings in Liao et al.
(2024). The biggest impact in terms of training and inference speed was due to the smaller maximum
feature degree of l = 3 (from previously l = 6), which was also used in EquiformerV1. We observed
that benefits from higher l are neglectable on small datasets like MD17, as Liao et al. (2024) also
noted for the similarly sized QM9 dataset. We kept all parameters of the optimizer identical to
EquiformerV1.

Hyperparameters for OC20 S2EF 200k EquiformerV2 provides hyperparameters for OC20 2M,
which we take as a proxy for the OC20 200k split we train on. The only changes made to the
EquiformerV2 model are (1) a reduction in the number of layers down from 12 and (2) limiting the
maximum spherical harmonics degree to l = 3, since the 200k split is ten times smaller than the
2M split, and because it significantly increases the computational cost. EquiformerV2 made minor
changes to the optimizer parameters compared to V1. A full breakdown of hyperparameters is in
table 3.

Implementation We use the model of EquiformerV2 from commit fa32143, which depends on open
catalyst commit 5a7738f. The open catalyst repository (now called FairChem) has since undergone
significant changes. For MD17/MD22 we modify the training loop from the code of EquiformerV1
Liao & Smidt (2023) from commit b7e7a0d. The DEQ solver is adapted from the TorchDEQ library
Geng & Kolter (2023).

A.3 ADDITIONAL RESULTS

Energy on MD17/MD22 For molecular dynamics the focus is on accurate forces rather then
energies. This is also reflected in the much higher weighting of the loss terms of the forces λf = 80
to λe = 1 that was used in EquiformerV2, and common in the field Liao et al. (2024); Christensen &
von Lilienfeld (2020). For completeness we include the energies in in table 4.

15

https://github.com/atomicarchitects/equiformer_v2/tree/fa32143fd43f609bfafb2513c1b8ca957553da5d
https://github.com/FAIR-Chem/fairchem/tree/5a7738f9aa80b1a9a7e0ca15e33938b4d2557edd
https://github.com/atomicarchitects/equiformer/tree/b7e7a0df7df69bde35f593772093ecce3f6824a6

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hyperparameters MD17/MD22 OC20 S2EF 200k

Optimizer AdamW
Learning rate scheduling Cosine with linear warmup
Warmup epochs 10 0.1
Initial learning rate 1× 10−6 4× 10−5

Maximum learning rate 5× 10−4 2× 10−4

Minimum learning rate 1× 10−6 2× 10−6

Number of epochs 500 3
Batch size 4
Force loss metric L2 MAE L2 MAE
Energy loss metric L2 MAE L1 MAE
Force loss weight λF 80 100
Energy loss weight λE 1 2

Number of layers 1, 4, 8 EquiformerV2 / 1, 2 DEQ
Weight decay 5× 10−3 10−3

Gradient norm clipping 1000 100
Dropout rate (alpha dropout) 0.1 EquiformerV2 / 0 DEQ
Stochastic depth (path dropout) 0.05
Cutoff radius (Å) 5.0 12
Maximum number of neighbors 500 20
Number of radial bases 128
Maximum degree lmax 3
Maximum order Mmax 2
Grid resolution of point samples R 14
Hidden dimension in feed forward networks dffn 128
Dimension of hidden scalar features in radial functions dedge 32 128
Embedding dimension (spherical channels) dembed 64 128

f
(L)
ij dimension dattn hidden 16 64

Number of attention heads h 4 8

f
(0)
ij dimension dattn alpha 16 64

Value dimension dattn value 4 16

DEQ root solver Anderson
Maximum number of forward steps (stopping criterion) 40
Absolute error tolerance (stopping criterion) training ϵtrain 10−3

Absolute error tolerance (stopping criterion) inference ϵtest 10−1

Fixed-point correction loss terms 3

Table 3: Hyperparameters for EquiformerV2 and DEQuiformer. Training hyperparameters for
MD17/MD22 are taken from the EquiformerV1 codebase. Model parameters are reduced to roughly
a quarter to match the smaller MD17/MD22 benchmark. For OC20 training and model settings are
taken from the EquiformerV2 repository.

Ethanol Malonaldehyde Benzene Uracil Toluene Salicylic acid Naphthalene Aspirin

MD17 Energy Energy Energy Energy Energy Energy Energy Energy

EquiformerV2 (1 layer) 0.899 0.567 0.253 0.844 1.352 1.290 0.536 1.704
EquiformerV2 (4 layers) 0.25 0.34 0.17 0.42 0.29 0.60 0.27 0.87
EquiformerV2 (8 layers) 0.26 0.33 0.22 0.34 0.25 0.54 0.25 0.80

DEQ (1 layer) 0.31 0.38 0.17 0.42 0.35 0.79 1.27 1.13
DEQ (2 layers) 0.27 0.36 0.17 0.36 0.44 0.49 0.29 0.76

Ac-Ala3-NHMe DHA AT-AT Stachyose AT-AT-CG-CG Buckyball catcher

MD22 Energy Energy Energy Energy Energy Energy # Weights

EquiformerV2 (1 layer) 2.585 3.306 5.936 4.168 6.113 3.670 670k
EquiformerV2 (4 layers) 1.85 2.96 6.46 3.19 6.09 3.28 1.7M
EquiformerV2 (8 layers) 1.38 3.54 3.55 2.52 5.76 3.85 3M

DEQ (1 layer) 1.41 1.94 4.79 2.53 5.99 4.04 670k
DEQ (2 layers) 1.41 1.49 3.52 2.53 5.81 2.55 1M

Table 4: Accuracy of energy prediction on MD17/MD22. Numbers denote mean average error
(MAE) on the test set. Lower is better. Energies are in units of kcal/mol.

Training run on OC20 In figure 2 of the main text we depicted that DEQuiformer achieves lower
train and test error than EquiformerV2 throughout training on Aspirin. For completion we also plot
the training run for OC20 200k in figure 5. Note that the choppy behaviour of the training curve is
due to resets of averaging statistics after each epoch.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) DEQuiformer trains faster, achieving lower train
error. We plot the error averaged over the current
epoch. The step-like jumps are due to resetting the
average at the start of a new epoch.

(b) Lower train error translates to lower test error.

Figure 5: DEQuiformer enjoys stable training dynamics, reaching lower train and test error than
EquiformerV2 on OC20 200k.

Fixed-point reuse approximately preserves Markovianity An important property of molecular
dynamics is that the forces only depend on the current state, known as the Markovian property. To
test if reusing fixed-points breaks Markov property, we compare the predicted forces F with and
without fixed-point reuse. At each timestep we calculate the relative difference in the forces as

∆F atom
rel (atom i) =

|Ffpr
i − Fi|x

1
2

(
|Ffpr

i |x + |Fi|x
) (22)

∆F sample
rel (sample j) =

1

N

N∑
i∈atoms

(
∆F atom

rel (i)
)

(23)

∆Frel =
1

M

M∑
j∈test

(
∆F sample

rel (j)
)

(24)

where | · |x denotes the l2-norm over the three spatial components of a force vector on one atom i. We
run and average over M = 1k consecutive samples of Aspirin from the MD17 dataset. The relative
force difference ∆Frel is depicted in figure 6. We see a deviation in the predicted forces between
starting from zero initialization and from the previous fixed-point of, on average, 0.4%. The deviation
remains constant over time. We repeat the experiment for the 100 times 100 relaxation steps reported
in section 4.1, and measured a deviation of 0.8%. The deviation is much smaller than the average
prediction error, so we conclude that fixed-point reuse approximately preserves the Markov property.

Scaling compute The paper directly compares DEQuiformer against EquiformerV2. We do so
with limited compute compared to the EquiformerV2 paper Liao et al. (2024), which trained up to
135M parameters on a larger datapslit (200k vs >100M) for >1500 GPU days.

To demonstrate that our results are robust, we scale up selected runs. In figure 7a we train Aspirin
with double the epochs as in the paper (1k as opposed to 500) at increasing model sizes. The smallest
datapoint (left) is the same model size that we used in the main text for MD17/MD22, and the largest
(right) the same as previously used for OC20. Note that at the same width DEQuiformer has much
fewer total parameters, e.g. DEQ1∼4.8M compared to E8∼21M for the right-most width. The
accuracy gap between DEQuiformer to EquiformerV2 remains when scaling the model size.

We report the scaling with an increase in training epochs on OC20 200k in figure 7b. We did not
scale up the model size, as EquiformerV2 would run out of memory. Instead we depict the same

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: Markov property. Initializing from the previous fixed-point, compared to initializing from
zero, leads to very small deviation in forces ∆Frel below one percent. This means, initialization from
the past fixed point has almost no effect on the accuracy of the prediction.

(a) Error scaling with model width on Aspirin (MD17),
trained at 1k epochs (compared to 500 in the main
text). On the x-axis is the number of parameters per
layer. This means that the 8-layer Equiformer has
8 times the parameter compared to the 1-layer DE-
Quiformer.

(b) Error scaling with more epochs on OC20 200k.
All models are getting better with more epochs, but
DEQuiformer remains the leader in accuracy over
Equiformer.

Figure 7: Error scaling with more epochs and model size.

model size as in paper for OC20, with the left-most data point also trained on the same number of
epochs. Again DEQuiformer increase in accuracy is robust when scaling up.

Compared to Liao et al. (2024) there is still a large gap in compute used, so more work is needed
to verify that the results hold at truly large scales outside of our budget. Nevertheless our initial
experiments seem robust up to the scales tested.

Pseudocode To clarify our algorithm, we provide pseudocode for DEQuiformer in algorithm 2 as
well as for the original DEQ Bai et al. (2019) in algorithm 1.
The original DEQ paper (algorithm 1) is based on a transformer acting on a sequence of language
tokens. x1:T denote the input sequence and y1:T the output sequence of tokens. fθ is a (weight tied)
transformer layer.
DEQuiformer (algorithm 2) acts on an cloud of atom positions and atom types. We drop the token
indices ·1:T and omit the atom indices for readability. The BackwardDEQ procedure remains the
same. The the predicted and ground truth labels y each consist of forces and the energy instead of
sequences. We made a couple of changes to the original DEQ. The original DEQ paper Bai et al.
(2019) used a linear initialization of the input injection, whereas we use EquiformerV2’s encoder. We

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

also added a decoder (EquiformerV2’s force and energy prediction heads). The solver is similar, but
we use Anderson acceleration instead of Broyden’s method, where β is the mixing parameter, cj are
coefficients determined by minimizing the residuals, and m is the number of previous iterations used
in the mix Anderson (1965); Geng & Kolter (2023). We also add a normalization after each input
injection. The original DEQ initialized fixed-points as zeros, whereas we took inspiration from Bai
et al. (2022) and initialized with the previous fixed-point during inference. From [Bai et al. (2022)
we also take the fixed-point correction loss and the relaxed solver tolerance ϵ. The main change we
made to EquiformerV2 was to remove alpha dropout as it hurt performance and replace path dropout
with a recurrent path dropout (not shown in the algorithm).

Algorithm 1 Deep Equilibrium Model (DEQ), Bai 2019

1: procedure DEQ(x̂1:T , θ, ϵ)
2: Define gθ(z1:T ; x̂1:T) = fθ(z1:T + x̂1:T)− z1:T
3: Initialize z

(0)
1:T ← 0

4: i← 0
5: while ∥gθ(z(i)1:T ; x̂1:T)∥ > ϵ do ▷ fixed-point solver
6: z

(i+1)
1:T ← z

(i)
1:T − αBgθ(z

(i)
1:T ; x̂1:T) ▷ Broyden’s method

7: i← i+ 1
8: end while
9: z∗1:T ← z

(i)
1:T

10: return z∗1:T
11: end procedure
12:
13: procedure BACKWARDDEQ(z∗, ypred, ygt, θ, ϵ)
14: Compute ∂L

∂z∗ using the loss function L(ypred, ygt)
15: Solve the linear system (IFT, second fixed-point solver):(

J⊤
gθ

∣∣∣
z∗

)
x+

(
∂L
∂z∗

)⊤

= 0

16: Compute the gradient:

∂L
∂θ

= −
(
∂L
∂z∗

)(
J−1
gθ

∣∣∣
z∗

) ∂fθ
∂θ

17: return ∂L
∂θ

18: end procedure
19:
20: procedure USEDEQ(x1:T , y1:T , θ, ϵ, α)
21: while not done do
22: x̂1:T ←WTx1:T ▷ input injection
23: z∗1:T ← DEQ(x̂1:T , θ, ϵ)
24: ypred ← z∗1:T ▷ no decoder
25: if inference then
26: ∂L

∂θ ← BackwardDEQ(z∗1:T , ypred, y1:T , θ, ϵ)

27: Update θ ← optimizer(θ, ∂L
∂θ)

28: end if
29: end while
30: return θ
31: end procedure

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 2 DEQuiformer

1: procedure DEQ(x̂, θ, ϵ, z∗t−1)

2: Define gθ(z; x̂) = fθ

(
(z + x̂) ||x̂||

||z+x̂|| − z
)

▷ added normalization

3: Initialize z(0) ← 0 ▷ if training
4: if inference then
5: Initialize z(0) ← z∗t−1 ▷ fixed-point reuse
6: end if
7: i← 0
8: {z(i)} ← {} ▷ intermediate fixed-points for correction loss
9: while ∥gθ(z(i); x̂)∥ > ϵ do

10: z(i+1) ← (1− β)g(z(i); x̂) + β
∑m

j=0 cjz
(i−j) ▷ Anderson acceleration

11: if training then
12: {z(i)} append z(i+1) ▷ if i in I, save intermediate fixed-point
13: end if
14: i← i+ 1
15: end while
16: z∗ ← z(i)

17: return z∗, {z(i)}
18: end procedure
19:
20: procedure USEDEQ(x, (Fgt, Egt), θ, ϵ, α)
21: z∗t−1 ← 0 ▷ if inference, save previous fixed-point
22: while not done do
23: x̂← Enc(x) ▷ input injection via Equiformer encoder
24: z∗, {z(i)} ← DEQ(x̂, θ, ϵ, z∗t−1)
25: z∗t−1 ← z∗ ▷ save for fixed-point reuse
26: F← DecF (z) ▷ Eqiformer decoder
27: E ← DecE(z) ▷ Eqiformer decoder
28: if training then
29: ∂L

∂θ ← BackwardDEQ(z∗, (F, E), (Fgt, Egt), θ, ϵ)

30: for z(i) in {z(i)} do ▷ sparse fixed-point correction loss
31: ∂L

∂θ + = BackwardDEQ(z(i), (F, E), (Fgt, Egt), θ, ϵ)
32: end for
33: Update θ ← optimizer(θ, ∂L

∂θ)
34: end if
35: end while
36: return θ
37: end procedure

20

	Introduction
	Preliminaries
	Equivariant Graph Neural Networks
	EquiformerV2
	Deep Equilibrium Networks

	Method: DEQuiformer
	Experiments
	Results

	Limitations
	Conclusion
	Appendix
	Additional Background
	EquiformerV2 architecture
	Inexact gradients in DEQ

	Method
	Additional results

