Under review as a conference paper at ICLR 2026

BREAKING TRAINING BOTTLENECKS:
EFFECTIVE REINFORCEMENT LEARNING FOR
MODERN CODING MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern code generation models exhibit longer outputs, accelerated capability
growth, and fundamentally changed training dynamics, rendering traditional train-
ing methodologies, algorithms, and datasets ineffective for enhancing their perfor-
mance. To address these training bottlenecks, we propose MicroCoder-GRPO,
an enhanced Group Relative Policy Optimization approach with three key inno-
vations: conditional truncation masking to enhance long output potential while
maintaining training stability, diversity-determined temperature selection to main-
tain and encourage output diversity, and removal of KL loss with high clipping
ratios to facilitate exploration. MicroCoder-GRPO achieves up to 17.6% relative
improvement over strong baselines on LiveCodeBench v6, with more pronounced
gains under extended context evaluation. Additionally, we release MicroCoder-
Dataset, a more challenging training corpus that achieves 3x larger performance
gains than mainstream datasets on LiveCodeBench v6 within 300 training steps,
and MicroCoder-Evaluator, a robust framework with approximately 25% im-
proved evaluation accuracy and around 40% faster execution. Through compre-
hensive analysis across more than thirty controlled experiments, we reveal 34 key
training insights across seven main aspects, demonstrating that properly trained
models can achieve competitive performance with larger counterparts.

1 INTRODUCTION

1.1 BACKGROUND & RELATED WORK

Scaling inference time through extended reasoning enables models to solve increasingly challenging
problems, while reinforcement learning has proven effective at activating reasoning capabilities and
knowledge acquired during pretraining, even without instruction fine-tuning. Group Relative Pol-
icy Optimization (GRPO) (Shao et al.| [2024) has gained attention by eliminating the value model
requirement, instead sampling multiple responses per problem and computing relative advantages.
Recent GRPO algorithmic improvements have been primarily validated on mathematical reasoning
tasks, addressing specific optimization limitations. Dr. GRPO (Liu et al., 2025b) identified that
GRPO encourages shorter correct responses and longer incorrect ones, leading to modifications that
remove token-level averaging in loss computation and reward standard deviation normalization in
advantage calculation, thus limiting output length growth. DAPO (Yu et al., 2025) enhanced ex-
ploration by eliminating KL divergence loss and employing high clipping ratios. Polaris (An et al.|
20235)) analyzed the effects of different training components such as temperature and dataset diffi-
culty on mathematical task training.

Reinforcement learning for code generation has evolved through several key approaches, begin-
ning with CodeRL (Le et al.l |2022) applying the REINFORCE algorithm for offline training with
program-level rewards. PPOCoder (Shojaee et al., 2023)) improved upon this by adopting PPO
optimization with online training, while RLTF (Liu et al., |2023) eliminated the value model and
introduced both coarse-grained rewards (overall code pass/timeout/syntax errors) and fine-grained
rewards (specific error line feedback) within an online training framework. StepCoder (Dou et al.|
2024) employed PPO with curriculum learning, initially providing partial solutions and progres-
sively reducing assistance while updating only tokens corresponding to executed code. SRPO

Under review as a conference paper at ICLR 2026

(Zhang et al., [2025), built on GRPO, analyzed both mathematical and coding tasks, observing that
mathematical problems tend to increase output length while coding problems tend to decrease it,
though our findings indicate that newer model generations like Qwen-3 exhibit length growth ten-
dencies even for coding tasks. The field has been supported by open-source projects including
DeepCoder (Luo et al.l2025), Open-R1 (Hugging Face, |[2025)), and Code-R1 (Liu & Zhang, |[2025)),
alongside integrated training datasets such as Taco (Li et al., [2023)), KodCode (Xu et al.,|2025), and
rStar-Coder (Liu et al.| 2025a)). However, research on GRPO applications to coding tasks remains
relatively limited compared to mathematical reasoning domains.

1.2 MOTIVATION

Reinforcement learning insights for code generation differ from those for mathematical tasks, as
coding problems require passing all test cases with additional conditions such as runtime limitations,
making them more challenging and complex. Furthermore, previously accumulated training insights
and datasets for traditional models often prove ineffective for modern models that have extended
outputs and high reasoning abilities. Therefore, effective training of modern coding models requires
updated and more challenging datasets of higher quality, new algorithms that unlock long output
potential, and fresh training insights.

For example, training with GRPO on the mainstream DeepCoder dataset shows substantial improve-
ments in Qwen 2.5 models (Qwen et al., [2025) but minimal improvements in Qwen 3 models (Yang
et al.l 2025)), as shown in Figure E} Critic reward analysis reveals that mainstream datasets pose
greater difficulty for Qwen 2.5 while appearing relatively simple for Qwen 3 capabilities. Output
behaviors reveal fundamental generational differences. Qwen 3 models exhibit pronounced upward
trends in response length during training, whereas Qwen 2.5 models show stable or decreasing
lengths. Additionally, across the model series progression, standard model outputs show increasing
length and variance from Qwen 2.5-Instruct to Qwen 3-Instruct to Qwen 3-Thinking.

6K

0.18 0.42 07 —— Qwen2.5-3B-Instruct 8E-4 —— Qwen2.5-3B-Instruct
> 0.6 5k| — Qwen3-4B-nstruct #7™ - —— Qwen3-4B-Instruct
9 > 0 £ -
©0.16 0405 B k< —— Qwen3-4B-Thinking
3 5 g 0.5 G 4K -
I+ 0 |
<0.14 0380 @ E
n g g 3K -
] 5C B o
§0.12 O%% Zos §2K
30.10 wen2.¥.38-nstruct [0.34° 0.2 | — qwen2.5-38-Instruct © ok

—— Qwen3-4B-Instruct —— Qwen3-4B-Instruct ~—
0.08).32 0.1
0 100 200 300 0 100 200 300 0 100 200 300 0 4K 8K 12K 16K 20K 24K
Training Steps Training Steps Training Steps Response Length

Figure 1: Cross-Model Training Dynamics. Performance and response length across Qwen 2.5
and Qwen 3 models, illustrating generation-specific training behaviors and output characteristics.

1.3 CONTRIBUTIONS

This paper makes four key contributions to improve reinforcement learning for coding models.

* Algorithmic Innovation: We propose MicroCoder-GRPO, extending GRPO with conditional
truncation masking, diversity-determined temperature selection, and removal of KL loss with high
clipping. This approach achieves up to 17.6% relative improvement over strong baselines on
LiveCodeBench v6, demonstrating robust performance gains across multiple model scales.

» Systematic Analysis: Through over thirty controlled experiments, we provide comprehensive
analysis of important training components including dataset quality, code evaluators, temperature
dynamics, context length and extension, truncation masking strategies, batch size and on-policy,
and KL and clip ratio, offering detailed insights into their effects on reinforcement learning for
code generation.

» Dataset Creation: We introduce MicroCoder-Dataset, a higher-quality and more challenging
training corpus that achieves 3x larger performance gains than the DeepCoder dataset on Live-
CodeBench v6 within 300 training steps, demonstrating effectiveness for developing coding ca-
pabilities in modern language models.

* Infrastructure Development: We design MicroCoder-Evaluator, a robust evaluation framework
that improves evaluation accuracy by approximately 25% compared to the LiveCodeBench code

Under review as a conference paper at ICLR 2026

evaluator while achieving around 40% faster execution per training step through optimized par-
allel processing compared, enabling more reliable training feedback and improved computational
efficiency.

2 ALGORITHMS

2.1 PRELIMINARIES: GRPO

Group Relative Policy Optimization (GRPO) reduces reinforcement learning training costs by elim-
inating the separate value model typically required in policy gradient methods. For each query g,
GRPO samples a group of G outputs {01, 09, . .., 0} from the reference policy 7y, and optimizes
the current policy mg by maximizing Jgrpo(#). The advantage function A; employs group-based
normalization to estimate relative output quality. GRPO is shown as the black components in Equa-
tions [[land 2

2.2 MICROCODER-GRPO

We propose MicroCoder-GRPO, which introduces three main modifications to standard GRPO.
First, conditional truncation masking selectively zeros advantage scores for responses that simulta-
neously reach maximum length L,,,x, produce incorrect answers, avoid repetition sequences (final
128 tokens differ from preceding 128 tokens), and are randomly selected with probability p. Sec-
ond, diversity-determined temperature selection determines training temperature 7'(D) based on the
model’s initial output diversity values and subsequent trends, ensuring the chosen temperature pre-
vents rapid and sustained diversity decline that leads to training failure. Third, following DAPO, we
remove KL loss (8y = 0) and employ high clipping (ehign) to maintain output diversity and response
length growth. The modifications of MicroCoder-GRPO compared to GRPO are shown as the red
components in the equations:

Gl fmg P il , " il)
Tereo(0) = Eqp(q) | D | min WTTL])M’C“P oy, et enign | Ai | — foDxu (7?9H7fe‘,]d) (O]

i=1 9old "Oo1a (0ila)

ry —mean({ry,r2,...,rg})

A; =
std({r1,72,...,7G})

(1 = I[|loj| = Lmax A incorrect(o;) A —repeat(o;, m) A U(0,1) < p]) ?2)

where 6 and 6,4 represent current and reference policy parameters, £ controls the clipping trust
region, B weights KL divergence regularization, r; denotes the reward for output o;, incorrect(o;)
indicates whether output o; is incorrect, —repeat(o;, m) checks for non-repetition sequences, p con-
trols masking probability, U (0, 1) denotes uniform distribution over [0, 1], and I[-] is the indicator
function.

2.3 CONDITIONAL TRUNCATION MASK

Truncation masking enhances long output generation potential by setting advantage scores to zero
for responses that reach maximum length limits, preventing truncated outputs from contributing to
policy optimization. Conditional truncation masking applies selective criteria, only masking re-
sponses that simultaneously reach maximum length, achieve correct answers, avoid repetition se-
quences (final 128 tokens differ from preceding 128 tokens), and masks only a specified proportion
rather than all qualifying responses. As shown in Figure 2] higher masking rates accelerate output
length growth and push convergence values closer to maximum response limits, with 30% mask-
ing achieving growth rates comparable to complete masking. Increased masking also accelerates
response diversity decline and reduces diversity convergence values.

Masking creates distinct performance dynamics where training rapidly rises to higher values, then
declines, and converges to specific performance levels. Masking proportion creates trade-offs be-
tween training speed and peak performance. Increased masking enables faster achievement of initial
performance peaks, while reduced masking extends the initial improvement phase and achieves
higher peak performance values. Conditional truncation masking demonstrates superior training
stability compared to both no masking and complete masking approaches, achieving higher final
performance while avoiding the rapid training decrease observed with complete masking strategies.

Under review as a conference paper at ICLR 2026

1.0
4000
0.38 >
£'0.8
%3500 %
> o] >
©0.36 o 3000 506
S 0]
$ § 2500 204
0.34 No Mask 8 2000 No Mask *3 No Mask
—— Cond. Mask (Ours) | & —— Cond. Mask (Ours) & 021 — Cond. Mask (Ours)
—— Mask All (DeepCoder) 1500 - Mask All (DeepCoder) —— Mask All (DeepCoder)
L
0'320 100 200 300 400 500 0 100 200 300 400 500 0 00 100 200 300 400 500
Relative Data Training Steps Training Steps
0.8
4000
0.38 c 2
N ‘§,3500 g 0.7
> [N A A P NP & 2
©0.36 \V \/ Y/ ° 3000 a
3 Mask 10% g & 06
< — Mzzk 20°/: 8.2500 §
0.34 —— Mask 30% 14 —— Mask10% | 0 0.5/ — Mask 10%
—— Mask All Max o 2000 ——— Mask 20% &J —— Mask 20%
No Mask Max 1500 —— Mask 30% —— Mask 30%
0'320 100 200 300 400 500 0 100 200 300 400 500 0'40 100 200 300 400 500
Relative Data Training Steps Training Steps

Figure 2: Truncation Masking Effects on Training. Performance trends under different masking
strategies, comparing no mask, complete masking, and conditional masking at various rates.

2.4 DIVERSITY-DETERMINED TEMPERATURE

Temperature scheduling influences GRPO training stability and convergence (Figure [3). Analysis
reveals that models develop increasing temperature robustness throughout training, with the upper
bound of stable temperatures progressively expanding. Higher temperatures naturally increase out-
put diversity, but this diversity systematically decreases at fixed temperatures as training progresses.
Despite varying temperatures, output diversity converges to similar final values across different tem-
perature settings. Important temperature thresholds emerge during training. When initial output
diversity falls below expected convergence values, models experience continued diversity reduction
accompanied by training failure. Traditionally standard temperatures (t=0.6) can cause training fail-
ure, while modern models like Qwen-3 demonstrate stable training even at elevated temperatures
(t=1.8) with minimal influence on final convergence values. Therefore, training temperature can be
determined based on response diversity, selecting values that avoid both excessively low tempera-
tures causing continuous decline in output diversity and excessively high temperatures leading to
drastic fluctuations, with optimal temperatures enabling stable diversity convergence.

Dynamic temperature scheduling yields superior performance compared to static temperature
approaches. The optimal strategy employs initial low-temperature training followed by high-
temperature phases. This approach reduces initial output diversity during the high-temperature
stage, ultimately achieving better performance than direct high-temperature training from initial-
ization. However, we observe that continuous uniform temperature changes influence training sta-
bility, and even brief continuous temperature increases or decreases within a small number of steps
can cause irreversible change in output diversity. Therefore, this paper employs staged temperature
transitions or determines the initial constant training temperature based on output diversity.

2.5 No KL Loss AND HiIGH CLIP RATIO

Removing KL loss with high clipping enhances output diversity and response length, driving sus-
tained performance improvements (Figure). Standard KL loss without high clipping reduces out-
put diversity and limits response length to marginal increases, causing initial performance gains
followed by decline. Continued diversity reduction creates unsustainable training dynamics where
performance first rises then falls, preventing effective long-term training.

Under review as a conference paper at ICLR 2026

0.65
0.6 0.60
> > >
E 0.5 § E 0.55
35 3 3
S S 5 0.50 — t=06
<0.4 e < < —— t=0.6->1.2
ST - t=060s 0.45 — t=0.6->18
S —— t=0.6 140s t=1.2 max
0.3 —— t=0.6->1.8 160s 0.40 t=1.8 max
0 1 2 3 0 100 200 300 400 500 0 100 200 300 400 500
Temperature Training Steps Training Steps
1.0 1.0
— t=0.6
209 2009 —— t=0.6->1.2
@ & —— t=0.6->1.8
4 o
208 gos
[a) [a)
@ 0.7 @ 0.7
(%) n
S S
2 %0.6 %0.6
g 0.4 - tio.ﬁ for 0 steps g g
—— t=0.6 for 140 steps 0.5 0.5
0.3 —— t=0.6->1.8 for 160 steps
0 1 2 3 0 100 200 300 400 500 0 100 200 300 400 500
Temperature Training Steps Training Steps

Figure 3: Temperature Dynamics and Scheduling Analysis. Temperature robustness trends dur-
ing training showing increasing stability at higher temperatures, convergence of output diversity
across different temperature settings, training failure when low temperatures cause initial diversity
to fall below convergence values, and superior performance of dynamic temperature scheduling
(low-to-high transition) compared to static temperature approaches.

0.40 7000
038 5,6000 5
c
30.36 g
© o 2000 0p5
2034 @
o s}
<0.32 %4000
o}
0.30] — KL Loss 3000 —— KL Loss —— KL Loss
0.28 —— No KL Loss Clip High ~—— No KL Loss Clip High 0.2{ = No KL Loss Clip High
0 100 200 300 400 0 100 200 300 400 500 0 100 200 300 400 500

Training Steps

Training Steps

Training Steps

Figure 4: Influence of KL Loss and Clip Ratio on Training Dynamics. Performance comparison
between standard KL loss and removed KL loss with high clipping, illustrating the relationship
between diversity maintenance and sustained performance improvement.

3 DATA

Our data processing framework employs a four-stage pipeline to create high-quality coding datasets.
The Collect stage aggregates data from diverse sources to maximize coverage. The Process stage
standardizes data through language translation, noise removal, format normalization, and complete-
ness validation. The Filter stage applies multi-criteria selection based on textual quality, content
relevance, and difficulty distribution. Finally, the Verify stage conducts validation to ensure problem
readability, completeness, and test case accuracy. This end-to-end pipeline transforms raw datasets
into a high-quality, standardized corpus suitable for reinforcement learning training.

Comparative analysis reveals that MicroCoder dataset drives superior coding ability improvements
over DeepCoder dataset (Figure[5). Training on MicroCoder dataset yields rapid, obvious accuracy
gains, while DeepCoder dataset training shows minimal performance variation. This performance
differential correlates with inherent dataset difficulty. MicroCoder dataset consistently generates
lower critic rewards, indicating higher problem complexity. Despite both datasets exhibiting similar
critic reward growth trends during training, only MicroCoder dataset produces test set improve-
ments, demonstrating that training effectiveness on challenging problems translates more directly to
generalization performance.

Under review as a conference paper at ICLR 2026

0.7 7000
—— DeepCoderDataset —— DeepCoderDataset
0.401 MicroCoderDataset = ~—— MicroCoderDataset
0.6 £ 6000
o =)
o5 g
g 2 5000
o« (%)
(] c
= 0.4 S
£ 24000
o 4
0.3 —— DeepCoderDataset o«
~ MicroCoderDataset 3000
0 100 200 300 02 0 100 200 300 0 100 200 300
Training Steps Training Steps Training Steps

Figure 5: Dataset Quality Comparison. Training dynamics comparing MicroCoder and Deep-
Coder datasets across accuracy, critic reward, and response length metrics, demonstrating learning
effectiveness on challenging problems.

] 100
~—— MicroCoder-Evaluator —_— —— MicroCoder-Evaluator T
US p— LiveCodeBench Evaluator 0.6 —— LiveCodeBench Evaluator 3 50 |
Lol <
>0.42] 2
g 205 S 0 !
fid [o 0 2000 4000 6000
3 0.40 « 2 100
2 4 fmﬂ : !
- E04 >
0.38 o G 50 -
. € ‘
2 LA
0.3 = o |
0.36 i i 0 2000 4000 6000
0 20 40 60 80 100 0 20 40 60 80 100 Relative Time
Training Steps Training Steps Inference Reward Model Update

Figure 6: Training Performance with Different Code Evaluators. Accuracy and reward during
training using MicroCoder-Evaluator versus LiveCodeBench Evaluator, demonstrating the bene-
fits of robust output validation for coding task training. The right subfigure shows the efficiency
improvements of MicroCoder-Evaluator through parallel processing optimization compared to the
original DeepCoder single-threaded version.

Harder problems exhibit accelerated response length growth with greater final magnitudes. Although
MicroCoder dataset initially produces similar or shorter response lengths compared to DeepCoder
dataset, it demonstrates faster growth rates and ultimately achieves longer outputs. This indicates
that challenging coding tasks require longer solution paths.

4 INFRASTRUCTURE

MicroCoder-Evaluator implements comprehensive output validation through multi-strategy com-
parison with 6-7 fallback methods, format flexibility handling lists, tuples, strings, sets with au-
tomatic type conversions, approximate numeric comparison using np.allclose() for floating point
tolerance, preprocessing including multi-line splitting and whitespace normalization, and high fault
tolerance that continues attempting different comparison approaches when individual methods fail.
In contrast, LiveCodeBench Evaluator employs exact matching through direct equality compari-
son, precise numerics via Decimal library for high-precision floating point operations, and minimal
preprocessing limited to basic whitespace stripping.

The comprehensive evaluation approach yields superior training outcomes (Figure[6). Higher accu-
racy values generally represent more reliable gold standard evaluation, as comprehensive compar-
ison methods better capture valid solution variations when matching outputs against ground truth
answers. MicroCoder-Evaluator achieves higher critic reward scores, indicating more accurate as-
sessment of solution quality. This translates to enhanced model training effectiveness with fewer
misjudgments, reduced noise injection, and accelerated and higher test accuracy improvement. The
performance differential between evaluators is particularly pronounced during early training stages,
where robust evaluation becomes important for establishing proper learning feedback and preventing
suboptimal convergence.

Under review as a conference paper at ICLR 2026

1.7B, Train on 4K, Test on 4K 1.7B, Train on 4K, Test on 8K 1.7B, Train on 4K 1.7B, Train on 4K
0.24 0.24 —— GRPO
20001 __ Grpo+ (DAPO) 0.8
0.22 0.22 £ 1750] — MicroCoder-GRPO >
i) 0.7
- - £ 1500 g™
9 9 9 2
g 0.20 g 0.20 2 1250 a
g g g 206
<018 <018 g 1000 S
n aQ
& 750 205 A
0.16 — GRPO 0.16 — GRPO < — GRPO
~—— GRPO+ (DAPO) ~—— GRPO+ (DAPO) 500 == GRPO+ (DAPO)
—— MicroCoder-GRPO —— MicroCoder-GRPO 250 0.4] = MicroCoder-GRPO
y :
0.14 100 200 300 400 0'140 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Training Steps Training Steps Training Steps Training Steps
4B, Train on 4K, Test on 4K 4B, Train on 4K, Test on 8K 4B, Train on 4K 4B, Train on 4K
4000 0.8l — or0
0.38 0.38 @] == GRPO+ (DAPO)
> === MicroCoder-GRPO
< 2
46.‘3500 @ 07
20.36 20.36 g <
o o 3000 a
<0.34 <0.34 22500 o
g g
& 305
— GRPO — GRPO 2000 = GRPO o
0.32 ~—— GRPO+ (DAPO) 0.32 ~— GRPO+ (DAPO) == GRPO+ (DAPO)
—— MicroCoder-GRPO —— MicroCoder-GRPO —— MicroCoder-GRPO 0.4
v 1 g
0 200 400 0 200 400 5000 200 400 0 200 400
Training Steps Training Steps Training Steps Training Steps

Figure 7: Illustrative performance comparison between MicroCoder-GRPO and baseline ap-
proaches across different model scales and output lengths, illustrating training accuracy, response
length, and output diversity dynamics, demonstrating the superior stability and sustained improve-
ments of the proposed method under both preset and extended context lengths.

5 EXPERIMENTAL DESIGN

For algorithmic comparisons, we evaluate MicroCoder-GRPO against GRPO (Shao et al.l[2024) and
GRPO+ (DAPO) (Yu et al.| |2025) that removes KL loss and employ high clipping. For temperature
dynamics analysis, we employ the Open-R1 (Hugging Facel [2025) training set with evaluation on
200 randomly selected problems from the test set using maximum response length of 4K tokens. All
other analyses and model evaluations utilize DeepCoder (Luo et al., 2025) and MicroCoder datasets
with testing conducted on the unseen AtCoder and LeetCode in LiveCodeBench v6. Experiments
are performed using Qwen3-1.7B Instruct and Qwen3-4B-Instruct-2507 models (Yang et al., 2025)
to demonstrate method robustness across different model scales. Unless otherwise specified, default
experimental configurations employ MicroCoder dataset, LiveCodeBench v6 evaluation, Qwen3-
4B-Instruct-2507 model, maximum response length of 8K tokens, temperature of 1.2, train batch
size of 64, learning rate of 1e-6, GRPO+ algorithm, 8 samples per query during training with 0-1
binary accuracy as reward, and evaluation based on average accuracy across four inference attempts.

6 RESULTS

Experimental evaluation compares training dynamics under 4K response length with testing on both
4K and 8K contexts to assess algorithmic effectiveness and reasoning budget scalability (Figure[7).
MicroCoder-GRPO demonstrates superior performance across both testing configurations, achiev-
ing faster convergence rates and higher final accuracy values compared to baselines. Additionally,
our 4K context training achieves performance comparable to baseline methods trained with 6K con-
texts, while saving approximately 40-50% computational cost due to the O(n?) of self-attention.
While GRPO+ (DAPO) with removed KL loss and high clipping reaches higher peak performance
than standard GRPO and achieves peak values more rapidly, it exhibits training instability with pro-
nounced performance decrease during extended training phases. In contrast, MicroCoder-GRPO’s
conditional truncation masking not only accelerates improvement and enhances convergence values
but maintains stable long-term training dynamics without the failure observed in GRPO+. Analysis
reveals that 4B models exhibit greater response length growth capacity compared to 1.7B models,
with MicroCoder-GRPO producing length increases across both model scales while preserving out-
put diversity and sustained accuracy improvements throughout training.

MicroCoder-GRPO consistently outperforms both GRPO and GRPO+ (DAPO) across all bench-
mark datasets, difficulty levels, and model sizes, demonstrating robust improvements in coding

Under review as a conference paper at ICLR 2026

AtCoder LeetCode LiveCodeBench

Easy Medium Hard All [Easy Medium Hard All Easy Medium Hard All
Not trained
Qwen3-1.7B Instruct (4K) 69.2 10.6 1.3 19.2 33.8 3.8 0 10.7 552 7.2 0.9 16.1
Qwen3-1.7B Instruct (8K) 69.2 10.6 13 19.2 33.8 3.8 0 10.7 552 7.2 0.9 16.1
Qwen3-4B-Instruct (4K) 95.2 442 9.2 373 735 19.2 2.5 28.6 86.6 31.7 7.5 34.1
Qwen3-4B-Instruct (8K) 95.2 452 10.0 37.9 76.5 18.3 2.5 29.0 87.8 31.7 8.1 34.7
1.7B, Train on 4K, Test on 4K
GRPO 70.2 20.2 1.7 219 47.1 4.8 0 14.7 61.0 125 1.3 193
GRPO+ (DAPO) 76.9 15.4 2.9 23.0 55.9 1.9 0 15.9 68.6 8.7 2.2 20.4
MicroCoder-GRPO 83.7 24.0 29 26.6 574 4.8 0 17.5 73.3 14.4 2.2 233
A +6.8 +3.8 0.0 +3.6 +1.5 0.0 0 +1.6 +4.7 +1.9 0.0 +2.9
1.7B, Train on 4K, Test on 8K
GRPO 70.2 20.2 1.7 219 47.1 4.8 0 14.7 61.0 12.5 1.3 193
GRPO+ (DAPO) 76.9 154 2.9 23.0 55.9 1.9 0 15.9 68.6 8.7 2.2 204
MicroCoder-GRPO 82.7 26.9 3.7 275 529 8.7 0 17.9 70.9 17.8 2.8 24.0
A +5.8 +6.7 +0.8 +4.5 -3.0 +3.9 0 +2.0 +2.3 +5.3 +0.6 +3.6
4B, Train on 4K, Test on 4K
GRPO 98.1 46.2 11.7 39.7 72.1 212 0 282 87.8 337 8.7 35.6
GRPO+ (DAPO) 97.1 49.0 10.0 393 75.0 221 1.3 29.8 88.4 35.6 7.8 359
MicroCoder-GRPO 100.0 49.0 9.6 39.7 88.2 221 3.7 34.1 95.3 35.6 8.1 37.7
A +1.9 0.0 -2.1 0.0 +13.2 0.0 +2.4 +4.3 +6.9 0.0 -0.6 +1.8
4B, Train on 4K, Test on 8K
GRPO 100.0 45.2 129 40.6 72.1 22.1 0 28.6 89.0 337 9.7 36.3
GRPO+ (DAPO) 100.0 433 11.3 393 76.5 23.1 2.5 31.0 90.7 332 9.1 36.3
MicroCoder-GRPO 100.0 48.1 129 41.3 83.8 24.0 5.0 34.1 93.6 36.1 10.9 38.7
A 0.0 +2.9 0.0 +0.7 +7.3 +0.9 +2.5 +3.1 +2.9 +2.4 +1.2 +2.4

Table 1: Quantitative evaluation results across different datasets comparing MicroCoder-GRPO
against baseline methods on various model sizes, difficulty levels, and output budgets to assess

algorithmic improvements and extended reasoning capabilities.

0.90
— 32 7000 — 32 —_ 32
0.407 — 64 < — 64 20.85] — 64
— 128 48’6000 — 128 0 — 128
> S 20.80
S0.38 3 2
£ © 5000 °
2 @ 20.75
<036 s g
¢ 4000 20.70
« &
0.34 3000 0.65
100 200 300 400 500 0 100 200 300 400 500 0 200 600 800

Relative Data

Relative Data

400
Relative Data

Figure 8: On-Policy versus Off-Policy Training Effects. Performance comparison across different
train batch size settings, demonstrating that off-policy configurations increase training stability while
intermediate settings achieve optimal performance.

task performance (Table[T). The performance gains become more pronounced under extended con-
text evaluation, where models trained on 4K contexts are tested on 8K contexts, with 1.7B models
achieving +3.6% improvement on LiveCodeBench, indicating superior scalability of the proposed
approach. Harder problems exhibit greater performance gains under extended output budgets, with
MicroCoder-GRPO showing strong advantages on Medium and Hard difficulty levels, suggesting
enhanced capability for complex reasoning tasks requiring longer solution development.

7 ANALYSIS

7.1 BATCH SIZE AND ON-POLICY

Training batch configuration influences on-policy versus off-policy learning characteristics. The
framework employs train_batch_size for simultaneous problem inference and ppo_-mini_batch_size
for individual parameter updates, executing train_batch_size/ppo_mini_batch_size update iterations
per training step cycle. Smaller train_batch_size values (maintaining constant ppo_mini_batch_size)
create more on-policy behavior resembling immediate problem-solving reflection, while larger val-
ues produce off-policy dynamics akin to batch reflection after completing all problems. As shown
in Figure [8] on-policy configurations exhibit reduced training stability with accelerated response
diversity convergence and response length trends that rise and then decline, whereas off-policy ap-
proaches demonstrate greater stability across both metrics. Optimal performance emerges from in-

Under review as a conference paper at ICLR 2026

— 6k — 4k
0.40 0.401 — g>8k 0.40] — 458k
- - 8k Max 8k Max
30.38 30.38 20.38
e e e
3 35 =3
90.36 2036 9036
< R < <
0.34 — 6k 0.34 0.34
— 8k
0 320 200 400 600 800 0'320 200 400 600 800 0 320 200 400 600 800
Training Steps Training Steps Training Steps
80001 80007 8000{
< — 6K S — 6->8K S —— 4->8K
26000, — 8K 26000 26000
(0] (7] (7]
- -)
Q [[
£ 4000 £ 4000 £ 4000
o o o
Q Q Qo
7] %]]
() (] (]
< 2000 W,\"\/" & 2000 < 2000
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Training Steps Training Steps Training Steps
0.9 0.9 0.9
> — 4K > — 6K > —
% — 6K % — 6->8K G —— 4->8K
© 0.81 — 8K @ 0.8 @ 0.8
2 2 2
[a) =) (=)
[() (]
007 0 0.7 2 0.7
o o o
(e o o
w 0 [
Los Los Los
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Training Steps Training Steps Training Steps

Figure 9: Context Length Influence on Training Dynamics. Performance trends across different
maximum output length settings showing accuracy, response length growth, and output diversity,
demonstrating irreversible effects of early-stage length limitations on model capabilities.

termediate configurations balancing on-policy and off-policy characteristics, outperforming heavily
skewed settings in either direction.

7.2 CONTEXT LENGTH AND EXTENSION

Context length settings exhibit scaling relationships with model performance (Figure [9). Longer
maximum output lengths correlate with higher final accuracy, faster output growth rates, greater fi-
nal output lengths, and increased output diversity. However, small initial maximum output lengths
reduce both output generation and diversity, creating persistent performance effects even after sub-
sequent length extensions. The magnitude of these effects increases with more limiting initial set-
tings and longer training time. Beyond specific training thresholds, models show minimal recov-
ery when limitations are later relaxed, indicating that early-stage output reduction fundamentally
changes learning paths and cannot be compensated by later context extension.

8 CONCLUSIONS

To address the training bottlenecks of modern code generation models, this paper proposes
MicroCoder-GRPO, a novel algorithm with three key innovations: conditional truncation masking
to enhance long output potential while maintaining training stability, diversity-determined temper-
ature selection to maintain output variability, and removal of KL loss with high clipping ratios to
encourage exploration. We introduce a more challenging and higher-quality dataset, and develop
a more robust code evaluator with faster testing speed. Through comprehensive analysis of over
thirty controlled experiments, we derive 34 important training insights (Sections 2} [3| @ and[7) that
provide systematic guidance for reinforcement learning in code generation.

Future work will focus on applying our methods and insights to diverse coding tasks, fully leveraging
the performance improvements, high efficiency, and strong generalization capabilities demonstrated
in this work. The systematic approach established here opens new possibilities for advancing rein-
forcement learning across various code generation domains.

Under review as a conference paper at ICLR 2026

REFERENCES

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scal-
ing reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp.
github.io/blog/2025/Polarisk

Shihan Dou, Yan Liu, Haoxiang Jia, Enyu Zhou, Limao Xiong, Junjie Shan, Caishuang Huang,
Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui Zheng, Qi Zhang, Tao Gui,
and Xuanjing Huang. StepCoder: Improving code generation with reinforcement learning from
compiler feedback. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 4571-4585, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.acl-long.251. URL https://aclanthology.org/2024.
acl-long.251/.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open—-rill

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Hoi. CodeRL:
Mastering code generation through pretrained models and deep reinforcement learning. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
WaGvb70zySA.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset, 2023. URL https://arxiv.
org/abs/2312.14852.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, QIANG FU, Xiao Han, Yang Wei, and Deheng Ye. RLTF:
Reinforcement learning from unit test feedback. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=hjYmsV6nXZ.

Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. 2025.

Yifei Liu, Li Lyna Zhang, Yi Zhu, Bingcheng Dong, Xudong Zhou, Ning Shang, Fan Yang, and
Mao Yang. rstar-coder: Scaling competitive code reasoning with a large-scale verified dataset,
2025a. URL https://arxiv.org/abs/2505.21297.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding rl-zero-like training: A critical perspective, 2025b. URL https:
//arxiv.org/abs/2503.20783.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepcoder: A fully open-source 14b coder at 03-mini level, 2025. Notion Blog.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, ..., and Zihan Qiu.
Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K. Reddy. Execution-based code gen-
eration using deep reinforcement learning. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856. URL https://openreview.net/forum?id=0XBuaxgEcG.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. KodCode: A di-
verse, challenging, and verifiable synthetic dataset for coding. In Wanxiang Che, Joyce Nabende,
Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Com-
putational Linguistics: ACL 2025, pp. 6980-7008, Vienna, Austria, July 2025. Association for
Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.365.
URL https://aclanthology.org/2025.findings—acl.365/.

10

https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris
https://aclanthology.org/2024.acl-long.251/
https://aclanthology.org/2024.acl-long.251/
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://openreview.net/forum?id=WaGvb7OzySA
https://openreview.net/forum?id=WaGvb7OzySA
https://arxiv.org/abs/2312.14852
https://arxiv.org/abs/2312.14852
https://openreview.net/forum?id=hjYmsV6nXZ
https://arxiv.org/abs/2505.21297
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=0XBuaxqEcG
https://aclanthology.org/2025.findings-acl.365/

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, ..., and Zihan Qiu. Qwen3
technical report, 2025. URL https://arxiv.org/abs/2505.09388\

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie
Wang, Yinghan Cui, Chao Wang, Junyi Peng, Shimiao Jiang, Shiqi Kuang, Shouyu Yin, Chao-
hang Wen, Haotian Zhang, Bin Chen, and Bing Yu. Srpo: A cross-domain implementation of

large-scale reinforcement learning on 1lm, 2025. URL https://arxiv.org/abs/2504.
14286.

A APPENDIX

A.1 THE USE OF LLMs

LLMs are used to check the grammar and spelling of this paper.

11

https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2504.14286
https://arxiv.org/abs/2504.14286

	Introduction
	Background & Related Work
	Motivation
	Contributions

	Algorithms
	Preliminaries: GRPO
	MicroCoder-GRPO
	Conditional Truncation Mask
	Diversity-determined Temperature
	No KL Loss and High Clip Ratio

	Data
	Infrastructure
	Experimental Design
	Results
	Analysis
	Batch Size and On-Policy
	Context Length and Extension

	Conclusions
	Appendix
	The Use of LLMs

