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ABSTRACT

Adding an image descriptor to the input significantly enhances the performance
of a convolutional neural network. By incorporating a SURF descriptor for indoor
localization applications, we report a simpler convolutional neural network with
fast training speed and outstanding accuracy and without the need for a pretrained
network in contrast to the state of art.

1 INTRODUCTION

Convolutional neural networks (CNN) are capable of extracting features from high dimension data
such as images, videos, etc. that suits the application specific tasks. Such network, however, requires
high dimensional optimization procedure in which the training time is significantly longer when
the input dimension is large. On the other hand, image descriptors extract features from images
through deterministic means that are orders of magnitude faster than CNN. The drawback of a
descriptor is that, the output feature size is usually large compared to those from CNN as most of
the image information is retained during extraction regardless of whether it is needed for the target
application. Here, through the demonstration from an indoor localization application, we combine
both technologies by first using an image descriptor to extract features from images. The feature
set, which has significantly reduced dimension compared to the images, is input to a CNN to extract
more useful features with further reduced dimension. The combined techniques result in a significant
fewer parameters in the CNN and the training time is reduced accordingly.

In pre machine learning era, most image based localization tasks were done through place recog-
nition or finding the position from 2D-3D correspondence. For example (Sattler et al., 2015) used
image retrieval techniques to search for the similarity between the current image and images in the
database. Consequently, the position at which current image was taken can be estimated. Other
techniques (Sattler et al., 2011; 2017) rely on finding the 2D-3D correspondence via descriptor
matching between the 2D image and 3D model using e.g., structure from motion (sfm) (Forsyth
& Ponce, 2011). Both techniques, however, highly depend on handcrafted features that cannot be
generalized in different environments.

There are various feature detectors and descriptors including Scale-Invariant Feature Transform
(SIFT) (Lowe, 2004), Speeded Up Robust Feature (SURF) (Bay et al., 2008), Features from Ac-
celerated Segment Test (FAST) (Viswanathan, 2009), Binary Robust Independent Elementary Fea-
tures (BRIEF) (Calonder et al., 2010) and Oriented FAST and Rotated BRIEF (ORB) (Rublee et al.,
2011). Among them, SURF is being used extensively in computer vision applications such as face
recognition (Du et al., 2009), visual simultaneous localization and mapping (SLAM) (Engelhard
et al., 2011) and object detection (Chincha & Tian, 2011). SURF relies on box filters and integral
images which make feature extraction faster. (Bayraktar & Boyraz, 2017) demonstrated that by
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using SURF descriptors the highest accuracy can be achieved in image matching for indoor local-
ization. Typically, SURF can convert an image with around 1 million pixels into feature set with
fewer than 20 thousand values, sorted by the corresponding Hessian threshold. That significantly
reduces the data dimension without noticeable loss of image information.

With the booming of machine learning, image based localization using neural networks reaches
high performance enhancement. For example, (Kendall et al., 2015) used transfer learning (Oquab
et al., 2014) and the pretrained GoogLeNet (Szegedy et al., 2015) to regress the pose of the camera
(position and orientation) with 0.44 m accuracy. Recently, (Hazirbas et al.) used similar architecture
but with Long-Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) to memorize good
features, leading to a better accuracy of 0.31 m. (Melekhov et al., 2017) used another pretrained
network, ResNet-34 (He et al., 2016), for regressing camera pose. It further adopted encoder-
decoder design and used skip connection to move the features from the early layers to the output
layers. This further enhances the accuracy to 0.23 m. Despite the good performance achieved, all
the networks contain a large number of neurons and rely on pretrained networks as the training of
such network will otherwise become too time consuming to be practical.

To enhance the training efficiency of CNN, we, for the first time according to the authors’ knowl-
edge, use an image descriptor to reduce the input dimension of CNN by almost two orders of mag-
nitude. Subsequently the number of neurons required for CNN are significantly reduced, leading
to highly efficient training compared to previously reported CNN models without sacrificing the
accuracy.

2 MODEL

In this section, we apply our network to image based indoor localization. The task is that given an
image I taken by a camera, find the global Cartesian coordinates [x,y,z] of the camera location P.

As shown in Fig. 1, instead of directly feeding images to the CNN, our model added a SURF de-
scriptor to extract a set of 64 dimensional features from the image. Since the number of features of
each image is different, we choose N features with the highest Hessian threshold (Bay et al., 2008)
from each image as the input of CNN. The CNN consists of a typical 5-layer CNN with max pooling
and batch normalization. Its output is flattened to a fully connected layer (Ioffe & Szegedy, 2015).
The output layer comes with 3 neurons for the position of [x,y,z]. Here, we used the mean square
error as our loss function.

Figure 1: The architecture of SurfCNN. (N: Number of SURF Features, Conv: Convolutional Layer
and FC: Fully Connected Layer). The number of filers and width of each convolutional layer are
listed in the bracket beneath the corresponding blocks.

3 PERFORMANCE ANALYSIS

To validate our model, we selected 2 representative scenes from the 7-scene dataset Glocker et al.
(2013). Specifically, we choose the images with 480 × 640 × 3 pixels from the scene of ”chess”
which is rich in features and ”stairs” that has relative simple structure. The accuracy of the estimated
position where the camera took these images is used as the figure of merit to compare our model
with published results.

To determine the number of SURF features needed as CNN input, we plot the localization accuracies
of both scenes as a function of number of features selected in Fig. 2. As a comparison, the accuracies
of PosNet(red dotted line, (Kendall et al., 2015)), Pose-LSTM (green dashed line, (Hazirbas et al.))
and Pose-Hourglass (yellow dash-dotted line, (Melekhov et al., 2017)) are shown on the same sub-
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plots. In the scene of chess, our SurfCNN outperformed PoseNet with as few as 5 features. It further
reached an accuracy better than Pose-LSTM when adopting 200 features. It is worth mentioning
that due to the large feature size associated with the images of chess, selecting only 300 features is
insufficient to beat the Pose-Hourglass model. On the other hand, as shown in Fig. 2, in the relative
simpler scene of stairs, the SurfCNN reached the same accuracy as Pose-Hourglass by selecting 300
features.

The advantage of SurfCNN is evident in Tab. 1. Assuming 300 SURF features are chosen, the
input dimension of CNN is reduced to 19, 200 from 921, 600. As a result of this 48 fold input
reduction, SurfCNN only needs 7 network layers and does not require a pretrained network. In
contrast, PoseNet, Pose-LSTM and Pose-Hourglass consist of 24, 28 and 35 layers and all require
additional pretrained network. Note that the number of parameters (excluding pretrained network)
in Pose-Hourglass is almost doubled to SurfCNN while with sufficient number of features retained
SurfCNN can reach the same accuracy. Finally, SurfCNN typically takes only around 1.5 hour for
training while the training of pretrained networks in other models alone will take days or even longer.

Figure 2: The effect of varying the number of features on accuracy of SurfCNN compared to Posenet
(Kendall et al., 2015), Pose-LSTM (Hazirbas et al.) and Pose-Hourglass (Melekhov et al., 2017)

Table 1: The comparison of SurfCNN, Posenet (Kendall et al., 2015), Pose-LSTM (Hazirbas et al.)
and Pose-Hourglass (Melekhov et al., 2017)

Network Layers Pretrained Network Pretrained Parameters Total Parameters
Accuracy (cm)

Chess Stairs

SurfCNN 7 None 0 1.3× 107 23 29
PoseNet 24 GoogLeNet 1.1× 107 2.35× 107 32 48
Pose-LSTM 28 GoogLeNet 1.1× 107 2.15× 107 24 40
Pose-Hourglass 35 ResNet-34 2.3× 107 4.5× 107 15 29

4 CONCLUSION

In conclusion, we implemented SurfCNN that used a SURF descriptor to reduce the input dimension
of CNN. Benefited from the advantages of both, our network outperformed PoseNet and Pose-LSTM
without the need for a pretrained network. With the sufficient number of features, SurfCNN reaches
the same accuracy as Pose-Hourglass with only half the parameters even excluding the pretrained
network. This advantage is essential in realtime localization tasks where memory size is small. This
approach is not only efficient, but also versatile to all other CNN related applications to make the
training highly efficient.
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