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Abstract

Current large language model (LLM) evalua-
tions rely on benchmarks to assess model ca-
pabilities and their encoded knowledge. How-
ever, these evaluations cannot reveal where a
model encodes its knowledge, and thus little
is known about which weights contain specific
information. We propose a method to statically
(without forward or backward passes) locate
topical knowledge in the weight space of an
LLM, building on a prior insight that parame-
ters can be decoded into interpretable tokens.
If parameters can be mapped into the embed-
ding space, it should be possible to directly
search for knowledge via embedding similarity.
We study the validity of this assumption across
several LLMs for a variety of concepts in the
financial domain and a toxicity detection setup.
Our analysis yields an improved understand-
ing of the promises and limitations of static
knowledge location in real-world scenarios.

1 Introduction

The impressive text generation abilities of large
language models (LLMs) arise from complex in-
teractions among billions of parameters. These
parameters encode a vast range of knowledge, al-
lowing models to answer closed-book fact-based
questions across dozens of domains. LLM evalua-
tions focus on model abilities: what can the model
do and what does it know? However, evaluations
based on model outputs cannot answer where this
knowledge is stored in the network.

If a model correctly answers the question “What
city in the United States had the first subway?”,
why does it matter what parameters store the an-
swer “Boston”? First, we may want to know in
what domains is the model capable by simply “look-
ing” at the knowledge-storing parameters, which
can provide insights about the model’s inner work-
ing. Second, we may want to edit or remove a
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model’s knowledge or behavior, e.g., outdated in-
formation, offensive terminology, or stereotypes.
Removing this information may be more effective
than fine-tuning the model not to express it. Third,
in the search for better model architectures, we may
want to enhance a model’s knowledge storage abil-
ity. All of these goals and more require knowing
where information is stored inside a model.

Previous research on locating knowledge in lan-
guage models is divided into dynamic and static
analyses. Dynamic analyses focus on examining
how model activations and outputs change with dif-
ferent inputs to identify where knowledge is stored
and how model capabilities function (Vig et al.,
2020; Olsson et al., 2022). Instead, we are focused
on investigating the possibilities of static knowl-
edge location, that is, without any forward or back-
ward passes. While static knowledge location is
challenging due to having access to strictly less
information than dynamic methods, its potential
simplicity makes it interesting for practical reasons
and scientific curiosity.

One static approach to examine the weights in a
Transformer network (Vaswani et al., 2017) is to
project the model parameters into the word embed-
ding or vocabulary space for interpretation (Elhage
et al., 2021; Geva et al., 2022b). Dar et al. (2022)
developed the idea that all Transformer parameters,
including all Multi-Layer Perceptron (MLPs) and
attention layers, can be interpreted by projecting
them into the vocabulary space. They also use the
embedding space interpretation to align parameters
across models based on their vector similarity. The
advantage of this approach is that it operates di-
rectly on the model parameters without requiring
specific inputs or a forward pass.

Rather than projecting all parameters into the
vocabulary space, or aligning them based on their
vector similarity, we posit that if the embedding
space interpretation of the parameters holds, then
we should be able to directly locate specific knowl-



edge given a query in the embedding space. We
propose a straightforward method based on embed-
ding similarity that identifies what knowledge is
contained within a model and where that knowl-
edge is located without any forward pass. We take
two real-world case studies, information extraction
tasks focusing on the financial domain and a tox-
icity reduction setup, and run our experiments at
scale (up to 176B parameters). We study the rele-
vance of the parameters identified by our method
to the target knowledge, and investigate how spe-
cific these locations are by measuring the down-
stream performance on seemingly unrelated tasks
when ablating the found parameters. Finally, we
utilize the method to gain insights into how inter-
nal model representations vary across layers and
how distributed they are, and to have a better un-
derstanding of the possibilities and limits of static
knowledge location.

2 Statically locating parameters

Our goal is to statically identify where knowledge
is stored within the parameters of a large language
model. We assume a running example of knowing
the names of CEOs for companies. This informa-
tion is part of the financial domain, and is a specific
type of information (CEO relation) that applies to
many different companies. What parameters in the
model store the identities of these CEOs? Popular
approaches to locating this information use a for-
ward pass through the model with different inputs
to measure how the outputs or activations of the
model vary, e.g. by inspecting attention weights
(Vashishth et al., 2019; Clark et al., 2019) or gra-
dients (Dai et al., 2022). However, input-based ap-
proaches require forward and/or backward passes,
which are computationally expensive and may not
generalize beyond the tested inputs. Instead, we
are interested in locating parameters statically, that
is, without input, forward or backward passes by
building on recent methods of static interpretation
of Transformers (Geva et al., 2022c; Dar et al.,
2022).

These methods can directly interpret model pa-
rameters in the embedding space. We represent the
model parameters in embedding space, formulate a
task-relevant query in the same embedding space,
and use it to search over the parameters. For exam-
ple, to locate parameters containing CEO identities,
we take the query “CEO” and search for relevant
parameters in the embedding space.

We describe our method in several steps: how
the model parameters are interpreted into the em-
bedding space, how a query is represented in this
same space, and efficient search of the parameter
space.

2.1 Interpreting parameters in embedding
space

We begin by interpreting the model parameters in
the semantic embedding space. Transformers con-
sist of two blocks: a multi-layer perceptron and a
self-attention module, which are applied consec-
utively with residual connections. Elhage et al.
(2021) note that this sum of the output of all the
previous layers and the original embedding could
be understood as a shared communication channel
among layers, referred to as the residual stream.
This property can be exploited to project interme-
diate outputs into the vocabulary space (nostalge-
braist, 2020; Din et al., 2023). In other words, acti-
vations across the model seem to be in the same em-
bedding space as the input embeddings, E, which
in most implementations share weights with the
language modeling head (ET ).

However, we need the parameters, and not only
the activations, to be in a shared embedding space.
Building upon Geva et al. (2022c, 2020) and Elhage
et al. (2021), Dar et al. (2022) proposed extending
the residual stream view by projecting Transformer
parameters into the original vocabulary space. We
propose using this same insight to represent the
Transformer’s parameters in the same embedding
space as text queries, allowing us to directly (se-
mantically) compare a query with model parame-
ters.1 In summary, we will identify which model
parameters contain names of CEOs by finding those
that are most semantically similar to “CEO”.

We describe the procedure for both types of
model parameters: MLPs and attention.

2.1.1 MLPs
Prior work has shown that MLP blocks function
as key-value memories, allowing the Transformer
to store knowledge (Geva et al., 2020). The first
layer of the MLP block is parameterized (omit-

ting biases) by the weight matrix Win ∈ RD
′×D,

the "keys" of the "memory", where D is the em-
bedding dimension and D

′ is the hidden dimen-
sion of the MLPs. Similarly, the second layer of

1A similar idea was proposed by Dar et al. (2022) to align
parameters across models through vector similarity.



the MLP block is parameterized by a weight ma-

trix Wout ∈ RD×D′

, the "values". In Geva et al.
(2022b), the embedding space interpretation of
those weights is that each Wout column can be
seen as an embedding vector in the same space as
tokens. Geva et al. (2022c) extended this view to
the parameters in the first layer; each row in Win

can be seen as an embedding vector in the same
space as the tokens. We refer to these parameters
as MLP-K (key) and MLP-V (value).

2.1.2 Attention

Attention blocks are associated with contextual
processing rather than knowledge storage, though
previous work has been able to statically interpret
these parameters (Dar et al., 2022; Millidge and
Black, 2022). Attention blocks are parameterized
(omitting biases) by 3 kinds of parameters for each
attention head i ∈ {1, 2, ...N}: W

i
Q, the queries’

projection; WK , the keys’ projection; and WV , the
values’ projection. Additionally, there is a shared
attention output projection, WO, which can also
be split as separate W

i
O for each head. Dar et al.

(2022) propose the subhead view, which forms em-
bedding space interpretations for the individual
units in WQ, WK , WV , and WO analogously to
those we saw for MLPs.

Dar et al. (2022) made assumptions to theoret-
ically justify this embedding interpretation. For
instance, they omit biases and layer normalization,
and approximate the inverse of E, needed for ex-
tending the embedding space interpretation to the
first layer of MLPs and attention subheads, with
E

T . We keep these choices since they empirically
work well in Dar et al. (2022). In our work, we
don’t need to explicitly use the inverse as we do
not project the parameters to the vocabulary space.

2.2 Queries

We now have an interpretation of the different trans-
former parameters in the embedding space E. We
cast a given text query e in the same space to com-
pute semantic similarity. We assume that our query
effectively represents a knowledge type, e.g., the
token “CEO” represents the CEO relation, and that
this token is either directly present in E, or by
pooling multiple tokens present in E. Given this
embedding query e ∈ RD, we retrieve the k Near-
est Neighbors (k-NN) over all layers for a specific
parameter type (layers in MLP or attention blocks)
by returning the projected parameter indices that

maximize the cosine similarity for the query em-
bedding. For example, for the first layer in MLPs:

Q(e) = topk{s(e,p) ∣p ∈

L

⋃
i=1

rows(W i
in)} ,

where s is the cosine similarity and L is the number
of layers. We posit that the most similar parameters
p contain knowledge relevant to e.

2.3 Implementation

We deal with massive models with tens or hundreds
of billions of parameters. Efficiently searching
through this space for the parameters most similar
to a query is not an easy task. Large models can be
loaded into memory efficiently using model paral-
lelism (Shoeybi et al., 2019; Rasley et al., 2020),
and we need to rearrange the Transformer param-
eters to match the embedding interpretation and
allow for efficient search. As we saw earlier, the
embedding space interpretation for the first layer of
MLPs is that each row in Win can be seen as an em-
bedding vector in the same space as tokens. Thus,
the shape of the weights already matches its em-

bedding interpretation. However, Wout ∈ RD×D′

requires transposition to correspond to the embed-
ding shape. We refer by unit to the individual
weight vectors interpreted in the shape required by
the embedding space interpretation, be it a row or
a column of the row of the matrix weights depend-
ing on the embedding space interpretation of each
parameter kind. Similarly, the attention weights
require rearrangement corresponding to the sub-
head view. We refer to the appendix for additional
implementation details.

3 Experiments

We evaluate the effectiveness of our static search
method in identifying parameters that contain
knowledge related to the given query. Unlike typi-
cal LLM benchmarks, we do not know the “right
answer ” nor can we evaluate our search in terms
of accuracy. Therefore, we develop probes and
metrics to measure the extent of the relevant knowl-
edge contained in the identified parameters. We
focus on domain-specific knowledge by searching
for several types of financial information across
several models.

We measure model performance at knowledge
tasks under ablation experiments, where we zero



out parameters identified by our method as contain-
ing relevant knowledge. Specifically, we eliminate
the top-K parameter units identified as being the
most similar to the given query, e.g., “CEO” for
CEO knowledge questions. We increase the num-
ber of ablated units (k corresponds to 0.1%, 0.2%,
etc. of the all units) to measure the performance
degradation on the knowledge task. We establish
baseline performance by comparing to random ab-
lations (see Appendix D.)

We expect that ablating parameters will hurt a
model; we seek to show that ablating specific pa-
rameters removes specific knowledge. Therefore,
we also report performance on control tasks unre-
lated to the query for which the ablations should
have little effect. For example, we query the model
about national capitals, unrelated to our financial
queries. Additionally, we select this task since it re-
lies on general domain knowledge, for which even
small LLMs are likely to do well. We explore the
robustness of our results to this choice of control
task in Appendix E.

3.1 Setup

We consider several different model sizes and fami-
lies: GPT2-medium (355M) (Radford et al., 2019),
OPT-{1.3B, 6.7B, 66B} (Zhang et al., 2022), GPT-
NeoX (20B) (Black et al., 2022), and Bloom 176B
(BigScience). We also consider two instruction-
tuned models based on OPT-1.3B: OPT-IML-1.3B
and OPT-IML-MAX-1.3B (Iyer et al., 2023).

We consider several tasks that rely on different
types of financial information:

• CEOs: A dataset of 500 CEO-company pairs
(S&P 500).The model is asked for the name
of the CEO of a given company in a zero-shot
setting.

• Tickers: Same as CEOs but asking for stock
tickers for a company.

• Ticker extraction (NER-ED): The ticker ex-
traction task in Wu et al. (2023), in which
models must extract the tickers of the named
entities (companies) appearing in the text.

• Authors: A dataset of best-selling fiction-
author pairs.2 The model is asked to reply
with the author name of a given work.

2https://w.wiki/7Lhr

• Directors: A dataset of Academy Awards
movie-director pairs.3 The model is asked
to reply with the director of a given movie.

• Arithmetic: add_sub_multiple subset in
the test split of the Deepmind Mathematics
dataset (Saxton, 2019).

4 Results

We summarize our main findings for select models,
and include additional results for all tasks and mod-
els in the Appendix. In preliminary experiments,
we found that knowledge localization was more
accurate for MLPs; we thus focused on MLP Ks
and Vs for most experiments.

4.1 CEO Task
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Figure 1: OPT-6.7B accuracy wrt. MLP-Ks ablations,
on the CEOs task. Blue lines represent the accura-
cies with increasing ablated units using the embedding
weight localization; orange lines represent those with
random ablation. Solid lines correspond to the target
task accuracies, while dashed lines correspond to the
control task. We can see that the solid blue line de-
creases faster than both the lines corresponding to the
control task and the random ones.

Figure 1 shows the accuracy of the CEOs task as
we ablate an increasing number of units (MLP Ks)
for OPT-6.7B. The accuracy drops sharply when
the closest units in embedding space to “CEO” are
removed (solid blue line), while the control task
(dashed blue line, Capitals task) remains largely
unaffected. Orange lines show accuracy when an
equal number of randomly selected units are ab-
lated, which has a significantly smaller effect on
the performance. This shows that our method can
statically identify parameters responsible for stor-
ing relevant knowledge with a certain degree of
specificity.

Figure 2 shows the corresponding layer-wise dis-
tribution of the ablated units (close to the embed-
ding of “CEO” in embedding space), with darker

3https://w.wiki/7Li5
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Figure 2: OPT-6.7B layer-wise distributions of ablated
MLP-Ks, on the CEOs task. Darker bars correspond to
smaller ks when locating the top-K closest units. We
can see that while there is a certain bias towards the last
layer, the overall distribution is far from exhibiting a
trivial pattern in which only the units close to the last
layer are feasible to locate, with an interesting peak in
the first third of the model.

blue indicating fewer units selected. While we ob-
serve a strong effect in the first and last layers, the
overall pattern is far from trivially selecting the
units of the layers close to the embedding layers.
A peak between layers 5 and 10 hints at some early
processing of the concept of “CEO”.

We find similar trends for the CEO task across
all models4. Table 1 reports the differences be-
tween target and control accuracies. We confirm
the difference between random and control abla-
tions and the targeted ablation to be positive in all
cases. Table 2 shows a compact version of the accu-
racy plots and histogram we saw before, this time
for a selection of the models (OPT-{6.7B, 66B},
GPT-Neox-20B, Bloom-176B) on the CEOs task.
For all models, the accuracy on the CEOs task
drops sharply, while the accuracy on the control
task remains less affected.

4.2 Influence of model size and families
How does model size influence knowledge local-
ization? Figure 3 shows accuracy in target (solid
lines) and control (dashed lines) tasks as more
units close in embedding space are removed. We
first consider the CEO task with MLP-K ablations.
Across all model scales (from 355M to 176B) and
families (GPT2, OPT, GPT-Neox, Bloom), there is
an early, sharp drop in the target task performance.
In contrast, the control task remains largely unaf-
fected until significantly more weights are ablated.
For the CEO task, at the extremes, Bloom-176B
seems most impacted by ablation (i.e., the largest
gap between dashed and solid lines), while GPT2-

4For comparing the performance of different ablated mod-
els, we use the percentage of ablated units over the total model
units rather than unit counts since the total model units vary
by different model size.

355M is the model least affected by the targeted
ablation. Other than this observation, we see no cor-
relation between model size and knowledge local-
ization effectiveness; the technique works similarly
across model families and sizes.

How do other model features affect knowledge
localization? Figure 3 also shows instruction-
tuned variants (OPT-IML). Interestingly, their ac-
curacy curves have very similar shapes, and for
the target task, the less fine-tuned the model, the
lower the accuracy seems to drop, while a seem-
ingly reverse pattern seems to hold for the control
task. In Table 1, we observe that in the case of tar-
geted and random ablation on the target task (B-A),
the instruction-tuned versions of OPT-1.3B present
very similar numbers across ablation levels. In
short, instruction-tuned models from the same base
model show very similar behaviors when ablated
compared to the original base model. Instruction
tuning does not change where knowledge is stored
or our ability to locate it. We further observe that
the control task for GPT-Neox is disproportionately
affected. This could be explained by the effect of
post-Kaplan (Kaplan et al., 2020) scaling laws used
in its pre-training compute. Longer pre-training
may lead to less sparse representations, a hypothe-
sis we seek to explore in future work.

4.3 Generalization to other tasks
Figure 3 presents results for other tasks: Tickers
and Directors. The significant delineation between
target and control task shown in Figure 3 for CEOs
and Directors tasks suggest that the effectiveness
of localization depends on the specificity of the
query token. However, the more challenging task
of Ticker Extraction also led to promising results,
especially with OPT-66B MLP-V (last row in Table
3). We refer to Appendix C for interesting results
for the Arithmetic task, despite ablating the seem-
ingly innocuous token “0”. Knowledge localization
worked for both OPT-66B and Bloom-176B, but
less well for GPT-Neox, on which the tickers ex-
traction task didn’t show promise either. Overall,
GPT-Neox layerwise distributions hint at a more
significant signal in the first (MLP-Ks) and last
(MLP-V) layers than in the rest of the models.

What parameters store knowledge? Examining
which parameters were selected confirms that we
did not trivially select units from the first and last
layer, where the representations are closer to the
embedding layer. It also provides insights into



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 76.67 97.69±3.17 94.04 98.49±1.82 21.02±3.17 17.37 21.82±1.82
OPT-1.3B 78.42 97.37±1.74 99.85 99.24±0.40 18.96±1.74 21.43 20.82±0.40
OPT-IML-1.3B 79.23 97.51±2.55 98.41 99.34±0.30 18.28±2.55 19.18 20.11±0.30
OPT-IML-Max-1.3B 77.79 96.62±1.08 98.48 99.15±0.53 18.83±1.08 20.69 21.36±0.53
OPT-6.7B 69.05 97.88±0.67 100.00 99.90±0.23 28.83±0.67 30.95 30.85±0.23
GPT-Neox-20B 35.10 85.96 89.67 97.18 50.86 54.57 62.08
OPT-66B 75.20 99.21 81.82 81.82 24.01 6.62 6.62
Bloom-176B 46.17 92.31 100.00 100.00 46.14 53.83 53.83

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 41.38 83.12±4.43 88.43 92.97±2.36 41.74±4.43 47.05 51.59±2.36
OPT-1.3B 18.50 86.80±2.51 98.12 97.37±0.99 68.30±2.51 79.62 78.87±0.99
OPT-IML-1.3B 15.16 84.22±3.94 97.15 96.02±1.14 69.06±3.94 81.99 80.86±1.14
OPT-IML-Max-1.3B 12.01 85.60±5.51 96.03 97.10±0.94 73.59±5.51 84.02 85.10±0.94
OPT-6.7B 7.23 86.63±4.48 100.00 98.09±0.97 79.40±4.48 92.77 90.86±0.97
GPT-Neox-20B 13.60 75.88 70.78 96.01 62.28 57.18 82.41
OPT-66B 23.72 90.45 81.82 81.82 66.73 58.10 58.10
Bloom-176B 15.00 87.31 99.23 99.78 72.31 84.23 84.78

Accuracy given 2.0% Ablation

Table 1: Results on the CEOs task with MLP-Ks. We show accuracies at different ablation levels (0.1% ablated
units, 0.5% ablated units, etc). For each ablation level, for each model, we report 4 accuracies: A) the targeted
ablation results (i.e., ablating units close to "CEO") on the target task (CEOs task), B) the random ablation results
on the target task, C) the targeted ablation results on the control task (Capitals task), and D) the random ablation
results on the control task. We also report the differences between these accuracies. We expect B-A and C-A to be
positive, which means that the random ablation has less effect on the performance than the targeted ablation on the
target task, and that the control task performance is less affected than the target task, respectively.

Model
GPT2-355M
OPT-1.3B

OPT-IML-1.3B
OPT-IML-Max-1.3B
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GPT-Neox-20B
OPT-66B
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Figure 3: Accuracy for the CEOs, Tickers, and Directors tasks when ablating using the embedding location method,
for both the target tasks (CEOs, Tickers, and Directors) and the control task (Capitals). We can see how the target
(solid) lines are generally below the control (dashed) lines, as expected, across model scales and architectures,
especially for the CEOs and Directors tasks.



MODEL MODULE ACCURACY LAYER COUNT

OPT-6.7B MLP-Ks

MLP-Vs

GPT-Neox-
20B

MLP-Ks

OPT-66B MLP-Ks

Bloom-
176B

MLP-Ks

Table 2: Results on the CEOs task, including accuracies
for the target and control task when using the weight
location method, and the layer-wise unit distribution.

MODEL MODULE F1 LAYER COUNT

GPT-Neox-

20B

MLP-Ks

MLP-Vs

OPT-66B MLP-Ks

MLP-Vs

Table 3: Results on the Ticker Extraction task.

how the model stores and processes knowledge.
Tables 2, 3, and 5 also present the histograms of
the layer unit counts. The overall trend, similar to
the findings in Vig et al. (2020) and nostalgebraist
(2020), is for the unit density in either the first or
last layers. More interestingly, some models show
distinctive fingerprint-like patterns. For example,
all OPT results with MLP-K ablation have a peak
around the first third together with another peak at
the last layer, especially in the larger variants. OPT
results with MLP-Vs ablations follow a U-shape
distribution. In other model families, GPT-Neox
units concentrate on the first layers with MLP-K
ablations and the last layers with MLP-V ablations.

How well can knowledge be localized in differ-
ent parameter types? As mentioned at the begin-
ning of section 4, we found that knowledge localiza-
tion was more accurate for MLPs. We still include
Attention results in the Appendix, as shown in Ta-
bles 6. We successfully select Attention weights
(as in, the target task performance drops faster than
control) in about half the cases, but less reliably
than in the case of MLPs. This is consistent with
the fact that a) we evaluated knowledge-intensive
tasks, and b) prior work (Geva et al., 2020, 2022b)
suggests that MLPs are more involved in this kind
of task than attention modules.
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Figure 4: Perplexity check on MLP-V units ablation.

5 Toxicity Reduction

Our evaluation so far has been on model knowl-
edge: can we identify where information is stored?
We now turn to model behavior: can we identify
what model parameters are responsible for toxic
language generation?

LLMs can generate toxic text that contains of-
fensive language and biased beliefs and stereo-
types (Gehman et al., 2020). Several strategies
exist to mitigate these generations during inference
(Dathathri et al., 2020), remove behavior during
fine-tuning (Liu et al., 2021), filter pretraining data
to remove biases (Zhang et al., 2022), and neuron-
level interventions that edit the model parameters
directly (Geva et al., 2022c; Li et al., 2023).

We adopt a strategy similar to the neuron-
intervention methods and use our technique to iden-
tify and ablate model parameters associated with
toxic generation. We apply our method to OPT
1.3b, OPT 6.7b, OPT IML 1.3b, and OPT IML
MAX 1.3b and measure the reduction in toxicity.
Unlike prior methods that locate toxic units by pro-
jecting them into the vocabulary space (Geva et al.,
2022c) or by learning ablation masks from fine-
tuning models on the toxic dataset (Li et al., 2023),
we hypothesize that toxicity can be removed by ab-
lating parameters found using our static knowledge
localization method. We form a query to represent
a toxic concept by averaging the embeddings of 24
toxic tokens. We locate the K nearest units to this
concept embedding and ablate them as we did in
our above evaluations. We measure the proportion
of toxic outputs generated from each ablated model
(following Hanu and Unitary team, 2020), as well
as the perplexity of 2,000 prompts sampled from
RealToxicityPrompts (Gehman et al., 2020) and
Wikipedia (Foundation). Additional details on the
methodology and evaluation are in Appendix F.
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Figure 5: Results of toxicity unit ablation studies where each subplot shows the effectiveness of the ablation method
given three different types of model layer. Each subplot compares the unit ablation method (KNN) against a random
ablation baseline across four different models. The ablated units in the x-axis represent the percentage of ablated
units over the total model units. The toxicity in the y-axis represent the percentage of the toxic model output given
600 toxic prompts.

Figure 5 shows that the ablation of MLP-V units
reduces the toxicity of the models, with a drop
of more than 35% when only 1% of the units are
ablated. Ablating the same number of random units
leads to unchanged toxicity. Curiously, ablating
MLP-K units has no significant effect on toxicity,
and ablating Attention units reduces the toxicity of
the models, but not as effectively as MLP-V’s.

Ablating MLP-V units increases the toxic lan-
guage modeling perplexity with minor impair-
ment of the generic one. Figure 4 shows that,
when ablating ∼1% of MLP-V units on models
with size 1.3B, the perplexity of model generations
on toxic prompts increases from 31.81 to 49.03
(+17.22), while the perplexity of model genera-
tion on non-toxic text (Wikipedia) increases from
11.19 to 15.07 (+3.88). The MLP-V units’ abla-
tion impedes the ability of the model to model
toxic language while having a smaller effect on the
overall language modeling performance. However,
for OPT 6.7b, the degradation in perplexity for
Wikipedia is significant, increasing from 8.62 to
64.12 (+55.5), implying that the scale of the model
is inversely correlated with the sparsity of units that
encode broad concepts related to language model-
ing, or that this methodology of defining a toxicity
embedding does not scale to larger models.

Ablated toxicity MLP-V units are distributed
around the early layers. Table 4 shows the MLP-
V layer distribution of the ablated units. Surpris-
ingly, all models demonstrate that toxicity related
units tend to be concentrated in the early layers,
which is rarely seen in other ablation tasks. The
early layers are though to be associated with shal-

MODEL VARIANT LAYER
COUNT

OPT-1.3B Base

IML-MAX

OPT-6.7B Base

Table 4: MLP-V’s Layer Count on Toxicity

low patterns (Geva et al., 2020).

6 Related work

Previous work on locating knowledge in neural
networks falls into two broad categories: dynamic
and static analyses. Dynamic analyses are con-
cerned with model activations. Given multiple in-
puts, these methods look at how activations change,
and thus deduce where knowledge is stored or how
model capabilities function. To this end, Vig et al.
(2020) propose using causal mediation analysis to
investigate Transformer behaviors and apply it to
gender bias. In the follow-up work, Finlayson et al.
(2021) shows that the same technique can be used
to locate syntactic phenomena such as subject-verb
agreement. Similarly, Meng et al. (2023) and Meng
et al. (2022) propose using causal interventions to
locate and edit factual knowledge.

Static analyses focus on model weights directly.
Our work builds on a line of research that projects
model parameters into an interpretable space (Geva
et al., 2020, 2022b; Elhage et al., 2021; Dar et al.,
2022). Geva et al. (2022a) investigated keyword
search over Transformer parameters, although their
work is limited to the second layer of MLPs, and



search over the tokens projected from the param-
eters, rather than directly on the parameters them-
selves.

7 Conclusions

We demonstrated that by casting the parameters
of an LLM into embedding space and directly per-
forming embedding similarity search with respect
to a query, we can localize stored knowledge with-
out a forward pass. We have studied the perfor-
mance after ablating the selected parameters and
the layer-wise distribution of these parameters in
two real-world settings on a diverse range of mod-
els to gain insights on the promises and limits of
static knowledge location.



Limitations

In this work, we have not included evaluations for
more recent models such as Llama (Touvron et al.,
2023). We base our work on Dar et al. (2022),
which does not support SwiGLU (Shazeer, 2020)
out of the box (due to the added parameters).

Additionally, the evaluations are limited to
domain-specific tasks, and control and target tasks
are not necessarily equally easy to ablate. We ex-
plore the robustness of our results to this choice of
control task in the Appendix E.
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A Background

In this section, we review the fundamental ideas in
Vaswani et al. (2017) and Dar et al. (2022) required
to better understand our proposed solution from a
technical standpoint.

A.1 Transformer
Transformers (Vaswani et al., 2017) are mainly
characterized by the following hyperparameters5:

• D, embedding/hidden size

• ∣V ∣, vocabulary size

• L layers

• N attention heads

• D
n
=

D
N

head dimension

• D
′ = hidden dimension of MLPs (typically

4D)

Embedding and unembedding As a first step in
the Transformer, each input token from the discrete
sequence is embedded into a real-valued vector
through the embedding matrix E ∈ R

D×∣V ∣. Each
token t is embedded as follows:

x = embed(t) = E[∶, tid]
with x ∈ RD and where tid is the token id (index)
corresponding to the token t. This maps tokens
to the embedding space of vectors in RD. Some
models also apply layer normalization after the
embedding layer, but we omit it here.

Similarly, an unembed (or language modeling
head) layer is used as the last step, to go back to the
vocabulary space of logits in R∣V ∣. Typically, it’s
also a linear transformation with a weight matrix
U ∈ R∣V ∣×D:

unembed(x) = Ux

Again, some models apply layer normalization
in unembed but we omit it here. Since U has the
transposed dimensions of E, many implementations
tie embedding and unembedding layers to the same
layers (e.g., GPT-2).6 In this work, we assume
that the unembed layer is linear and tied to the
embedding layer, which is a realistic assumption
for most models, with U = E

T

5While we focus on decoder-only language models, our
method is not restricted to this kind of Transformers.

6Other works such as Devlin et al. (2018) opt for a non-
linear unembedding layer.

Transformer layer After the embedding layer, 7

a decoder-only model is composed of N identical
layers. Let X ∈ RT×D be a sequence of embedded
tokens, with T being the sequence length, and x be
an individual embedded token (real-valued vector
with dimension D) in the sequence. Each layer has
the following structure:

Layer(X) = MLP{LN[MHA(LN(X))+X]}+X

where MLP stands for Multi-Layer Perceptron
(MLP) and MHA stands for Multi-Head Attention.
The exact order of application of LN (Layer Norm)
varies across implementations.

Multi-Head Attention Transformers mix infor-
mation from the token embeddings in a given se-
quence with pairwise dot-product multi-head at-
tention. We will first see how each attention head
is (independently) defined for each attention head,
and later we will see how the head outputs are ag-
gregated. The first step is projecting the token rep-
resentations in the input sequence X into Queries
(Q), Keys (K), and Values (V) as follows:

Q = XWQ+bq;K = XWK+bk;V = XWV +bv

Head(X) = softmax(QK
T

√
Dk

⊙M)V

where b{q,k,v} are the bias terms and ⊙M is the
element-wise multiplication by the masking matrix,
defined as:

M = [mi.j]i,j ∈ RT×T

mi,j = 1(i ≤ j) −∞ ⋅ 1(i > j) ∀i, j ∈ [T ]
with 1(a) being an indicator function returning 1
if the predicate a is true and 0 otherwise. This
element-wise multiplication by M has the effect
of creating a causal, triangular attention mask that
prevents leaking future token information.

In decoder models, Q, K, and V come all from
the input sequence, attending to itself. We omit
unmasked self-attention or cross-attention due to
our focus on decoder-only models.

The outputs of each head Headn(X)∀n ∈ [N]
are then concatenated and projected back to the
embedding dimension:

[Headn(X)∀n ∈ [N]]Wo + bo
7Some models also have a positional embedding in this

step, which we omit here.



Figure 6: Overview of our approach: Interpreting Transformer weights in the embedding space as in Dar et al. (2022)
allows us to perform k-NN embedding similarity search over the parameters given an embedding corresponding to a
task-relevant token of the model’s embedding matrix. Then, we can intervene by ablating the retrieved units.

MLPs MLPs are independently applied element-
wise to each x ∈ X:

MLP(x) = act(XWin + bin)Wout + bout

where act is the activation function (typically
GELU (Hendrycks and Gimpel, 2016)) and
b{in,out} are the bias terms. The first layer parame-
ters (Win) can be referred to as keys and the second
layer ones (Wout), as values, following the findings
in Geva et al. (2020) that Transformer MLPs act
as Key-Value memories, but they are not to be
confused with the keys and values of the attention
block.

Layernorm Layernorm (LN) is a normalization
function that is applied to hidden states of the Trans-
former before/after (depending on the implementa-
tion) attention and MLP blocks:

LN(x) = x − µ(x)√
σ2(x) + ϵ

⊙ γ + β

where γ and β ∈ RD are learnable parameters, ϵ
is a constant value added to the denominator for
numerical stability. and µ and σ are computed
independently for each token in the sequence x ∈

RD:

µ(x) = 1

D
∑
i

xi ∈ R

σ
2(x) = 1

D
∑
i

(xi − µ(x))2 ∈ R

Note that each individual LN (the different ones
in each layer and across different layers) has an
independent parameterization of γ and β.

Residual stream Both MLP and attention blocks
are applied as residual connections, meaning that
the output of these blocks is summed to the previ-
ous hidden states. Elhage et al. (2021) noted that
this sum of the output of all the previous layers and
the original embedding could be understood as a
shared communication channel among layers. Tak-
ing this view to the extreme, hidden states should
be able to be projected into the original vocabulary
space.

We omit dropout (Srivastava et al., 2014) and
positional encodings since their presence and
specifics vary across implementations.

A.2 Embedding space interpretation of
parameters

There is a vast literature on Transformers’ inter-
pretability from different lenses. In this work, we
are interested in the view that Transformer parame-
ters can be analyzed in the embedding space (Dar
et al., 2022). Geva et al. (2022c) showed that the
values (second layer in MLPs) of Transformers can
be interpreted in the embedding space. Elhage et al.
(2021) showed that attention parameters could be
interpreted in embedding space in small models.
Dar et al. (2022) generalized those previous find-
ings to all Transformer parameters (both attention
and MLPs). In the remainder of this section, we
summarize the parameter projections proposed in



Geva et al. (2022c) and Dar et al. (2022).
A matrix M ∈ Rm×D can be projected into

the vocabulary space by matrix multiplication with
the embedding matrix E ∈ RD×∣V ∣, yielding
M

′
∈ Rm×∣V ∣. Each of the rows in M

′ represents
the affinity between the embedding vector and each
vocabulary item, and the argmax would yield the
most probable token. Following the residual stream
view, nostalgebraist (2020) apply these vocabulary
projections to the Transformer hidden states to ob-
serve how the model progressively builds up its
final token predictions. Geva et al. (2022c) and Dar
et al. (2022) go further and claim that these pro-
jections to the vocabulary layer can be applied di-
rectly to the MLP and attention parameters (rather
than activations) yielding arguably interpretable
neurons.

More specifically, the matrix M can correspond
to a weight matrix. For interpreting a row vector
of M , v, Geva et al. (2022c) (corresponding to
the weights of an individual unit) follow two steps.
The first one is the projection to project v into
the vocabulary space, vE. The second step is to
take the top-k argmax vE, and these top-k
tokens would correspond to the tokens the most
related to the unit parameterized by v. Geva et al.
(2022c) posits that this interpretation is sound since
the most activated vector coordinates contribute the
most when added to the residual stream.

Geva et al. (2022c) can only apply this method to
the values of MLPs (weights of the second layer),
because these are the ones directly being added to
the residual stream. Dar et al. (2022) posit that in-
ner products and matrix multiplications in a Trans-
former can be interpreted in the embedding space
if we assume a right inverse of E, E ′, such that we
can approximately reconstruct the original matrix.

A.2.1 MLPs
MLPs blocks have been shown to work as key-
value memories where the Transformer stores
knowledge (Geva et al., 2020), so we expect to
be able to locate knowledge in their parameters.
The first layer of the MLP block is parameterized8

by the weight matrix Win ∈ RD
′×D, the "keys"

of the "memory". Similarly, the second layer of
the MLP block is parameterized by a weight ma-

trix Wout ∈ RD×D′

, the "values". In Geva et al.
(2022b), the embedding space interpretation of
those weights is that each Wout column can be

8Omitting biases.

seen as an embedding vector in the same space as
tokens.

Geva et al. (2022c) extended this view to the
keys (first layer of MLPs) as follows. According
to the view of Transformer MLPs as Key-Value
memories (Geva et al., 2020), with x being the
hidden state input to the MLP (the "queries" to the
memory):

xW
T
in = xEE

′
W

T
in = xEE

′
W

T
in = xE(WinE

′T )T

Assuming the residual stream interpretation, ac-
cording to which xE should be interpretable in
the vocabulary pace, then WinE

′T should also be
interpretable in the vocabulary space since they
directly interact through an inner product in the
MLPs’ "memory". Thus, each row in Win can be
seen as an embedding vector in the same space
as the tokens. Finally, note that WinE

′T can be
approximated as WinE s

A.2.2 Attention
Omitting biases, attention blocks are parameter-
ized by 3 kinds of parameters for each head i ∈
{1, 2, ...N}: W i

Q, the queries’ projection; WK , the
keys’ projection; and WV , the values’ projection.
Additionally, there is a shared attention output pro-
jection, WO, that can also be split as separate W

i
O

for each head (the part of the projection matrix
interacting with the corresponding head after the
concatenation).

Dar et al. (2022) consider two possibilities for
projecting these weight matrices into the vocabu-
lary space, namely, the interaction matrices, and
the subheads view.

Interaction matrices Elhage et al. (2021) pro-
posed interpreting attention through the interac-
tion matrices of queries-values, WQK , and values-
output projection WV O. From the dot-product at-
tention formula, it’s easy to see that If we omit
biases and define Q = XWQ and K = XWK , it’s
easy to see that WQ and WK interact directly and
in an input-independent way when computing the
dot product:

QK
T
= XWQ(XWK)T = XWQW

T
KX

Similarly, we can see that WV and WO interact
directly after the concatenation of the different head
outputs. All in all, for each head i we can define:

W
i
QK = W

i
QW

i T
K ∈ RD×D



W
i
VO = W

i
VW

i
O ∈ RD×D

Similarly to what we saw for MLPs’ keys, we
can now follow how (Dar et al., 2022) interpret
these matrices in the embedding space. Like MLPs’
values, the output of the attention block is directly
added to the residual stream and, thus, we expect it
to be meaningfully projected into the embedding
space. With a reasoning analogous to what we saw
in the case of an MLP, making use of E ′ and in-
terpreting inner products in the embedding space,
Dar et al. (2022) showed that the other parameter
kinds (WQ, WK , and WV ) can also be approxi-
mately projected into the vocabulary space in a
meaningful way.

Subhead view Dar et al. (2022) propose an alter-
native view to the attention interaction matrices that
has the advantage of being able to project individ-
ual units. Using the identity AB = ∑b

j=1A∶,jBj,∶:

W
i
VO =

D
N

∑
j=1

W
i,j
V W

i,j
O , W

i
QK =

D
N

∑
j=1

W
i,j
Q W

i,j T
K

This allows for the definition of subheads. Sub-
heads are the vector columns of W i

Q,W
i
K,W

i
V, that

is, W i,j
Q ,W

i,j
K ,W

i,j
V ∈ RD×1, respectively. They

can be approximately projected to the vocabulary
space by multiplication by E. Additionally, the
row vectors W

i,j
O ∈ R1×D of f W i

O are also sub-
heads, and they can be directly projected to the
vocabulary space by multiplication by E without
any approximation.

A.3 Other parameters

Layer-norm is ignored in this approach, following
Elhage et al. (2021)’s observation that it can be
ignored because normalization changes only mag-
nitudes and not the direction of the update. Biases
and the effects of positional encoding are also omit-
ted in this approach for the sake of simplicity.

Finally, we note that Dar et al. (2022) propose
using E

T as an approximation to the right inverse
E

′ due to a) being a good enough approximation,
and b) yielding more interpretable results. How-
ever, in our case, since we never need to project
parameters to the vocabulary space, we sidestep the
need for directly using this inverse approximation.

B Additional technical details

B.1 Implementation details

Storing rearranged weights with a list of tensor
views (one list for each parameter kind, each ele-
ment in the list being a tensor view corresponding
to the weight matrix of a given layer and parameter
kind), rather than creating a new tensor with all the
parameters, allows to store the reshaped weights’
data as a reference to the original one. This has
the benefits of a) decreasing memory overhead,
b) keeping the original device sharding in case of
LLMs, and c) being able to directly modify the
model weights by modifying the rearranged ones.

Each model architecture requires its own weight
loader, since weight storage varies across imple-
mentations (e.g., the GPT-2 family implements the
MLP as a 1-D convolution layer, meaning that the
weights are transposed; in some implementations,
the attention keys, queries, and values projections
are stored as a single linear layer). Finally, we note
that optimizations typically employed in k-NN set-
tings would be directly applicable here.

B.2 Experimental settings

In all cases, we study parameter kinds separately:
Win, Wout, and attention (for attention, we sepa-
rately select the top K units for each among the 4
parameter - kinds, queries, keys, values and output
projection - and ablate all of them at once). We use
the simplest ablation method by setting the corre-
sponding weights to zero to validate the hypothesis
that the selected weights are related to the erased
concept in the most extreme case. Zeroing out
the weights has an indirect effect on the general
layer statistics, which might explain the drop in
performance of the control task after a significant
amount of (presumably unrelated) weights have
been ablated.

In all cases, we use a fixed set of numbers for
setting K when conducting an experiment on a
given model, i.e. 10, 50, 100, 500, 1k, 5k, 10k.
However, the total number of units that a model
contains varies from one model to another. For eas-
ing the comparison of different models in plots, we
transform the K values to the proportions over the
total number of units that a given model has. For
reporting the ablated models’ accuracy in tables,
we apply interpolations on each model’s accuracy
given their transformed proportions of ablated units
to achieve the same set of proportions of ablated
units, i.e. we select points 0.1%, 0.5%, 1.0%, 2.0%.



C Arithmetic task

Table 5 summarized the results on the Arithmetic
task when ablating using "0" as query.

MODEL MODULE ACCURACY LAYER COUNT

GPT-Neox-

20B

MLP-Ks

MLP-Vs

OPT-66B MLP-Ks

Bloom-176B MLP-Ks

MLP-Vs

Table 5: Results on the Arithmetic task.



D Random ablation

In all cases, we conduct the random ablations as
a comparison to the targeted ablation. We use a
random number generator to pick the K units ran-
domly and ablate them. For the small models with
< 10B parameters, we use 5 different random seeds
to run random ablations for 5 times and use their
mean accuracy and standard deviation for the plots
and tables. For the big models with > 10B parame-
ters, we only use one seed to run random ablation
for the plots and tables.
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Figure 7: Accuracy on all the tasks against random ablation



E Control Group

E.1 "Capitals" task vs Control group

In the main sections, we use the "Capitals" task as
a control task to evaluate how specific our method
can ablate the target task’s knowledge embedding,
that is, reducing the target task accuracy while not
reducing the control task’s. In this section, we use
more control tasks to investigate the robustness of
our results when only the "Capitals" control task
is used. For any given target task, we compare the
accuracy drop of the "Capitals" task as opposed to
a set of control tasks(i.e., the control group). For
example, in Figure 8, we compare the results on
the "CEOs" target task where we use the "Capi-
tals" as our control task (Figure 8a) against where
we use the control group including the "Capitals",
"Tickers", "Directors" and "Authors" tasks (Figure
8b). We plot the control group using its members’
mean accuracy and the standard deviation. We re-
peat this analysis for the "Tickers", "Directors",
and "Authors" target tasks.

As shown in Figure 8, 9 10 and 11, we find: On
the "CEOs" target task, the control group mean ac-
curacy drops about 30% - 40% on average when
ablating about 2% units on models MLP-K layers,
while the "Capitals" control task accuracy drops
about 0% - 10%. This implies that our ablation
method affects control tasks differently. However,
at 2% units ablation on the MLP-K layers, the con-
trol group’s largest accuracy drop (about 50%) is
less than the target task’s accuracy drop (about 80%
- 90% for the most models, 60% for GPT2-335M),
which shows our ablation method is still effective
on locating and ablating the knowledge parame-
ters. While figures of the "Tickers", "Directors" or
"Authors" target task report different numbers for
the above comparison, the above implication still
applies to these target tasks.

E.2 Control group analysis

To further understand why our ablation method af-
fects the control group’s tasks differently, we com-
pare the control tasks in the control group given a
target task’s ablation on the MLP-K and MLP-V
layers. Similar to the Appendix E.1, we iterate this
analysis over all four target tasks. As shown in Fig-
ure 12, we find: On the "CEOs" target task at 2.0%
units ablation on MLP-K layers, the least accuracy
drop (about 10%) is from the "Capitals" control
task while the largest accuracy drop (about 50%) is
from the "Tickers" control task. On the "Tickers"

target task at 2.0% units ablation on MLP-K layers,
the least accuracy drop (about 15%) is still from the
"Capitals" control task while the largest accuracy
drop (about 70%) is from the "CEOs" control task.
This implies that the "CEOs" and "Tickers" tasks
are more correlated than the rest of the tasks while
the "Capitals" task is more independent than other
tasks. We observe the similar behavior between the
"Authors" and "Directors" tasks when used as the
target tasks.
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Figure 8: Models’ accuracies on the CEOs task. Control Group Tasks include: Capital, Ticker, Director and Author

Model
GPT2-355M
OPT-1.3B

OPT-IML-1.3B
OPT-IML-Max-1.3B
OPT-6.7B

Task
Target
Control Group

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

MLP-K layers

0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0%
Ablated units

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0%
Ablated units

MLP-V layers

(a) Capital Control Task (b) Control Group

Figure 9: Models’ accuracies on the Tickers task. Control Group Tasks include: Capital, CEO, Director and Author
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Figure 10: Models’ accuracies on the Directors task. Control Group Tasks include: Capital, CEO, Ticker and Author
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Figure 11: Models’ accuracies on the Authors task. Control Group Tasks include: Capital, CEO, Ticker and Director
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Figure 12: Accuracy on all the tasks in the control group



F Toxicity reduction task

F.1 Method.

Inspired by the topic knowledge lookup method
(Dar et al., 2022), we demonstrate that toxicity
can be represented as a topic embedding, which
is utilized to locate knowledge neurons. To obtain
this topic embedding of toxicity, we follow these
steps:

1. Identify the most common toxic keywords by
sampling from a commonly-used list of of-
fensive words.9 This process yields 24 of the

9List of Dirty, Naughty, Obscene, and Otherwise

most toxic tokens.

2. Retrieve the corresponding embeddings of
these 24 toxic tokens from the model’s em-
bedding table.

3. Compute the average of these embeddings to
obtain the topic embedding of toxicity.

After getting this topic embedding, we retrieve
the K nearest neighbors of projected parameters
using cosine similarity and zero out these parame-
ters of selected K knowledge neurons. We perform
zero-ablations on various types of layer separately:
attention, MLP-K, and MLP-V.

F.2 Evaluation.
We evaluate our method on a subset of RealToxic-
ityPrompts (Gehman et al., 2020), a collection of
600 prompts designed to elicit toxic responses gen-
erated from models. We employ Detoxify (Hanu
and Unitary team, 2020), a toxicity classifier, to
assess the toxicity of a model’s output when pre-
sented with a prompt. Detoxify provides 6 met-
rics, and we classify the model’s output as toxic if
any of the output scores from these 6 metrics are
> 0.5. Given the total 600 prompts, we evaluate
the toxicity of each ablated model by calculating
the proportion of toxic outputs generated from each
ablated model. To demonstrate the effectiveness of
our method, we conduct random ablation experi-
ments with 5 different seeds as a baseline method
to compare with our method.

For an additional check, we measure the perplex-
ity of the ablated models when presented with 2000
prompts sampled from RealToxicityPrompts to as-
sess their language generation performance. We
also measure the perplexity of the ablated models
when presented with another 2000 prompts from
Wikipedia (Foundation) as a control task.

G Additional results

Bad Words, downloaded from https://github.com/
LDNOOBW/List-of-Dirty-Naughty-Obscene-
and-Otherwise-Bad-Words

https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words


CEOs Task Tickers Task

MODEL MODULE ACCURACY LAYER COUNT ACCURACY LAYER COUNT

MLP-Ks

GPT2-355M MLP-Vs

Att.

MLP-Ks

OPT-1.3B MLP-Vs

Att.

MLP-Ks

OPT-IML-

1.3B

MLP-Vs

Att.

MLP-Ks

OPT-IML-

Max-1.3B

MLP-Vs

Att.

MLP-Ks

OPT-6.7B MLP-Vs

Att.

GPT-Neox-

20B

MLP-Ks

OPT-66B MLP-Ks

Bloom-176B MLP-Ks

Table 6: Results on the CEOs and Tickers task, including accuracies for the target and control task when using the
embedding weight location method and the layer-wise unit distribution.



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 76.67 97.69±3.17 94.04 98.49±1.82 21.02±3.17 17.37 21.82±1.82
OPT-1.3B 78.42 97.37±1.74 99.85 99.24±0.40 18.96±1.74 21.43 20.82±0.40
OPT-IML-1.3B 79.23 97.51±2.55 98.41 99.34±0.30 18.28±2.55 19.18 20.11±0.30
OPT-IML-Max-1.3B 77.79 96.62±1.08 98.48 99.15±0.53 18.83±1.08 20.69 21.36±0.53
OPT-6.7B 69.05 97.88±0.67 100.00 99.90±0.23 28.83±0.67 30.95 30.85±0.23
GPT-Neox-20B 35.10 85.96 89.67 97.18 50.86 54.57 62.08
OPT-66B 75.20 99.21 81.82 81.82 24.01 6.62 6.62
Bloom-176B 46.17 92.31 100.00 100.00 46.14 53.83 53.83

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 30.41 93.04±6.35 94.07 96.65±2.20 62.63±6.35 63.66 66.24±2.20
OPT-1.3B 34.80 94.82±3.09 99.98 98.60±1.11 60.02±3.09 65.18 63.80±1.11
OPT-IML-1.3B 32.67 94.62±3.71 98.84 98.73±0.93 61.96±3.71 66.18 66.06±0.93
OPT-IML-Max-1.3B 34.61 94.41±2.54 96.95 97.93±1.02 59.80±2.54 62.34 63.32±1.02
OPT-6.7B 29.00 93.60±1.92 100.00 99.61±0.51 64.60±1.92 71.00 70.61±0.51
GPT-Neox-20B 12.29 73.69 72.31 96.24 61.40 60.02 83.96
OPT-66B 42.13 98.03 72.73 81.82 55.90 30.60 39.69
Bloom-176B 30.77 86.15 100.00 100.00 55.38 69.23 69.23

Accuracy given 0.5% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 46.46 88.39±7.12 90.79 94.32±2.19 41.93±7.12 44.33 47.86±2.19
OPT-1.3B 28.81 92.19±2.48 99.38 98.19±1.05 63.38±2.48 70.57 69.38±1.05
OPT-IML-1.3B 26.33 91.14±3.63 98.29 97.83±0.94 64.81±3.63 71.96 71.51±0.94
OPT-IML-Max-1.3B 26.75 91.50±3.46 96.64 97.65±0.71 64.75±3.46 69.88 70.89±0.71
OPT-6.7B 11.24 89.38±4.64 100.00 99.00±1.19 78.14±4.64 88.76 87.76±1.19
GPT-Neox-20B 15.79 78.95 77.46 96.24 63.16 61.68 80.46
OPT-66B 30.32 97.24 81.82 81.82 66.93 51.50 51.50
Bloom-176B 16.92 87.69 99.56 100.00 70.77 82.64 83.08

Accuracy given 1.0% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 41.38 83.12±4.43 88.43 92.97±2.36 41.74±4.43 47.05 51.59±2.36
OPT-1.3B 18.50 86.80±2.51 98.12 97.37±0.99 68.30±2.51 79.62 78.87±0.99
OPT-IML-1.3B 15.16 84.22±3.94 97.15 96.02±1.14 69.06±3.94 81.99 80.86±1.14
OPT-IML-Max-1.3B 12.01 85.60±5.51 96.03 97.10±0.94 73.59±5.51 84.02 85.10±0.94
OPT-6.7B 7.23 86.63±4.48 100.00 98.09±0.97 79.40±4.48 92.77 90.86±0.97
GPT-Neox-20B 13.60 75.88 70.78 96.01 62.28 57.18 82.41
OPT-66B 23.72 90.45 81.82 81.82 66.73 58.10 58.10
Bloom-176B 15.00 87.31 99.23 99.78 72.31 84.23 84.78

Accuracy given 2.0% Ablation

Table 7: Results on the CEOs task with MLP-Ks.



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 94.32 97.69±3.17 99.15 98.66±1.52 3.37±3.17 4.84 4.34±1.52
OPT-1.3B 86.37 97.70±1.67 99.38 99.30±0.42 11.32±1.67 13.01 12.93±0.42
OPT-IML-1.3B 82.05 96.38±2.75 98.29 99.23±0.43 14.33±2.75 16.24 17.18±0.43
OPT-IML-Max-1.3B 89.24 97.01±1.40 99.26 99.42±0.33 7.77±1.40 10.02 10.19±0.33
OPT-6.7B 23.51 98.22±0.73 74.74 99.89±0.22 74.71±0.73 51.23 76.38±0.22

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 88.36 91.89±6.62 94.18 96.32±1.62 3.53±6.62 5.82 7.96±1.62
OPT-1.3B 69.68 94.20±2.91 98.06 98.97±0.56 24.52±2.91 28.37 29.28±0.56
OPT-IML-1.3B 54.78 90.61±6.75 95.97 98.39±1.35 35.83±6.75 41.20 43.61±1.35
OPT-IML-Max-1.3B 68.00 95.63±1.66 96.34 98.42±0.54 27.63±1.66 28.34 30.42±0.54
OPT-6.7B 7.16 93.75±1.69 42.73 99.55±0.51 86.58±1.69 35.56 92.38±0.51

Accuracy given 0.5% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 76.87 84.95±3.19 90.79 93.98±2.60 8.08±3.19 13.92 17.11±2.60
OPT-1.3B 56.89 92.32±2.14 97.30 98.51±0.34 35.43±2.14 40.41 41.62±0.34
OPT-IML-1.3B 46.31 88.48±5.86 94.84 97.57±1.26 42.17±5.86 48.53 51.26±1.26
OPT-IML-Max-1.3B 55.44 92.89±2.14 94.54 97.90±0.51 37.45±2.14 39.10 42.46±0.51
OPT-6.7B 0.00 89.73±4.27 3.11 99.02±1.21 89.73±4.27 3.11 99.02±1.21

Accuracy given 1.0% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 70.79 80.44±3.91 83.31 92.42±2.67 9.66±3.91 12.52 21.64±2.67
OPT-1.3B 31.52 88.52±2.36 95.73 97.56±0.44 57.00±2.36 64.21 66.04±0.44
OPT-IML-1.3B 29.56 84.46±4.19 92.56 95.92±1.12 54.90±4.19 63.01 66.37±1.12
OPT-IML-Max-1.3B 29.88 87.39±3.89 90.92 96.88±0.75 57.51±3.89 61.04 66.99±0.75
OPT-6.7B 0.00 86.87±3.57 1.60 98.51±0.69 86.87±3.57 1.60 98.51±0.69

Accuracy given 2.0% Ablation

Table 8: Results on the CEOs task with MLP-Vs.



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 47.26 89.53±8.60 83.25 96.84±1.23 42.27±8.60 35.99 49.58±1.23
OPT-1.3B 78.86 91.83±3.40 96.84 98.35±0.72 12.97±3.40 17.98 19.49±0.72
OPT-IML-1.3B 84.40 93.04±4.07 95.26 97.94±0.62 8.64±4.07 10.86 13.54±0.62
OPT-IML-Max-1.3B 84.89 92.37±2.23 94.37 98.42±0.18 7.48±2.23 9.48 13.53±0.18
OPT-6.7B 38.33 92.49±1.79 84.94 99.55±0.42 54.16±1.79 46.62 61.23±0.42

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 6.76 73.29±11.36 47.38 93.79±2.41 66.54±11.36 40.63 87.04±2.41
OPT-1.3B 39.37 72.43±14.75 92.33 96.92±1.13 33.06±14.75 52.96 57.55±1.13
OPT-IML-1.3B 45.84 75.35±8.75 84.69 95.51±1.79 29.51±8.75 38.85 49.67±1.79
OPT-IML-Max-1.3B 36.47 80.20±8.94 86.04 95.63±1.74 43.73±8.94 49.56 59.15±1.74
OPT-6.7B 6.33 85.14±4.57 61.79 97.42±2.32 78.81±4.57 55.46 91.09±2.32

Accuracy given 0.5% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 22.93 59.30±14.53 19.59 90.29±4.42 36.37±14.53 -3.34 67.36±4.42
OPT-1.3B 31.31 62.74±15.78 85.03 91.69±6.99 31.43±15.78 53.72 60.38±6.99
OPT-IML-1.3B 35.57 65.01±9.55 79.09 91.02±4.48 29.44±9.55 43.51 55.45±4.48
OPT-IML-Max-1.3B 29.24 70.34±8.35 78.63 91.35±3.81 41.10±8.35 49.39 62.11±3.81
OPT-6.7B 0.66 74.93±8.49 47.38 94.85±4.79 74.27±8.49 46.72 94.19±4.79

Accuracy given 1.0% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 19.27 44.90±11.11 14.14 70.64±3.85 25.63±11.11 -5.13 51.38±3.85
OPT-1.3B 16.25 44.03±18.32 70.22 81.04±19.49 27.79±18.32 53.98 64.79±19.49
OPT-IML-1.3B 15.47 44.68±14.04 68.29 81.93±10.04 29.21±14.04 52.83 66.47±10.04
OPT-IML-Max-1.3B 15.47 50.68±9.67 63.85 82.72±9.73 35.20±9.67 48.38 67.25±9.73
OPT-6.7B 1.81 62.89±7.96 37.77 93.94±2.48 61.08±7.96 35.96 92.13±2.48

Accuracy given 2.0% Ablation

Table 9: Results on the CEOs task with attention.



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 79.49 98.30±1.02 93.22 98.33±1.78 18.82±1.02 13.73 18.84±1.78
OPT-1.3B 87.51 99.84±0.10 98.72 99.17±0.43 12.33±0.10 11.21 11.66±0.43
OPT-IML-1.3B 80.84 99.27±0.29 98.27 99.28±0.37 18.43±0.29 17.42 18.44±0.37
OPT-IML-Max-1.3B 85.23 99.37±0.27 98.16 99.33±0.28 14.14±0.27 12.93 14.10±0.28
OPT-6.7B 83.42 99.87±0.11 100.00 99.90±0.23 16.45±0.11 16.58 16.47±0.23
GPT-Neox-20B 50.60 92.49 69.03 97.18 41.89 18.44 46.59
OPT-66B 89.62 99.55 99.53 99.05 9.93 9.91 9.43
Bloom-176B 91.81 98.54 100.00 100.00 6.73 8.19 8.19

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 75.30 95.61±1.09 92.39 95.32±1.62 20.31±1.09 17.09 20.01±1.62
OPT-1.3B 44.31 99.51±0.23 96.86 99.09±0.55 55.21±0.23 52.55 54.78±0.55
OPT-IML-1.3B 45.07 98.45±0.48 97.15 98.62±1.02 53.38±0.48 52.08 53.55±1.02
OPT-IML-Max-1.3B 44.39 98.48±0.25 95.79 98.18±0.60 54.09±0.25 51.39 53.79±0.60
OPT-6.7B 55.59 99.71±0.27 100.00 99.66±0.54 44.12±0.27 44.41 44.07±0.54
GPT-Neox-20B 52.57 89.33 60.57 96.24 36.76 8.00 43.68
OPT-66B 76.53 99.77 99.53 99.53 23.25 23.00 23.00
Bloom-176B 76.61 97.37 99.56 100.00 20.76 22.95 23.39

Accuracy given 0.5% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 68.61 91.59±3.75 89.10 94.93±3.21 22.98±3.75 20.49 26.32±3.21
OPT-1.3B 35.90 99.05±0.34 94.63 98.58±0.44 63.15±0.34 58.73 62.68±0.44
OPT-IML-1.3B 37.06 97.68±0.73 94.18 97.75±1.02 60.62±0.73 57.12 60.69±1.02
OPT-IML-Max-1.3B 36.94 97.87±0.47 92.74 97.60±0.78 60.93±0.47 55.80 60.65±0.78
OPT-6.7B 30.60 99.53±0.48 99.92 99.09±1.25 68.94±0.48 69.33 68.50±1.25
GPT-Neox-20B 49.41 87.35 56.34 96.24 37.94 6.93 46.84
OPT-66B 62.30 99.10 98.10 98.10 36.79 35.80 35.80
Bloom-176B 66.96 95.32 99.56 100.00 28.36 32.60 33.04

Accuracy given 1.0% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 62.60 87.32±3.49 87.14 93.40±3.09 24.73±3.49 24.54 30.80±3.09
OPT-1.3B 20.57 98.11±1.01 90.22 97.50±0.75 77.53±1.01 69.64 76.93±0.75
OPT-IML-1.3B 21.92 96.14±1.46 88.21 95.99±1.16 74.22±1.46 66.30 74.07±1.16
OPT-IML-Max-1.3B 23.83 96.67±1.53 86.71 96.45±1.17 72.84±1.53 62.88 72.62±1.17
OPT-6.7B 31.41 99.62±0.44 98.40 97.98±1.02 68.21±0.44 66.99 66.57±1.02
GPT-Neox-20B 45.65 87.65 50.12 96.01 42.00 4.47 50.36
OPT-66B 47.12 98.81 86.97 97.63 51.69 39.84 50.51
Bloom-176B 58.33 94.81 99.34 99.78 36.48 41.01 41.45

Accuracy given 2.0% Ablation

Table 10: Results on the Tickers task with MLP-Ks.



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 91.42 98.47±0.92 98.33 98.32±1.56 7.04±0.92 6.91 6.90±1.56
OPT-1.3B 84.44 99.77±0.15 99.20 99.36±0.48 15.33±0.15 14.76 14.92±0.48
OPT-IML-1.3B 77.91 99.31±0.24 98.70 99.17±0.48 21.40±0.24 20.80 21.26±0.48
OPT-IML-Max-1.3B 81.31 99.42±0.09 99.09 99.30±0.38 18.12±0.09 17.79 17.99±0.38
OPT-6.7B 92.77 99.87±0.12 100.00 99.90±0.23 7.10±0.12 7.23 7.13±0.23

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 90.62 95.12±2.68 94.99 96.15±1.38 4.50±2.68 4.37 5.53±1.38
OPT-1.3B 53.51 99.42±0.11 99.34 98.60±1.10 45.91±0.11 45.83 45.09±1.10
OPT-IML-1.3B 42.48 98.21±0.94 99.38 97.95±2.20 55.73±0.94 56.90 55.47±2.20
OPT-IML-Max-1.3B 43.00 98.44±0.24 98.16 98.07±0.77 55.45±0.24 55.16 55.07±0.77
OPT-6.7B 82.39 99.79±0.23 100.00 99.66±0.54 17.40±0.23 17.61 17.27±0.54

Accuracy given 0.5% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 84.82 92.24±4.17 95.73 93.81±2.47 7.42±4.17 10.92 8.99±2.47
OPT-1.3B 48.12 99.08±0.33 98.89 98.28±0.73 50.96±0.33 50.78 50.16±0.73
OPT-IML-1.3B 38.16 97.47±1.12 98.31 97.39±1.58 59.31±1.12 60.14 59.22±1.58
OPT-IML-Max-1.3B 39.44 97.94±0.30 97.42 97.80±0.56 58.50±0.30 57.98 58.36±0.56
OPT-6.7B 71.36 99.66±0.35 100.00 99.11±1.27 28.30±0.35 28.64 27.75±1.27

Accuracy given 1.0% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 65.42 87.10±4.61 79.18 92.34±2.63 21.68±4.61 13.77 26.92±2.63
OPT-1.3B 37.72 98.38±1.09 97.95 97.65±0.42 60.66±1.09 60.23 59.93±0.42
OPT-IML-1.3B 29.75 96.00±1.60 96.03 96.31±0.98 66.25±1.60 66.28 66.56±0.98
OPT-IML-Max-1.3B 32.83 96.96±0.79 95.91 97.32±0.81 64.13±0.79 63.08 64.49±0.81
OPT-6.7B 54.49 99.70±0.24 100.00 98.30±0.45 45.21±0.24 45.51 43.81±0.45

Accuracy given 2.0% Ablation

Table 11: Results on the Tickers task with MLP-Vs.



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 81.34 92.91±1.40 79.83 96.84±1.23 11.57±1.40 -1.51 15.50±1.23
OPT-1.3B 99.18 99.55±0.28 97.13 98.63±0.27 0.37±0.28 -2.05 -0.54±0.27
OPT-IML-1.3B 96.15 98.53±0.47 96.43 97.97±0.58 2.37±0.47 0.28 1.82±0.58
OPT-IML-Max-1.3B 97.73 98.36±0.53 96.83 98.24±0.41 0.63±0.53 -0.90 0.51±0.41
OPT-6.7B 99.13 99.78±0.20 99.90 99.46±0.37 0.65±0.20 0.76 0.33±0.37

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 56.10 82.95±4.98 16.62 94.13±2.44 26.85±4.98 -39.48 38.03±2.44
OPT-1.3B 92.83 97.50±1.17 88.10 96.33±2.28 4.67±1.17 -4.73 3.49±2.28
OPT-IML-1.3B 84.55 93.47±3.82 84.11 95.84±1.35 8.92±3.82 -0.44 11.29±1.35
OPT-IML-Max-1.3B 86.11 96.38±1.84 86.12 94.79±3.36 10.27±1.84 0.01 8.68±3.36
OPT-6.7B 98.59 99.57±0.34 95.07 98.24±1.03 0.99±0.34 -3.52 -0.34±1.03

Accuracy given 0.5% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 47.30 69.85±8.32 12.80 88.99±6.71 22.56±8.32 -34.50 41.69±6.71
OPT-1.3B 81.62 94.50±3.09 76.21 91.82±6.71 12.88±3.09 -5.41 10.20±6.71
OPT-IML-1.3B 72.13 89.22±5.57 73.48 90.64±5.18 17.09±5.57 1.36 18.52±5.18
OPT-IML-Max-1.3B 73.74 91.72±4.23 77.00 90.43±5.48 17.97±4.23 3.26 16.68±5.48
OPT-6.7B 98.04 99.23±0.68 90.91 96.45±2.06 1.19±0.68 -7.13 -1.59±2.06

Accuracy given 1.0% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 35.86 53.42±7.23 9.64 69.53±6.12 17.56±7.23 -26.22 33.67±6.12
OPT-1.3B 59.18 88.48±7.77 52.58 82.75±15.92 29.30±7.77 -6.60 23.57±15.92
OPT-IML-1.3B 47.25 80.80±10.99 52.46 80.08±13.58 33.55±10.99 5.21 32.82±13.58
OPT-IML-Max-1.3B 49.11 82.32±10.88 58.91 81.68±11.25 33.21±10.88 9.80 32.57±11.25
OPT-6.7B 97.22 97.48±2.56 89.89 93.51±2.92 0.26±2.56 -7.33 -3.71±2.92

Accuracy given 2.0% Ablation

Table 12: Results on the Tickers task with attention.



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 52.62 96.55±3.59 94.89 98.33±1.78 43.93±3.59 42.27 45.71±1.78
OPT-1.3B 58.29 96.43±1.73 99.05 99.39±0.52 38.14±1.73 40.76 41.11±0.52
OPT-IML-1.3B 60.66 98.48±1.38 98.43 99.40±0.28 37.82±1.38 37.77 38.74±0.28
OPT-IML-Max-1.3B 56.61 98.91±0.80 98.65 99.36±0.27 42.30±0.80 42.04 42.75±0.27
OPT-6.7B 68.34 98.75±1.24 100.00 99.80±0.28 30.41±1.24 31.66 31.46±0.28

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 47.92 94.82±1.92 93.26 95.65±1.23 46.90±1.92 45.34 47.73±1.23
OPT-1.3B 13.47 95.14±2.55 96.22 99.10±0.56 81.68±2.55 82.75 85.63±0.56
OPT-IML-1.3B 14.94 95.36±1.98 97.11 98.74±0.92 80.42±1.98 82.17 83.80±0.92
OPT-IML-Max-1.3B 8.26 95.88±3.03 95.13 97.83±1.23 87.62±3.03 86.88 89.57±1.23
OPT-6.7B 30.27 97.44±0.91 100.00 99.57±0.51 67.17±0.91 69.73 69.29±0.51

Accuracy given 0.5% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 39.43 91.42±2.97 91.58 94.28±2.14 52.00±2.97 52.16 54.86±2.14
OPT-1.3B 13.19 93.96±1.49 96.93 98.64±0.44 80.77±1.49 83.74 85.45±0.44
OPT-IML-1.3B 12.13 94.24±2.35 96.55 97.95±0.89 82.10±2.35 84.42 85.82±0.89
OPT-IML-Max-1.3B 6.74 94.52±2.97 94.94 97.52±0.89 87.79±2.97 88.21 90.79±0.89
OPT-6.7B 16.99 95.86±1.37 99.97 98.90±1.17 78.87±1.37 82.98 81.91±1.17

Accuracy given 1.0% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 37.03 85.84±2.06 88.66 92.85±2.18 48.81±2.06 51.63 55.82±2.18
OPT-1.3B 12.52 91.57±1.64 98.50 97.69±0.53 79.05±1.64 85.98 85.17±0.53
OPT-IML-1.3B 6.67 92.05±3.60 95.41 96.36±1.12 85.38±3.60 88.75 89.69±1.12
OPT-IML-Max-1.3B 3.88 91.89±2.66 94.64 96.98±0.81 88.02±2.66 90.76 93.10±0.81
OPT-6.7B 10.61 93.52±1.22 99.47 98.19±0.97 82.91±1.22 88.85 87.58±0.97

Accuracy given 2.0% Ablation

Table 13: Results on the Directors task with MLP-Ks.



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 56.82 96.55±3.50 100.00 98.66±1.52 39.73±3.50 43.18 41.84±1.52
OPT-1.3B 62.06 96.63±1.95 99.69 99.17±0.43 34.56±1.95 37.63 37.10±0.43
OPT-IML-1.3B 65.43 98.29±1.47 98.86 99.34±0.43 32.86±1.47 33.44 33.92±0.43
OPT-IML-Max-1.3B 70.57 99.13±0.61 98.79 99.27±0.42 28.57±0.61 28.23 28.70±0.42
OPT-6.7B 52.58 98.97±0.98 86.17 99.89±0.22 46.39±0.98 33.59 47.31±0.22

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 48.01 93.97±2.31 99.17 95.49±1.39 45.96±2.31 51.16 47.48±1.39
OPT-1.3B 19.65 94.39±1.73 98.10 98.85±0.68 74.74±1.73 78.45 79.20±0.68
OPT-IML-1.3B 27.54 95.60±2.20 95.99 98.73±0.93 68.06±2.20 68.46 71.19±0.93
OPT-IML-Max-1.3B 28.70 95.91±3.04 95.15 98.18±0.60 67.21±3.04 66.46 69.49±0.60
OPT-6.7B 28.52 97.55±0.84 78.19 99.55±0.51 69.03±0.84 49.67 71.03±0.51

Accuracy given 0.5% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 35.23 89.71±4.80 95.06 94.28±2.93 54.49±4.80 59.83 59.05±2.93
OPT-1.3B 15.33 93.54±0.76 96.99 98.44±0.42 78.21±0.76 81.66 83.11±0.42
OPT-IML-1.3B 22.09 93.65±2.15 95.53 97.81±0.96 71.56±2.15 73.44 75.72±0.96
OPT-IML-Max-1.3B 22.85 94.47±2.92 94.20 97.57±0.91 71.61±2.92 71.35 74.71±0.91
OPT-6.7B 7.07 95.91±0.90 66.15 99.00±1.20 88.84±0.90 59.08 91.93±1.20

Accuracy given 1.0% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 29.53 84.73±3.06 80.79 92.52±2.73 55.20±3.06 51.26 62.99±2.73
OPT-1.3B 8.02 91.95±1.88 94.79 97.62±0.42 83.92±1.88 86.77 89.60±0.42
OPT-IML-1.3B 11.78 89.76±3.56 94.68 95.93±1.11 77.99±3.56 82.91 84.16±1.11
OPT-IML-Max-1.3B 12.56 91.72±2.68 92.39 96.36±1.71 79.16±2.68 79.83 83.80±1.71
OPT-6.7B 3.35 92.40±3.02 59.57 98.19±0.48 89.05±3.02 56.22 94.84±0.48

Accuracy given 2.0% Ablation

Table 14: Results on the Directors task with MLP-Vs.



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 52.47 93.13±4.85 81.53 96.33±1.39 40.66±4.85 29.06 43.86±1.39
OPT-1.3B 93.01 95.87±1.29 98.41 98.32±0.80 2.86±1.29 5.40 5.31±0.80
OPT-IML-1.3B 91.06 93.70±2.98 98.70 97.56±1.31 2.64±2.98 7.64 6.50±1.31
OPT-IML-Max-1.3B 95.43 96.22±1.81 98.65 98.48±0.24 0.79±1.81 3.22 3.06±0.24
OPT-6.7B 87.33 97.47±1.07 96.95 99.42±0.38 10.14±1.07 9.62 12.09±0.38

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 9.62 87.94±3.63 44.03 92.62±3.75 78.32±3.63 34.41 83.00±3.75
OPT-1.3B 78.56 86.89±2.15 94.34 96.56±1.80 8.32±2.15 15.78 17.99±1.80
OPT-IML-1.3B 82.97 86.26±4.95 91.01 96.28±1.28 3.29±4.95 8.04 13.31±1.28
OPT-IML-Max-1.3B 80.51 85.31±5.46 88.61 94.79±3.34 4.80±5.46 8.11 14.29±3.34
OPT-6.7B 69.24 93.31±2.56 83.11 97.52±2.13 24.06±2.56 13.86 28.27±2.13

Accuracy given 0.5% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 0.29 76.07±10.65 23.57 91.07±3.51 75.77±10.65 23.28 90.77±3.51
OPT-1.3B 64.34 75.59±6.11 88.81 93.78±2.98 11.25±6.11 24.47 29.44±2.98
OPT-IML-1.3B 68.40 75.44±8.55 86.70 89.93±6.58 7.03±8.55 18.30 21.53±6.58
OPT-IML-Max-1.3B 72.09 75.90±8.55 84.94 91.26±3.95 3.82±8.55 12.85 19.17±3.95
OPT-6.7B 52.55 88.98±3.83 73.65 95.92±2.74 36.44±3.83 21.11 43.38±2.74

Accuracy given 1.0% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 0.00 58.22±8.37 17.36 71.82±2.05 58.22±8.37 17.36 71.82±2.05
OPT-1.3B 35.78 52.88±14.50 77.78 88.17±6.78 17.10±14.50 42.00 52.39±6.78
OPT-IML-1.3B 39.28 53.59±17.81 78.46 76.98±20.01 14.32±17.81 39.19 37.70±20.01
OPT-IML-Max-1.3B 55.51 57.16±14.49 78.00 84.20±8.25 1.64±14.49 22.49 28.69±8.25
OPT-6.7B 31.28 81.12±6.64 68.09 93.19±3.39 49.83±6.64 36.80 61.91±3.39

Accuracy given 2.0% Ablation

Table 15: Results on the Directors task with attention.



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 100.00 100.00±0.00 94.10 98.49±1.82 0.00±0.00 -5.90 -1.51±1.82
OPT-1.3B 84.62 99.26±1.02 99.85 99.30±0.42 14.64±1.02 15.23 14.68±0.42
OPT-IML-1.3B 84.23 99.31±0.94 99.56 99.19±0.52 15.08±0.94 15.33 14.96±0.52
OPT-IML-Max-1.3B 70.34 94.02±5.35 98.62 99.12±0.60 23.68±5.35 28.29 28.78±0.60
OPT-6.7B 71.68 99.44±1.17 100.00 99.89±0.22 27.76±1.17 28.32 28.21±0.22

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 86.02 100.00±0.00 94.07 96.15±1.39 13.98±0.00 8.05 10.13±1.39
OPT-1.3B 47.46 95.44±4.17 98.74 98.73±0.86 47.98±4.17 51.28 51.27±0.86
OPT-IML-1.3B 70.94 90.24±3.80 99.44 98.96±0.93 19.30±3.80 28.50 28.01±0.93
OPT-IML-Max-1.3B 40.00 89.42±5.79 97.57 98.41±0.54 49.42±5.79 57.57 58.41±0.54
OPT-6.7B 54.36 97.87±1.00 99.78 99.44±0.58 43.51±1.00 45.43 45.09±0.58

Accuracy given 0.5% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 71.91 91.72±7.56 93.25 94.46±2.40 19.81±7.56 21.34 22.55±2.40
OPT-1.3B 38.72 93.90±4.95 98.56 98.25±0.91 55.18±4.95 59.84 59.53±0.91
OPT-IML-1.3B 59.35 87.24±3.43 98.31 97.98±0.89 27.89±3.43 38.95 38.63±0.89
OPT-IML-Max-1.3B 36.78 89.33±6.07 96.81 97.66±0.69 52.55±6.07 60.03 60.88±0.69
OPT-6.7B 44.44 95.64±2.36 99.47 98.91±1.17 51.19±2.36 55.02 54.46±1.17

Accuracy given 1.0% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 61.08 86.60±4.74 91.38 93.01±2.43 25.52±4.74 30.30 31.94±2.43
OPT-1.3B 23.60 90.87±7.28 98.25 97.31±1.11 67.27±7.28 74.65 73.71±1.11
OPT-IML-1.3B 34.78 81.62±5.34 96.03 95.99±1.16 46.85±5.34 61.26 61.22±1.16
OPT-IML-Max-1.3B 30.23 89.33±6.89 95.30 96.16±1.73 59.11±6.89 65.07 65.93±1.73
OPT-6.7B 44.44 97.22±0.00 99.47 98.30±1.02 52.78±0.00 55.02 53.85±1.02

Accuracy given 2.0% Ablation

Table 16: Results on the Authors task with MLP-Ks.



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 100.00 100.00±0.00 99.18 98.66±1.52 0.00±0.00 -0.82 -1.34±1.52
OPT-1.3B 57.82 99.26±1.02 99.03 99.04±0.60 41.43±1.02 41.20 41.22±0.60
OPT-IML-1.3B 60.84 98.27±2.11 99.00 99.22±0.43 37.44±2.11 38.17 38.39±0.43
OPT-IML-Max-1.3B 71.72 94.34±5.72 99.09 99.30±0.38 22.62±5.72 27.37 27.58±0.38
OPT-6.7B 57.93 99.47±1.18 87.26 99.90±0.23 41.54±1.18 29.33 41.97±0.23

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 86.02 100.00±0.00 96.66 96.32±1.62 13.98±0.00 10.65 10.30±1.62
OPT-1.3B 46.15 95.44±4.17 99.38 98.85±0.68 49.28±4.17 53.23 52.69±0.68
OPT-IML-1.3B 50.00 90.10±3.68 97.13 98.62±1.02 40.10±3.68 47.13 48.62±1.02
OPT-IML-Max-1.3B 60.23 92.05±7.16 96.38 98.18±0.61 31.82±7.16 36.16 37.95±0.61
OPT-6.7B 43.24 98.65±0.94 81.30 99.66±0.54 55.40±0.94 38.05 56.41±0.54

Accuracy given 0.5% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 71.91 94.48±7.56 97.43 93.98±2.60 22.57±7.56 25.52 22.07±2.60
OPT-1.3B 42.44 93.16±4.62 98.43 98.41±0.47 50.72±4.62 55.99 55.97±0.47
OPT-IML-1.3B 43.10 86.20±3.43 95.71 97.75±1.02 43.11±3.43 52.61 54.65±1.02
OPT-IML-Max-1.3B 51.95 90.39±6.63 95.13 97.66±0.76 38.44±6.63 43.18 45.71±0.76
OPT-6.7B 32.39 96.59±2.02 71.58 99.10±1.26 64.20±2.02 39.19 66.71±1.26

Accuracy given 1.0% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 57.63 91.53±8.57 88.45 92.79±2.97 33.90±8.57 30.82 35.17±2.97
OPT-1.3B 34.88 88.62±5.73 96.54 97.53±0.48 53.74±5.73 61.66 62.65±0.48
OPT-IML-1.3B 29.06 78.48±5.98 92.87 95.99±1.06 49.42±5.98 63.82 66.93±1.06
OPT-IML-Max-1.3B 35.57 87.11±5.72 92.72 96.63±1.16 51.55±5.72 57.16 61.07±1.16
OPT-6.7B 13.89 95.00±4.97 67.02 98.09±0.61 81.11±4.97 53.13 84.20±0.61

Accuracy given 2.0% Ablation

Table 17: Results on the Authors task with MLP-Vs.



Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 85.71 100.00±0.00 73.26 96.83±1.22 14.29±0.00 -12.46 11.12±1.22
OPT-1.3B 90.45 95.81±4.95 99.20 98.57±0.33 5.36±4.95 8.75 8.12±0.33
OPT-IML-1.3B 89.41 91.48±7.60 98.15 97.59±1.25 2.07±7.60 8.74 8.19±1.25
OPT-IML-Max-1.3B 93.33 92.05±4.32 96.95 98.61±0.48 -1.29±4.32 3.62 5.27±0.48
OPT-6.7B 83.06 97.86±1.20 90.88 99.36±0.44 14.80±1.20 7.82 16.29±0.44

Accuracy given 0.1% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 1.82 97.20±6.25 42.19 92.96±3.20 95.39±6.25 40.37 91.15±3.20
OPT-1.3B 62.32 84.88±5.44 98.10 96.70±1.52 22.56±5.44 35.78 34.38±1.52
OPT-IML-1.3B 50.97 84.38±9.24 91.49 95.28±2.21 33.41±9.24 40.52 44.31±2.21
OPT-IML-Max-1.3B 54.69 73.83±17.74 93.31 94.80±3.33 19.14±17.74 38.62 40.11±3.33
OPT-6.7B 62.01 96.29±1.09 84.19 98.05±1.22 34.28±1.09 22.17 36.03±1.22

Accuracy given 0.5% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 0.00 86.10±24.11 24.33 90.26±4.46 86.10±24.11 24.33 90.26±4.46
OPT-1.3B 50.39 72.35±7.28 93.43 93.51±3.41 21.96±7.28 43.04 43.12±3.41
OPT-IML-1.3B 43.10 73.24±11.51 89.37 90.88±4.75 30.15±11.51 46.28 47.78±4.75
OPT-IML-Max-1.3B 40.45 61.74±18.00 88.81 90.01±6.30 21.29±18.00 48.35 49.56±6.30
OPT-6.7B 38.21 91.34±1.93 76.13 96.14±2.42 53.13±1.93 37.92 57.92±2.42

Accuracy given 1.0% Ablation

Target Task Control Task Accuracy Differences

Model Targeted Ablation (A) Random Ablation (B) Targeted Ablation (C) Random Ablation (D) (B) - (A) (C) - (A) (D) - (A)

GPT2-355M 0.00 65.01±18.77 18.00 70.56±4.01 65.01±18.77 18.00 70.56±4.01
OPT-1.3B 27.71 47.40±15.68 83.98 87.08±8.01 19.69±15.68 56.27 59.37±8.01
OPT-IML-1.3B 29.06 50.78±17.19 85.40 81.96±10.00 21.72±17.19 56.34 52.90±10.00
OPT-IML-Max-1.3B 14.24 38.15±20.30 79.76 80.42±13.40 23.91±20.30 65.52 66.19±13.40
OPT-6.7B 25.00 85.00±5.05 67.02 93.40±3.07 60.00±5.05 42.02 68.40±3.07

Accuracy given 2.0% Ablation

Table 18: Results on the Authors task with attention.
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