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Abstract

Steering a car through traffic is a complex task that is difficult to cast into algorithms.
Therefore, researchers turn to training artificial neural networks from front-facing
camera data stream along with the associated steering angles. Nevertheless, most
existing solutions consider only the visual camera frames as input, thus ignoring
the temporal relationship between frames. In this work, we propose a Convolu-
tional Long Short-Term Memory Recurrent Neural Network (C-LSTM), that is
end-to-end trainable, to learn both visual and dynamic temporal dependencies of
driving. Additionally, We introduce posing the steering angle regression problem
as classification while imposing a spatial relationship between the output layer
neurons. Such method is based on learning a sinusoidal function that encodes
steering angles. To train and validate our proposed methods, we used the publicly
available Comma.ai dataset. Our solution improved steering root mean square error
by 35% over recent methods, and led to a more stable steering by 87%.

1 Introduction

The 2015 Global Status Report of the World Health Organization (WHO) reported an estimated 1.25
million deaths yearly due to road traffic worldwide [16]. With approximately 89% of accidents being
due to human errors, autonomous vehicles will play a vital role to significantly reduce this number
and ultimately to save human lives. With the ability to shift the task of explicitly formulating rules to
designing a system that is able to learn those rules, Artificial Intelligence (AI) will play an important
role to realize this vision [7]. Autonomous vehicles will provide greater mobility for old and disabled
people and could reduce energy consumption in transportation by as much as 90% [4]. Also, it will
translate into less traffic congestion and associated air pollution [4].

Lateral control of a vehicle is one of the most fundamental tasks in the design of algorithms to control
autonomous vehicles. A human can achieve this almost solely based on visual clues. In AI terms, the
human acts as an end-to-end system, i.e. intermediate representations of a driving lane, a planned
trajectory or the relation between hand coordination and steering direction may, and probably do, exist
somewhere within the brain of the driver but are never explicitly formulated in terms of interfaces.

To understand and recreate the ability to steer a vehicle based on visual clues within an AI system is
thus of fundamental importance. To the authors knowledge, the first work in this regard was done by
Pomerleau [18] in 1989 that used a multilayer perceptron (MLP). Since that work, the computational
power dramatically increased thanks to massive parallelization in modern GPU’s. In combination
with modern network architectures and concepts like Convolutional Neural Networks (CNN) [12] that
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wasn’t known back then. Those advances allowed for having methods that use CNN for end-to-end
learning of autonomous vehicles steering [2], [10], [3] that are based on classifying driving scene
frame by frame. By design such methods are not equipped to incorporate the temporal relation
between image frames and hence cannot learn motion features.

Recurrent Neural Networks (RNN’s) [26], [19], [14] represent a class of artificial neural networks that
uses memory cells to model the temporal relation between input data and hence learn the underlying
dynamics. With the introduction of so called Long Short-Term Memory (LSTM) [9], i.e. the ability
to remember selectively, modeling long-term relationships became possible within RNN’s.

In this paper we demonstrate quantitatively that a Convolutional Long Short-Term Memory Re-
current Neural Networks (C-LSTM) can significantly improve end-to-end learning performance
in autonomous vehicle steering based on camera images. Inspired by the adequacy of CNN in
visual feature extraction and the efficiency of Long Short-Term Memory (LSTM) Recurrent Neural
Networks in dealing with long-range temporal dependencies our approach allows to model dynamic
temporal dependences in the context of steering angle estimation based on camera input.

Posing regression problems as deep classification problems often shows improvements over direct
regression training of CNN’s [20]. We argue that it can still be further improved. Classification tasks
assume independence between the output neurons that encode the different classes. However, this
assumption loses validity if the classification is used to model a regression. Because, in such case,
classes neurons that are spatially close to each other should infer convergent decisions. Here, we
propose a method to introduce correlation between the class neurons and thus bridge the gap between
full classification problems and regression problems.

2 System Overview

The system we are investigating is comprised of a front-facing RGB camera and a composite neural
network consisting of a CNN and LSTM network that estimate the steering wheel angle based on the
camera input. Camera images are processed frame by frame by the CNN. The resulting features are
then processed within the LSTM network to learn temporal dependences as detailed in section 3. The
steering angle prediction is calculated via the output classification layer after the LSTM layers. For
full deployment, the steering angle prediction is transmitted via a steer-by-wire system to appropriate
actuators.

In the training phase, this setup is extended to include the ground-truth steering angle input together
with a filtering mechanism and an encoder, as well as a Backpropagation algorithm [21], [13] to
perform the actual training (see figure 1). The details of the training process are described in section
4. Figure 1 shows a simplified block diagram of the proposed system during training and deployment
phases.

Steering wheel sensors are not synchronized with the camera sensor. Typically, the steering wheel
angle information is communicated via the vehicle Controller Area Network (CAN) at rates of 100Hz,
i.e. at a significantly higher rate than the frame rate per second (FPS) of a camera. We use a low pass
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Figure 1: Simplified block diagram of the proposed system. A front-facing RGB camera is used to
capture the driving scene and ground-truth steering wheel angles due to a human driver are recorded.
During the system deployment phase, a decoder is used to translate the classification layer activations
into a steering angle. The blue and red paths represent training and deployment phases respectively.
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filter to reduce the steering wheel sensor measurement noise. Then the smoothed signal is sampled to
associate a ground-truth steering angle to each single camera frame.

3 C-LSTM Architecture

The proposed Convolutional Long Short-Term Memory Recurrent Neural Network (C-LSTM) ar-
chitecture combines a deep CNN hierarchical visual feature extractor with a model that can learn to
recognize long-term temporal dynamics. Figure 2 depicts the temporal input sequence as processed in
our C-LSTM. At each timestamp t the input frame Xt is processed in a CNN based on the C-LSTM
architecture.
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Figure 2: An overview of the proposed C-LSTM architecture unrolled across time. A deep CNN
learns to extract best driving scene features, and then the resultant sequential feature vectors are
passed into a stack of LSTM layers. The sliding window allows the same frame Xi to be used to train
different ground-truth steering angles Yi, but at different states of the LSTM layers. Classification
layer is connected via the blue and red paths during the system training and deployment phases
respectively.

CNN’s have been recently applied for large scale recognition problems. The training of deeper CNN
architectures is proven to be very successful in such problems [12], [24], [22]. This motivated us
to choose our CNN to follow the architecture of deepest state-of-the-art CNN’s, and we apply the
concept of transfer learning [1], [6]. The CNN is pre-trained [1], [6] on the Imagenet dataset [5], [22]
that features 1.2 million images of approximately 1000 different classes and allows for recognition of
a generic set of features and a variety of objects with a high precision. Then, we transfer the trained
neural network from that broad domain to another specific one focusing on driving scene images.

The LSTM then processes a sequence of w fixed-length feature vectors (sliding window) from the
CNN as depicted in figure 2. In turn, the LSTM layers learn to recognize temporal dependences
leading to a steering decision Yt based on the inputs from Xt−w to Xt. Small values of t lead to faster
reactions, but the network learns only short-term dependences and susceptibility for individually
misclassified frames increases. Whereas large values of t lead to a smoother behavior, and hence
more stable steering predictions, but increase the chance of learning wrong long-term dependences.

In contrast to typical RNN training that is based on fixed subsequent batches, the sliding window
concept allows the network to learn to recognize different steering angles from the same frame Xi but
at different temporal states of the LSTM layers. Both the CNN and LSTM weights are shared across
different steps within the sliding window and in principle this allows for arbitrarily long window size
w.

As detailed in section 4, we pose the steering angle regression as a classification problem. This is
why the single number representing the steering angle Yt is encoded to a vector of classification layer
neurons’ activations. A fully-connected layer with tanh activations is used for the classification layer.

For the domain-specific training, the classification layer of the CNN is re-initialized and trained on
camera road data. Training of the LSTM layer is conducted in a many-to-one fashion; the network
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learns the steering decisions that are associated with intervals of driving. It is important to set the
learning rates of each layer appropriately during learning with the Backpropagation algorithm. The
classification layer and the LSTM layers use a larger learning rate because it has been initialized with
random values. Note that both the CNN and the LSTM are trained jointly at the same time.

4 Classification Layer

Autonomous vehicles steering prediction is a continuous value regression problem. Given sensor
readings, the system predicts the steering angle as a single continuous value. Neural networks,
including CNN, can learn regression problems by using a signal neuron at the output classification
layer for the regressed steering angle. This direct approach is adopted by the recent works that tackle
this problem in literature [2], [10], [3].

In [20], regression formulation through a deep classification followed by expected value refinement
has been introduced to improve accuracy of the apparent age estimation from images. The regression
problem is posed as a deep classification problem followed by a softmax expected value refinement.
We argue that such approach can still be further improved mainly because it has two downsides.

The first downside is that it neglects the topological relation between output classes, i.e. the network
has no notion of how different two steering angles are. Figure 3 emphasizes the topological problem.
With the steering angles being mapped to discrete output neurons, each output neuron i spans a small
steering range of αi. The figure depicts two prediction example cases that both yield the same loss
for conventional loss metrics like Negative Log Likelihood (NLL) or mean squared error (MSE).
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Figure 3: In case 1, low activations occur near the ground-truth neuron, whereas the neuron with
peak activation is situated on the far right side, i.e. far away from the ground truth. In contrast, case 2
features the neuron with peak activation close to the neuron that is expected by the ground-truth and
thus a better prediction. Yet loss metrics that neglect the spatial relations will yield the same penalties
in both cases. The figure also shows Sine waves encoding at different steering angles. The dotted
arrow denotes the increasing φ direction.

The second drawback of the conventional formulation of regression as a classification problem is
that the amount of required training data scales with the number of discrete angles, i.e. classes. The
expanding number of class labels requires collecting more training data such that all class labels
contain sufficient training volumes. Conversely, if the training data is limited, so is the number of
classes.

To solve this problem we introduce a spatial relationship between the classification layer neurons.
The method is based on learning an arbitrary function that encodes the steering angle. It’s inspired
from our patent regarding pose angle estimation of an object in an input image [15]. The steering
wheel sensor provides a steering angle φ ranging from −φ◦max (extreme turning to the left) to φ◦max
(extreme right turn). φ = 0◦ means the vehicle driving straight forward. We choose the encoding
function to be a sine wave and the steering angle to be its phase shift as in (1):

Yi = sin

(
2π(i− 1)

N − 1
− φπ

2φmax

)
, 1 ≤ i ≤ N, (1)

where Yi is the activation of the output neuron i and N is the number of output layer neurons, i.e.
classes. Such choice for the learned function and its parameter(s) encoding steering, to be a sine wave
and its phase shift, guarantees gradual changes in steering to cause gradual changes of the output
layer activations. Figure 3 shows example sine waves encoding different steering wheel angles.

Figure 4 shows how the proposed method is used for learning efficient vehicle steering. Tanh
activation functions are used for the classification layer neurons to allow it shaping sine waves with
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amplitude from -1 to 1. During training, the ground-truth steering angle φ is encoded as a sine wave
function as in (1). On the other hand, the classification layer output uses a Least Squares regression
in order to fit the predicted function. The Backpropagation loss function is calculated as the root
mean square error (RMSE) between the two waveforms over batches of sequential data.

During deployment the steering angle is decoded from the Least Squares regression result. The
decoder calculates the sine wave phase shift that contains the information about the steering angle.
This new concept of network output formulation as a fitted sinusoidal function can be extended to other
application domains where regression is posed as a classification problem for better performance;
like Face Age Detection, Face Pose Estimation, House Price Estimation, etc.
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Figure 4: Fitting a sin wave that encodes driving steering wheel angle. The blue and red paths
represent training and deployment phases respectively.

5 Experimental Results

In this section, we first introduce the dataset we used for experimental work and the system evaluation
metrics. Then we present the implementation details of our method, describe experimental setups,
and discuss results.

5.1 Dataset and Evaluation Metrics

We trained and validated our system on the recently publicly released database by “comma.ai” in [23].
It contains 7.26 hours of highway and city driving data that are divided in 11 videos captured during
both day and night. The dataset also has several sensors that were measured in different frequencies.
In this work, we only use the camera frames and steering wheel angle signal. In [2], the authors
trained their system using about 72 hours of driving data that is not publicly available. We aim to
provide a baseline performance for future works to benchmark against.

We choose the first and third video files, having 1 hour of driving, to form the testing set, and the
remaining nine files were kept for training and validation. That balances the training and testing sets
between day and night driving. We sampled both of the training and testing datasets to 2 Hz. In [27],
Comma.ai dataset is used to validate Deep Predictive coding networks. In that work, random 5%
chunks are sampled from each video file in the dataset and kept for validation and testing. Such split
strategy causes the correlation between the training and testing data to be too high, and the steering
prediction becomes a much easier problem. We separate complete video files for testing such that
testing data contains driving sessions that are completely different from those of the training data,
i.e.; different locations, time of day, and driving conditions.

Both Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) can express average system
prediction error. For steering angle prediction problem, large errors are particularly undesirable. We
choose to report our results using RMSE, defined as in (2) to gives a relatively high weight to large
errors.

RMSE =

√√√√ 1

|D|

|D|∑
i=1

(Gi − Pi)
2
, (2)

where Gi and Pi are the ground-truth and predicted steering angles for a frame i respectively in a
testing set having a total of |D| frames. Both angles are measured in angular degrees.
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MAE and RMSE can range from 0 to inf and are indifferent to the direction of errors. They cannot
infer how much stable steering is. Thus, we use another metric W that measures the whiteness of the
predicted steering signal as in (3). The smaller the value of W , the more smooth steering variations
are predicted.

W =
1

|D|

|D|∑
i=1

(
∂P (t)

∂t

∣∣∣∣
t=i

)2

(3)

5.2 Results

We report in this section our experimental results on the testing dataset we defined earlier. In table 1,
we report performance of using a CNN in learning steering using regression; the CNN has a single
output neuron. Firstly, we use a simple CNN that follows the architecture introduced in [2]. And
then we apply transfer learning using deeper state of the art networks, which are the third version of
Inception network [25] and Resnet network having 152 layers [8].

Table 1: Regression using CNN

CNN Network
Performance

RMSE [ Degrees ] Whiteness [ Degrees / Time unit ]

Simple CNN [2] 23.30 65.8

Inception V3 18.67 43.9

Resnet 152 17.77 39.1

Table 1 confirms that deeper networks perform better. We conducted cross-validation using different
optimizers, network regulation, and learning rates until we found best choices. The simple CNN and
the fully connected layers had a learning rate of 10−3, while the convolutional layers had a learning
rate of 10−5 for transfer learning . Adam optimization [11] was used to train all networks. Applying
batch normalization and dropout techniques helped minimizing over-fitting.

Table 2 compares the direct regression performance with the state-of-the-art classification method in
[20]. Subsequently, it compares them with our proposed classification method; by fitting a sinusoidal
function. Most importantly, it reports the results of our complete solution which uses the C-LSTM
architecture. The output feature vector from the CNN is of length 2048. Empirically, θ, φmax, and
σ2 are chosen to be equal to 4◦, 190◦, and 80 respectively. Hence, the number of output neurons
N is equal to 95 neurons. We found that a sliding window stride of 1 time step resulted into most
accurate predictions. Empirically, we used 2 LSTM layers, with each layer having 500 neurons and
w covering 5 seconds of driving.

Table 2: Comparison of CNN And C-LSTM For Regression and Classification

CNN Network
CNN Performance C-LSTM Performance

RMSE [ Degrees ] Whiteness [ Degrees / Time unit ] RMSE [ Degrees ] Whiteness [ Degrees / Time unit ]

Regression 17.77 39.1 16.01 9.7

Classification,using NLL [20] 18.70 54.1 17.84 10.0

Classification by,sine wave fitting 17.44 43.9 14.93 8.2

Table 2 demonstrates that our proposed method for classification performed better than both of
the conventional classification method and the direct regression of steering angle method. Most
importantly, it shows that using our C-LSTM architecture led to a significant improvement of steering
angle prediction in terms of accuracy and stability reflected by the predicted steering signal RMSE and
whiteness respectively. The signal was more accurate than the state-of-the-art solution by 35% and
was more stable by 87%. A steering wheel angle RMSE slightly less than 20◦ is still an achievement,
since modern car “steering ratio” is in the range 12 : 1 to 20 : 1 [17]. Consequently, a steering wheel
RMSE of 20◦ is actually equivalent to approximately only 1◦ of vehicle wheels (tyres) off-direction.
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6 Conclusions

We propose and benchmark a C-LSTM architecture that allows learning both visual and temporal
dependencies of driving. We also introduce posing the steering angle regression problem as a deep
classification problem by imposing a spatial relationship between the output layer neurons. That
concept of output formulation as a fitted sinusoidal function can be extended to other application
domains where regression is posed as a classification problem for better performance. Our solution
achieved 35% steering RMSE improvement and led to a more stable steering by 87% compared
to recent methods tested on the benchmark Comma.ai publicly available dataset. The future work
should focus on verifying the proposed method via simulation and analyzing the effect of the number
of output neurons on the steering performance.
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