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Abstract

We propose a novel micro-network (µ-net) architecture which is a convolutional
neural network (CNN) designed to be robust to minimal training data. Applying
the µ-net to MR-guided low count PET scans produces impressive qualitative and
quantitative cross-validation results despite training on just two noise realisations
of the same patient.

1 Introduction

While reducing scan time and radiation dose in positron emission tomography (PET) clearly has
safety and cost benefits, it also results in acquired data with fewer overall counts, and thus high levels
of noise. Simultaneously acquired magnetic resonance (MR) data can be used in techniques such as
non-local means to reduce noise in PET reconstructions [1].

This work proposes an alternative post-processing step informed by deep learning (DL) – specifi-
cally, deep convolutional neural networks (CNNs). Uptake of CNNs in medical imaging has been
comparatively recent and modest. Some proposals suggest 2-dimensional (2D) patch-based CNNs to
reduce noise in low-dose CT (computed tomography) and PET-MR reconstruction [2], [3]. However,
such networks typically required large amounts of training data. In contrast, this work focuses on
improving image quality through carefully designed intuitive 3D CNNs. Due to the resultant small
network size, we propose the term micro-network, or µ-net. These µ-nets have a comparatively small
parameter space and thus are robust to extremely small training data sets, in stark contrast to the
U-nets found in current literature [4].

2 Methods

2.1 Data

The supervised training process requires known target truths. Rather than scanning an unrealistic
phantom (lacking the structure and features of a patient) or relying on a pure simulations (which can
also be unrealistic), we use a hybrid approach. Data from two [18F]FDG PET head scans using the
Siemens Biograph mMR scanner was reconstructed using maximum likelihood expectation max-
imisation (MLEM) with the method of sieves [5], accounting for photon attenuation, normalisation,
randoms and scatter. Each dataset had 430 M counts, of which it was estimated 28 % were scatter
and 26 % were randoms. The simultaneously acquired MR data was reconstructed and downsampled
to the same dimensions as the PET images.

Since the target truth is not known, the PET data was sharpened to improve edge contrast (2), and
then treated as the target, τ . τ is subsequently projected to give multiple sinogram measurementsm
at low (43 M) counts, which were each reconstructed to produce reference PET images θ.
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For all the data sets, 300 [100] MLEM iterations were performed with [without] resolution modelling
(RM) as per (1). The RM kernel used was a a Gaussian point spread function (PSF) of 4.5mm FWHM
(full width at half maximum) in image space. Figure 1 shows the results.

θ(k+1) = θ(k)

HTXT1H
TXT m

XHθ(k) , (1)

where θ(k) is the reconstructed image at the kth iteration,
H optionally applies an RM kernel,
X is the rest of the system matrix, and
m is the sinogram data obtained by projecting τ .

τ = θreal + a (θreal −Gσ(θreal)) , (2)

where θreal is the real patient reconstruction,
Gσ applies a gaussian smooth of σ = 0.6, and
a is a parameter controlling sharpening amount, chosen to be 0.8.

2.2 Micro-network

Each layer j of our network encodes its input vector α(j) as shown in (3).

α
(j+1)
i = A(W (j)α

(j)
i + b(j)), (3)

where α(j)
i is the ith channel input for layer j, where α(1) represents the input volumes,

W (j)is a block diagonal matrix containing the convolutional kernel weights,
b(j) are the biases, and
A is a non-linear element-wise activation function, here chosen to be

A(x) = 1/(1 + e−x).

α(j) represents a multi-channel tensor. In the case of the network’s input, α(1), each channel could
be a reconstructed modality volume. Here, it includes θ(T1) as well as low-count PET reconstructions
θ

(300)
RM and θ(100).

Element-wise products of θ(T1) and the PET reconstructions were also provided. This allows for
modulation of the PET data by the MR intensities, thereby sharing edge information. Such an
operation would normally require a dense (fully connected) layer in the network. However this would
unnecessarily greatly increase the number of optimisation parameters, thus increasing computational
cost and the likelihood of over-fitting on limited training data sets. Operating directly on full 3D
volumes circumvents problems associated with edge effects on small patches or 2D slices; and allows
the network to make use of adjacent voxel information, thus resulting in an enhanced ability to
compensate for the partial volume effect (PVE) and differentiate between signal and noise.

W (j) corresponds to nj different multi-channel kernels of size nj−1 × sj × sj × sj , each operating
on the nj−1-channel input α(j) to produce a corresponding single-channel 3D output ∈ α(j+1). The
network used here consists of three layers, with nj = {9, 18, 1}, and sj = {5, 3, 1}. The rationale is
that the first layer performs detection of up to 9 different features, and the second recombines these
feature maps in different ways to produce 18 viable clean PET volumes. The final layer performs a
weighted average over these volumes.

The sensitivity of each feature-detecting kernel is controlled by the combination of b(j) and A
(nonlinear thresholding). A is often chosen to be rectified linear units (ReLU ) – setting negative
values to zero – which performs fast thresholding by simply discarding data. However, in the
micro-network proposed here, such discarding is not desirable as it would result in minimal speed
improvements at the cost of accuracy. The sigmoidal activation function chosen here ensures that
information is retained as it propagates through the network.

The network therefore has comparatively few parameters (O(104)). Because the number of param-
eters is much less than the size of the training data (even if compressed), there is no chance of
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over-fitting, since the network is incapable of memorising the training data. This helps ensure that
the network only performs feature recognition, as desired.

The network was trained1 to map two low-count noise realisations of the same patient to the corre-
sponding label τ . Two realisations were used in order to increase robustness to noise.

3 Results

For cross-validation, a single low-count dataset from the second patient (not used during the training
stage) was given to the network to make a prediction. Figure 1 shows results for a central slice. The
µ-net reduces the normalised root mean square error of 28 % (b) and 24 % (c) to 16 % (d).

Figure 1: Central slices from training (top row) and validation (bottom row) volumes. From left to
right: a) T1-weighted MR, θ(T1), b) 100 MLEM iterations θ(100), c) 300 iterations with RM θ

(300)
RM ,

d) CNN prediction α(4) (based on inputs (a)-(c)), and e) Target τ .

4 Conclusion and future work

The proposed µ-net clearly can simultaneously suppresses noise, partial volume, and ringing effects,
and improve resolution with minimal training data. Future work will compare performance with
alternative state-of-the-art networks and guided reconstruction methods.
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