
Published as a conference paper at ICLR 2017

HOLSTEP: A MACHINE LEARNING DATASET FOR
HIGHER-ORDER LOGIC THEOREM PROVING

Cezary Kaliszyk
University of Innsbruck
cezary.kaliszyk@uibk.ac.at

François Chollet, Christian Szegedy
Google Research
{fchollet,szegedy}@google.com

ABSTRACT

Large computer-understandable proofs consist of millions of intermediate logical
steps. The vast majority of such steps originate from manually selected and man-
ually guided heuristics applied to intermediate goals. So far, machine learning has
generally not been used to filter or generate these steps. In this paper, we introduce
a new dataset based on Higher-Order Logic (HOL) proofs, for the purpose of de-
veloping new machine learning-based theorem-proving strategies. We make this
dataset publicly available under the BSD license. We propose various machine
learning tasks that can be performed on this dataset, and discuss their significance
for theorem proving. We also benchmark a set of simple baseline machine learn-
ing models suited for the tasks (including logistic regression, convolutional neural
networks and recurrent neural networks). The results of our baseline models show
the promise of applying machine learning to HOL theorem proving.

1 INTRODUCTION

As the usability of interactive theorem proving (ITP) systems (Harrison et al., 2014) grows, its use
becomes a more common way of establishing the correctness of software as well as mathematical
proofs. Today, ITPs are used for software certification projects ranging from compilers (Leroy,
2009) and operating system components (Chen et al., 2016; Klein et al., 2014), to establishing the
absolute correctness of large proofs in mathematics such as the Kepler conjecture (Hales et al., 2015)
and the Feit-Thomson Theorem (Gonthier et al., 2013).

For results of such significance to be possible, the theorem libraries of these ITPs must contain
all necessary basic mathematical properties, accompanied with formal proofs. This means that the
size of many ITP libraries can be measured in dozens of thousands of theorems (Grabowski et al.,
2010; Blanchette et al., 2015) and billions of individual proof steps. While the general direction of
the proofs is specified by humans (by providing the goal to prove, specifying intermediate steps, or
applying certain automated tactics), the majority of such proof steps are actually found by automated
reasoning-based proof search (Kaliszyk & Urban, 2015b), with very little application of machine
learning techniques so far.

At the same time, fast progress has been unfolding in machine learning applied to tasks that involve
logical inference, such as natural language question answering (Sukhbaatar et al., 2015), knowledge
base completion (Socher et al., 2013a), automated translation (Wu et al., 2016), and premise selec-
tion in the context of theorem proving (Alemi et al., 2016). Deep learning in particular has proven
to be a powerful tool for embedding semantic meaning and logical relationships into geometric
spaces, specifically via models such as convolutional neural networks, recurrent neural networks,
and tree-recursive neural networks. These advances strongly suggest that deep learning may have
become mature enough to yield significant advances in automated theorem proving. Remarkably,
it has recently become possible to build a system, AlphaGo (Silver et al., 2016), blending classi-
cal AI techniques such as Monte-Carlo tree search and modern deep learning techniques, capable
of playing the game of Go at super-human levels. We should note that theorem proving and Go
playing are conceptually related, since both consist in searching for specific nodes in trees of states
with extremely large arity and relatively large depth, which involves node evaluation decision (how
valuable is this state?) and policy decisions (which node should be expanded next?). The success of
AlphaGo can thus serve as encouragement on the road to building deep learning-augmented theorem

1



Published as a conference paper at ICLR 2017

provers that would blend classical techniques developed over the past few decades with the latest
machine learning advances.

Fast progress in specific machine learning verticals has occasionally been achieved thanks to the
release of specialized datasets (often with associated competitions, e.g. the ImageNet dataset for
large-scale image classification (Deng et al., 2009)) serving as an experimental testbed and public
benchmark of current progress, thus focusing the efforts of the research community. We hope that
releasing a theorem proving dataset suited for specific machine learning tasks can serve the same
purpose in the vertical of applying machine learning to theorem proving.

1.1 CONTRIBUTION AND OVERVIEW

First, we develop a dataset for machine learning based on the proof steps used in a large interactive
proof section 2. We focus on the HOL Light (Harrison, 2009) ITP, its multivariate analysis library
(Harrison, 2013), as well as the formal proof of the Kepler conjecture (Hales et al., 2010). These for-
malizations constitute a diverse proof dataset containing basic mathematics, analysis, trigonometry,
as well as reasoning about data structures such as graphs. Furthermore these formal proof devel-
opments have been used as benchmarks for automated reasoning techniques (Kaliszyk & Urban,
2014).

The dataset consists of 2,013,046 training examples and 196,030 testing examples that originate
from 11,400 proofs. Precisely half of the examples are statements that were useful in the currently
proven conjectures and half are steps that have been derived either manually or as part of the auto-
mated proof search but were not necessary in the final proofs. The dataset contains only proofs of
non-trivial theorems, that also do not focus on computation but rather on actual theorem proving.
For each proof, the conjecture that is being proven as well as its dependencies (axioms) and may
be exploited in machine learning tasks. Furthermore, for each statement both its human-readable
(pretty-printed) statement and a tokenization designed to make machine learning tasks more man-
ageable are included.

Next, in section 3 we discuss the proof step classification tasks that can be attempted using the
dataset, and we discuss the usefulness of these tasks in interactive and automated theorem proving.
These tasks include unconditioned classification (without access to conjectures and dependencies)
and conjecture-conditioned classification (with access to the conjecture) of proof steps as being
useful or not in a proof. We outline the use of such classification capabilities for search space
pruning and internal guidance, as well as for generation of intermediate steps or possible new lemma
statements.

Finally, in section 4 we propose three baseline models for the proof step classification tasks, and we
experimentally evaluate the models on the data in section 5. The models considered include both
a relatively simple regression model, as well as deep learning models based on convolutional and
recurrent neural networks.

1.2 RELATED WORK

The use of machine learning in interactive and automated theorem proving has so far focused on
three tasks: premise selection, strategy selection, and internal guidance. We shortly explain these.

Given a large library of proven facts and a user given conjecture, the multi-label classification prob-
lem of selecting the facts that are most likely to lead to a successful proof of the conjecture has
been usually called relevance filtering or premise selection (Alama et al., 2014). This is crucial for
the efficiency of modern automation techniques for ITPs (Blanchette et al., 2016), which today can
usually solve 40–50% of the conjectures in theorem proving libraries. Similarly most competitive
ATPs today (Sutcliffe, 2016) implement the SInE classifier (Hoder & Voronkov, 2011).

A second theorem proving task where machine learning has been of importance is strategy selection.
With the development of automated theorem provers came many parameters that control their exe-
cution. In fact, modern ATPs, such as E (Schulz, 2013) and Vampire (Kovács & Voronkov, 2013),
include complete strategy description languages that allow a user to specify the orderings, weighting
functions, literal selection strategies, etc. Rather than optimizing the search strategy globally, one

2



Published as a conference paper at ICLR 2017

can choose the strategy based on the currently considered problem. For this some frameworks use
machine learning (Bridge et al., 2014; Kühlwein & Urban, 2015).

Finally, an automated theorem prover may use machine learning for choosing the actual inference
steps. It has been shown to significantly reduce the proof search in first-order tableaux by the
selection of extension steps to use (Urban et al., 2011), and has been also successfully applied
in monomorphic higher-order logic proving (Färber & Brown, 2016). Data/proof mining has also
been applied on the level of interactive theorem proving tactics (Duncan, 2007) to extract and reuse
repeating patterns.

2 DATASET EXTRACTION

We focus on the HOL Light theorem prover for two reasons. First, it follows the LCF approach1).
This means that complicated inferences are reduced to the most primitive ones and the data extrac-
tion related modifications can be restricted the primitive inferences and it is relatively easy to extract
proof steps at an arbitrary selected level of granularity. Second, HOL Light implements higher-order
logic (Church, 1940) as its foundation, which on the one hand is powerful enough to encode most
of today’s formal proofs, and on the other hand allows for an easy integration of many powerful
automation mechanisms (Baader & Nipkow, 1998; Paulson, 1999).

When selecting the theorems to record, we choose an intermediate approach between HOL Light
ProofRecording (Obua & Skalberg, 2006) and the HOL/Import one (Kaliszyk & Krauss, 2013). The
theorems that are derived by most common proof functions are extracted by patching these functions
like in the former approach, and the remaining theorems are extracted from the underlying OCaml
programming language interpreter. In certain cases decision procedures derive theorems to be reused
in subsequent invocations. We detect such values by looking at theorems used across proof blocks
and avoid extracting such reused unrelated subproofs.

All kernel-level inferences are recorded together with their respective arguments in a trace file. The
trace is processed offline to extract the dependencies of the facts, detect used proof boundaries,
mark the used and unused steps, and mark the training and testing examples. Only proofs that have
sufficiently many used and unused steps are considered useful for the dataset. The annotated proof
trace is processed again by a HOL kernel saving the actual training and testing examples originating
from non-trivial reasoning steps. Training and testing examples are grouped by proof: for each proof
the conjecture (statement that is finally proved), the dependencies of the theorem are constant, and a
list of used and not used intermediate statements is provided. This means that the conjectures used
in the training and testing sets are normally disjoint.

For each statement, whether it is the conjecture, a proof dependency, or an intermediate statement,
both a fully parenthesised HOL Light human-like printout is provided, as well as a predefined to-
kenization. The standard HOL Light printer uses parentheses and operator priorities to make its
notations somewhat similar to textbook-style mathematics, while at the same time preserving the
complete unambiguity of the order of applications (this is particularly visible for associative opera-
tors). The tokenization that we propose attempts to reduce the number of parentheses. To do this we
compute the maximum number of arguments that each symbol needs to be applied to, and only mark
partial application. This means that fully applied functions (more than 90% of the applications) do
not require neither application operators nor parentheses. Top-level universal quantifications are
eliminated, bound variables are represented by their de Bruijn indices (the distance from the corre-
sponding abstraction in the parse tree of the term) and free variables are renamed canonically. Since
the Hindley-Milner type inference Hindley (1969) mechanisms will be sufficient to reconstruct the
most-general types of the expressions well enough for automated-reasoning techniques Kaliszyk
et al. (2015) we erase all type information. Table 1 presents some dataset statistics. The dataset, the
description of the used format, the scripts used to generate it and baseline models code are available:

http://cl-informatik.uibk.ac.at/cek/holstep/

1LCF approach is a software architecture for implementing theorem provers which uses a strongly typed
programming language with abstract datatypes (such as OCaml in the case of HOL Light) to separate the small
trusted core, called the kernel, which verifies the primitive inferences from user code which allows the user to
arbitrarily extend the system in a safe manner. For more details see (Gordon et al., 1979).

3

http://cl-informatik.uibk.ac.at/cek/holstep/


Published as a conference paper at ICLR 2017

Train Test Positive Negative

Examples 2013046 196030 1104538 1104538
Avg. length 503.18 440.20 535.52 459.66
Avg. tokens 87.01 80.62 95.48 77.40
Conjectures 9999 1411 - -
Avg. dependencies 29.58 22.82 - -

Table 1: HolStep dataset statistics

3 MACHINE LEARNING TASKS

3.1 TASKS DESCRIPTION

This dataset makes possible several tasks well-suited for machine learning most of which are highly
relevant for theorem proving:

• Predicting whether a statement is useful in the proof of a given conjecture;

• Predicting the dependencies of a proof statement (premise selection);

• Predicting whether a statement is an important one (human named);

• Predicting which conjecture a particular intermediate statement originates from;

• Predicting the name given to a statement;

• Generating intermediate statements useful in the proof of a given conjecture;

• Generating the conjecture the current proof will lead to.

In what follows we focus on the first task: classifying proof step statements as being useful or not in
the context of a given proof. This task may be further specialized into two different tasks:

• Unconditioned classification of proof steps: determining how likely a given proof is to be
useful for the proof it occurred in, based solely on the content of statement (i.e. by only
providing the model with the step statement itself, absent any context).

• Conditioned classification of proof steps: determining how likely a given proof is to be
useful for the proof it occurred in, with “conditioning” on the conjecture statement that the
proof was aiming to attain, i.e. by providing the model with both the step statement and the
conjecture statement).

In the dataset, for every proof we provide the same number of useful and non-useful steps. As such,
the proof step classification problem is a balanced two-class classification problem, where a random
baseline would yield an accuracy of 0.5.

3.2 RELEVANCE TO INTERACTIVE AND AUTOMATED THEOREM PROVING

In the interaction with an interactive theorem prover, the tasks that require most human time are: the
search for good intermediate steps; the search for automation techniques able to justify the individual
steps, and searching theorem proving libraries for the necessary simpler facts. These three problems
directly correspond to the machine learning tasks proposed in the previous subsection. Being able
to predict the usefulness of a statement will significantly improve many automation techniques.
The generation of good intermediate lemmas or intermediate steps can improve level of granularity
of the proof steps. Understanding the correspondence between statements and their names can
allow users to search for statements in the libraries more efficiently (Aspinall & Kaliszyk, 2016).
Premise selection and filtering are already used in many theorem proving systems, and generation
of succeeding steps corresponds to conjecturing and theory exploration.

4



Published as a conference paper at ICLR 2017

Figure 1: Unconditioned classification model architectures.

4 BASELINE MODELS

For each task (conditioned and unconditioned classification), we propose three different deep learn-
ing architectures, meant to provide a baseline for the classification performance that can be achieved
on this dataset. Our models cover a range of architecture features (from convolutional networks
to recurrent networks), aiming at probing what characteristics of the data are the most helpful for
usefulness classification.

Our models are implemented in TensorFlow (Abadi et al., 2015) using the Keras framework (Chollet,
2015). Each model was trained on a single Nvidia K80 GPU. Training only takes a few hours per
model, which makes running these experiments accessible to most people (they could even be run
on a laptop CPU). We are releasing all of our benchmark code as open-source software 2 so as to
allow others to reproduce our results and improve upon our models.

4.1 UNCONDITIONED CLASSIFICATION MODELS

Our three models for this task are as follow:

• Logistic regression on top of learned token embeddings. This minimal model aims to
determine to which extent simple differences between token distribution between useful
and non-useful statements can be used to distinguish them. It provides an absolute floor on
the performance achievable on this task.

• 2-layer 1D convolutional neural network (CNN) with global maxpooling for sequence re-
duction. This model aims to determine the importance of local patterns of tokens.

• 2-layer 1D CNN with LSTM (Hochreiter & Schmidhuber, 1997) sequence reduction. This
model aims to determine the importance of order in the features sequences.

See figure 1 for a layer-by-layer description of these models.

4.2 CONDITIONED CLASSIFICATION MODELS

For this task, we use versions of the above models that have two siamese branches (identical branches
with shared weights), with one branch processing the proof step statement being considered, and the

2https://github.com/tensorflow/deepmath/tree/master/holstep_baselines

5

https://github.com/tensorflow/deepmath/tree/master/holstep_baselines


Published as a conference paper at ICLR 2017

Figure 2: Conditioned classification model architectures.

other branch processing the conjecture. Each branch outputs an embedding; these two embeddings
(step embedding and conjecture embedding) are then concatenated and the classified by a fully-
connected network. See figure 2 for a layer-by-layer description of these models.

4.3 INPUT STATEMENTS ENCODING

It should be noted that all of our models start with an Embedding layer, mapping tokens or characters
in the statements to dense vectors in a low-dimensional space. We consider two possible encodings
for presenting the input statements (proof steps and conjectures) to the Embedding layers of our
models:

• Character-level encoding of the human-readable versions of the statements, where each
character (out of a set of 86 unique characters) in the pretty-printed statements is mapped
to a 256-dimensional dense vector. This encoding yields longer statements (training state-
ments are 308 character long on average).

• Token-level encoding of the versions of the statements rendered with our proposed high-
level tokenization scheme. This encoding yields shorter statements (training statements are
60 token long on average), while considerably increasing the size of set of unique tokens
(1993 total tokens in the training set).

6



Published as a conference paper at ICLR 2017

Table 2: HolStep proof step classification accuracy without conditioning

Logistic 1D CNN 1D CNN-LSTMregression
Accuracy with char input 0.71 0.82 0.83
Accuracy with token input 0.71 0.83 0.77

Table 3: HolStep proof step classification accuracy with conditioning

Logistic Siamese Siamese
regression 1D CNN 1D CNN-LSTM

Accuracy with char input 0.71 0.81 0.83
Accuracy with token input 0.71 0.82 0.77

5 RESULTS

Experimental results are presented in tables 2 and 3, as well as figs. 3 to 6.

5.1 INFLUENCE OF MODEL ARCHITECTURE

Our unconditioned logistic regression model yields an accuracy of 71%, both with character encod-
ing and token encoding (tables 2 and 3). This demonstrates that differences in token or character
distributions between useful and non-useful steps alone, absent any context, is sufficient for discrim-
inating between useful and non-useful statements to a reasonable extent. This also demonstrates that
the token encoding is not fundamentally more informative than raw character-level statements.

Additionally, our unconditioned 1D CNN model yields an accuracy of 82% to 83%, both with char-
acter encoding and token encoding (tables 2 and 3). This demonstrates that patterns of characters or
patterns of tokens are considerably more informative than single tokens for the purpose of usefulness
classification.

Finally, our unconditioned convolutional-recurrent model does not improve upon the results of the
1D CNN, which indicates that our models are not able to meaningfully leverage order in the feature
sequences into which the statements are encoded.

5.2 INFLUENCE OF INPUT ENCODING

For the logistic regression model and the 2-layer 1D CNN model, the choice of input encoding seems
to have little impact. For the convolutional-recurrent model, the use of the high-level tokenization
seems to cause a large decrease in model performance (figs. 4 and 6). This may be due to the fact
that token encoding yields shorter sequences, making the use of a LSTM less relevant.

5.3 INFLUENCE OF CONDITIONING ON THE CONJECTURE

None of our conditioned models appear to be able to improve upon the unconditioned models, which
indicates that our architectures are not able to leverage the information provided by the conjecture.
The presence of the conditioning does however impact the training profile of our models, in partic-
ular by making the 1D CNN model converge faster and overfit significantly quicker (figs. 5 and 6).

6 CONCLUSIONS

Our baseline deep learning models, albeit fairly weak, are still able to predict statement usefulness
with a remarkably high accuracy. Such methods already help first-order automated provers (Kaliszyk
& Urban, 2015a) and as the branching factor is higher in HOL the predictions are valuable for a
number of practical proving applications. This includes making tableaux-based (Paulson, 1999)
and superposition-based (Hurd, 2003) internal ITP proof search significantly more efficient in turn

7



Published as a conference paper at ICLR 2017

Figure 3: Training profile of the three uncondi-
tioned baseline models with character input.

Figure 4: Training profile of the three uncondi-
tioned baseline models with token input.

Figure 5: Training profile of the three condi-
tioned baseline models with character input.

Figure 6: Training profile of the three condi-
tioned baseline models with token input.

making formalization easier. However, our models do not appear to be able to leverage order in the
input sequences, nor conditioning on the conjectures. This is due to the fact that these models are not
doing any form of logical reasoning on their input statements; rather they are doing simple pattern
matching at the level of n-grams of characters or tokens. This shows the need to focus future efforts
on different models that can do reasoning, or alternatively, on systems that blend explicit reasoning
(e.g. graph search) with deep learning-based feature learning. A potential new direction would be
to leverage the graph structure of HOL statements using e.g. Recursive Neural Tensor Networks
(Socher et al., 2013a;b) or other graph-based recursive architectures.

6.1 FUTURE WORK

The dataset focuses on one interactive theorem prover. It would be interesting if the proposed tech-
niques generalize, primarily across ITPs that use the same foundational logic, for example using
OpenTheory (Hurd, 2011), and secondarily across fundamentally different ITPs or even ATPs. A
significant part of the unused steps originates from trying to fulfill the conditions for rewriting and
from calls to intuitionistic tableaux. The main focus is however on the human found proofs so the
trained predictions may to an extent mimic the bias on the usefulness in the human proofs. As ATPs
are at the moment very week in comparison with human intuition improving this even for the many
proofs humans do not find difficult would be an important gain.

Finally, two of the proposed task for the dataset have been premise selection and intermediate sen-
tence generation. It would be interesting to define more ATP-based ways to evaluate the selected
premises, as well as to evaluate generated sentences (Kaliszyk et al., 2015). The set is a relatively
large one when it comes to proof step classification, however the number of available premises
makes the set a medium-sized set for premise selection in comparison with those of the Mizar Math-
ematical Library or the seL4 development.

8



Published as a conference paper at ICLR 2017

ACKNOWLEDGEMENTS

The first author was partly supported by the ERC starting grant 714034.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from tensor-
flow.org.

Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise se-
lection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning, 52(2):
191–213, 2014. doi: 10.1007/s10817-013-9286-5.

Alex A. Alemi, François Chollet, Geoffrey Irving, Christian Szegedy, and Josef Urban. DeepMath
– Deep sequence models for premise selection. In Daniel D. Lee, Masashi Sugiyama, Ulrike V.
Luxburg, Isabelle Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems (NIPS 2016), pp. 2235–2243, 2016. URL https://arxiv.org/abs/1606.04442.

David Aspinall and Cezary Kaliszyk. What’s in a theorem name? In Jasmin Christian Blanchette
and Stephan Merz (eds.), Interactive Theorem Proving (ITP 2016), volume 9807 of LNCS, pp.
459–465. Springer, 2016. doi: 10.1007/978-3-319-43144-4.

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, 1998.
ISBN 978-0-521-45520-6.

Jasmin C. Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban. Hammering towards
QED. J. Formalized Reasoning, 9(1):101–148, 2016. ISSN 1972-5787. doi: 10.6092/issn.
1972-5787/4593.

Jasmin Christian Blanchette, Maximilian P. L. Haslbeck, Daniel Matichuk, and Tobias Nipkow.
Mining the Archive of Formal Proofs. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk,
Florian Rabe, and Volker Sorge (eds.), Intelligent Computer Mathematics (CICM 2015), volume
9150 of LNCS, pp. 3–17. Springer, 2015.

James P. Bridge, Sean B. Holden, and Lawrence C. Paulson. Machine learning for first-order theo-
rem proving - learning to select a good heuristic. J. Autom. Reasoning, 53(2):141–172, 2014. doi:
10.1007/s10817-014-9301-5.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zel-
dovich. Using crash Hoare logic for certifying the FSCQ file system. In Ajay Gulati and Hakim
Weatherspoon (eds.), USENIX 2016. USENIX Association, 2016.

François Chollet. Keras. https://github.com/fchollet/keras, 2015.

Alonzo Church. A formulation of the simple theory of types. J. Symb. Log., 5(2):56–68, 1940. doi:
10.2307/2266170. URL http://dx.doi.org/10.2307/2266170.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Hazel Duncan. The Use of Data-Mining for the Automatic Formation of Tactics. PhD thesis, Uni-
versity of Edinburgh, 2007.

Michael Färber and Chad E. Brown. Internal guidance for Satallax. In Nicola Olivetti and Ashish
Tiwari (eds.), International Joint Conference on Automated Reasoning (IJCAR 2016), volume
9706 of LNCS, pp. 349–361. Springer, 2016. doi: 10.1007/978-3-319-40229-1.

9

http://tensorflow.org/
https://arxiv.org/abs/1606.04442
https://github.com/fchollet/keras
http://dx.doi.org/10.2307/2266170


Published as a conference paper at ICLR 2017

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot,
Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence
Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A machine-checked proof of the
odd order theorem. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie (eds.),
Interactive Theorem Proving (ITP 2013), volume 7998 of LNCS, pp. 163–179. Springer, 2013.

Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF, volume 78
of Lecture Notes in Computer Science. Springer, 1979. ISBN 3-540-09724-4. doi: 10.1007/
3-540-09724-4. URL http://dx.doi.org/10.1007/3-540-09724-4.

Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz. Mizar in a nutshell. J. Formalized
Reasoning, 3(2):153–245, 2010. doi: 10.6092/issn.1972-5787/1980.

Thomas Hales, John Harrison, Sean McLaughlin, Tobias Nipkow, Steven Obua, and Roland
Zumkeller. A revision of the proof of the Kepler Conjecture. Discrete & Computational Ge-
ometry, 44(1):1–34, 2010.

Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison, Truong Le Hoang,
Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat Nguyen, Truong Quang Nguyen,
Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, An Hoai Thi Ta,
Trung Nam Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller. A formal
proof of the Kepler conjecture. CoRR, abs/1501.02155, 2015.

John Harrison. HOL Light: An overview. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel (eds.), Theorem Proving in Higher Order Logics (TPHOLs 2009), volume
5674 of LNCS, pp. 60–66. Springer, 2009.

John Harrison. The HOL Light theory of Euclidean space. J. Autom. Reasoning, 50(2):173–190,
2013. doi: 10.1007/s10817-012-9250-9.

John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem proving. In Jörg
Siekmann (ed.), Handbook of the History of Logic vol. 9 (Computational Logic), pp. 135–214.
Elsevier, 2014.

R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the
american mathematical society, 146:29–60, 1969. ISSN 0002-9947.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Kryštof Hoder and Andrei Voronkov. Sine qua non for large theory reasoning. In Nikolaj Bjørner and
Viorica Sofronie-Stokkermans (eds.), CADE-23, volume 6803 of LNAI, pp. 299–314. Springer,
2011.

Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In Myla Archer, Ben Di
Vito, and César Muñoz (eds.), Design and Application of Strategies/Tactics in Higher Order Log-
ics (STRATA 2003), number NASA/CP-2003-212448 in NASA Technical Reports, pp. 56–68,
September 2003. URL http://www.gilith.com/research/papers.

Joe Hurd. The OpenTheory standard theory library. In Mihaela Gheorghiu Bobaru, Klaus Havelund,
Gerard J. Holzmann, and Rajeev Joshi (eds.), NASA Formal Methods (NFM 2011), volume 6617
of LNCS, pp. 177–191. Springer, 2011.

Cezary Kaliszyk and Alexander Krauss. Scalable LCF-style proof translation. In Sandrine Blazy,
Christine Paulin-Mohring, and David Pichardie (eds.), Interactive Theorem Proving (ITP 2013),
volume 7998 of LNCS, pp. 51–66. Springer, 2013.

Cezary Kaliszyk and Josef Urban. Learning-assisted automated reasoning with Flyspeck. J. Autom.
Reasoning, 53(2):173–213, 2014. doi: 10.1007/s10817-014-9303-3.

Cezary Kaliszyk and Josef Urban. FEMaLeCoP: Fairly efficient machine learning connection
prover. In Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov (eds.), 20th In-
ternational Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR
2015), volume 9450 of LNCS, pp. 88–96. Springer, 2015a. doi: 10.1007/978-3-662-48899-7.

10

http://dx.doi.org/10.1007/3-540-09724-4
http://www.gilith.com/research/papers


Published as a conference paper at ICLR 2017

Cezary Kaliszyk and Josef Urban. Learning-assisted theorem proving with millions of lemmas.
J. Symbolic Computation, 69:109–128, 2015b. doi: 10.1016/j.jsc.2014.09.032.

Cezary Kaliszyk, Josef Urban, and Jiří Vyskočil. Learning to parse on aligned corpora. In Christian
Urban and Xingyuan Zhang (eds.), Proc. 6h Conference on Interactive Theorem Proving (ITP’15),
volume 9236 of LNCS, pp. 227–233. Springer-Verlag, 2015. doi: 10.1007/978-3-319-22102-1_
15.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray, Thomas Sewell, Rafal Kolan-
ski, and Gernot Heiser. Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst., 32(1):2, 2014.

Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha Shary-
gina and Helmut Veith (eds.), Computer-Aided Verification (CAV 2013), volume 8044 of LNCS,
pp. 1–35. Springer, 2013.

Daniel Kühlwein and Josef Urban. MaLeS: A framework for automatic tuning of automated theorem
provers. J. Autom. Reasoning, 55(2):91–116, 2015. doi: 10.1007/s10817-015-9329-1.

Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, 2009.

Steven Obua and Sebastian Skalberg. Importing HOL into Isabelle/HOL. In Ulrich Furbach and
Natarajan Shankar (eds.), International Joint Conference on Automated Reasoning (IJCAR 2006),
volume 4130 of LNCS, pp. 298–302. Springer, 2006.

Lawrence C. Paulson. A generic tableau prover and its integration with Isabelle. J. Universal
Computer Science, 5(3):73–87, 1999.

Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart Middeldorp, and Andrei
Voronkov (eds.), Logic for Programming, Artificial Intelligence (LPAR 2013), volume 8312 of
LNCS, pp. 735–743. Springer, 2013.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lil-
licrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of go with deep neural networks and tree search. Nature, 529:484–503, 2016. URL
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html.

Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Reasoning
with neural tensor networks for knowledge base completion. In Advances in Neural In-
formation Processing Systems 26: 27th Annual Conference on Neural Information Pro-
cessing Systems 2013. Proceedings., pp. 926–934, 2013a. URL http://papers.nips.cc/paper/
5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Stroudsburg, PA, October 2013b. Association for Computational Lin-
guistics.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In Advances
in Neural Information Processing Systems, pp. 2431–2439, 2015.

Geoff Sutcliffe. The CADE ATP system competition - CASC. AI Magazine, 37(2):99–101, 2016.

Josef Urban, Jiří Vyskočil, and Petr Štěpánek. MaLeCoP: Machine learning connection prover. In
Kai Brünnler and George Metcalfe (eds.), TABLEAUX 2011, volume 6793 of LNCS. Springer,
2011.

11

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion


Published as a conference paper at ICLR 2017

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa,
Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine translation. CoRR,
abs/1609.08144, 2016. URL http://arxiv.org/abs/1609.08144.

12

http://arxiv.org/abs/1609.08144

