
Workshop track - ICLR 2017

ADVERSARIAL ATTACKS
ON NEURAL NETWORK POLICIES

Sandy Huang†, Nicolas Papernot‡, Ian Goodfellow§, Yan Duan†§, Pieter Abbeel†§
† University of California, Berkeley, Department of Electrical Engineering and Computer Sciences
‡ Pennsylvania State University, School of Electrical Engineering and Computer Science
§ OpenAI
shhuang@cs.berkeley.edu, ngp5056@cse.psu.edu,
{ian,rocky,pieter}@openai.com

ABSTRACT

Machine learning classifiers are known to be vulnerable to inputs maliciously
constructed by adversaries to force misclassification. Such adversarial examples
have been extensively studied in the context of computer vision applications. In this
work, we show adversarial attacks are also effective when targeting neural network
policies in reinforcement learning. Specifically, we show existing adversarial exam-
ple crafting techniques can be used to significantly degrade test-time performance
of trained policies. Our threat model considers adversaries capable of introducing
small perturbations to the raw input of the policy. We characterize the degree of
vulnerability across tasks and training algorithms, for a subclass of adversarial-
example attacks in white-box and black-box settings. Regardless of the learned
task or training algorithm, we observe a significant drop in performance, even with
small adversarial perturbations that do not interfere with human perception. Videos
are available at http://rll.berkeley.edu/adversarial.

1 INTRODUCTION

Recent advances in deep learning and deep reinforcement learning (RL) have made it possible to learn
end-to-end policies that map directly from raw inputs (e.g., images) to a distribution over actions to
take. These policies are parametrized by neural networks, which have been shown to be vulnerable to
adversarial attacks in supervised learning settings (Szegedy et al., 2014). Unlike supervised learning,
where a fixed dataset of training examples is processed during learning, in reinforcement learning
these examples are gathered throughout the training process. Thus, policies trained to do the same
task could conceivably be significantly different (e.g., in terms of the high-level features they extract
from the raw input), depending on how they were initialized and trained.

Our main contribution is to characterize how the effectiveness of adversarial attacks on neural network
policies is impacted by two factors: the deep RL algorithm used to learn the policy, and whether
the adversary has access to the policy network itself (white-box vs. black-box). We consider a fully
trained policy at test time, and allow the adversary to make limited changes to the raw input perceived
from the environment before it is passed to the policy (Fig. 1).

2 RELATED WORK

Szegedy et al. (2014) first demonstrated the vulnerability of deep networks to perturbations indis-
tinguishable to humans, leading to a series of follow-up work that showed perturbations could be
produced with minimal computing resources (Goodfellow et al., 2015) and/or with access to the
model label predictions only (thus enabling black-box attacks) (Papernot et al., 2016), and that these
perturbations can also be applied to physical objects (Kurakin et al., 2016; Sharif et al., 2016).

Most work on adversarial examples so far has studied their effect on supervised learning algorithms.
A recent technical report studied the scenario of an adversary interfering with the training of an agent,
with the intent of preventing the agent from learning anything meaningful (Behzadan & Munir, 2017).
Our work is the first to study the ability of an adversary to interfere with the operation of an RL agent
by presenting adversarial examples at test time.

1

http://rll.berkeley.edu/adversarial

Workshop track - ICLR 2017

action taken: down
original input

action taken: noop
adversarial input

Figure 1: Fooling a policy trained with DQN (Mnih et al., 2013) to play Pong. The policy chooses a
good action given the original input, but the adversarial perturbation results in missing the ball and
losing the point. (The dotted arrow starts from the ball and denotes the direction it is traveling in, and
the green rectangle highlights the action that maximizes the Q-value, for the given input.)

3 ADVERSARIAL ATTACKS

We use the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015), an existing method for
efficiently generating adversarial examples in the context of computer vision classification. FGSM is
fast because it makes a linear approximation of a deep model and solves the maximization problem
analytically, to compute the optimal adversarial perturbation under the linear approximation.

3.1 APPLYING FGSM TO POLICIES

FGSM requires calculating ∇xJ(θ, x, y), the gradient of the cost function J(θ, x, y) with respect to
the input x. In the reinforcement learning setting, we assume the output y is a weighting over possible
actions (i.e., the policy is stochastic). When computing adversarial perturbations with FGSM for a
trained policy πθ, we assume the action with the maximum weight in y is the optimal action to take:
in other words, we assume the policy performs well at the task. Thus, J(θ, x, y) is the cross-entropy
loss between y and the distribution that places all weight on the highest-weighted action in y.1

3.2 CHOOSING A NORM CONSTRAINT

FGSM typically restricts the `∞-norm of the adversarial perturbation η. We additionally consider
restriction of the `1- and `2-norms, since in certain situations it may be desirable to change all input
features by no more than a tiny amount (i.e., constrain ‖η‖∞), whereas in others it may be better to
change only a small number of input features (i.e., constrain ‖η‖1). Linearizing the cost function
J(θ, x, y) around the current input x, the optimal perturbation for each type of norm constraint is:

η =


ε sign(∇xJ(θ, x, y)) for constraint ‖η‖∞ ≤ ε
ε
√
d ∗ ∇xJ(θ,x,y)

‖∇xJ(θ,x,y)‖2
for constraint ‖η‖2 ≤ ‖ε1d‖2

maximally perturb highest-impact dimensions with budget εd
for constraint ‖η‖1 ≤ ‖ε1d‖1

(1)

where d is the number of dimensions of input x. Note that the `2-norm and `1-norm constraints
have ε adjusted to be the `2- and `1-norm of the vector ε1d, respectively, since that is the amount
of perturbation under the `∞-norm constraint. The optimal perturbation for the `1-norm constraint
either maximizes or minimizes the feature value at dimensions i of the input, ordered by decreasing
|∇θJ(θ, x, y)i|. For this norm, the adversary’s budget — the total amount of perturbation the
adversary is allowed to introduce in the input — is εd.

4 EXPERIMENTAL EVALUATION

We evaluate our adversarial attacks on four Atari 2600 games in the Arcade Learning Environ-
ment (Bellemare et al., 2013) — Chopper Command, Pong, Seaquest, and Space Invaders — and

1Functionally, this is equivalent to a technique introduced in the context of image classification, to generate
adversarial examples without access to the true class label (Kurakin et al., 2017).

2

Workshop track - ICLR 2017

train each with three deep reinforcement learning algorithms: A3C (Mnih et al., 2016), TRPO (Schul-
man et al., 2015), and DQN (Mnih et al., 2013). We use the same pre-processing and neural network
architecture as in Mnih et al. (2013) (Appendix B). The input is a concatenation of the last 4 images,
converted from RGB to luminance (Y) and resized to 84× 84. Luminance values are rescaled to be
from 0 to 1. The output of the policy is a distribution over possible actions.

For each game and training algorithm, we train five policies starting from different random initializa-
tions. For our experiments, we focus on the top-performing trained policies, which we define as all
policies that perform within 80% of the maximum score, averaged over the last ten training iterations.
We cap the number of policies at three for each game and training algorithm. Certain combinations
(e.g., Seaquest with A3C) had only one policy meet these requirements.

4.1 VULNERABILITY TO WHITE-BOX ATTACKS

First, we are interested in how vulnerable neural network policies are to white-box adversarial-
example attacks, and how this is affected by the type of adversarial perturbation and training algorithm.
We find regardless of which game the policy is trained for or how it is trained, it is indeed possible to
significantly decrease performance through introducing relatively small perturbations (Supplementary
Fig. S2).

Notably, in many cases an `∞-norm FGSM adversary with ε = 0.001 decreases the agent’s per-
formance by 50% or more; when converted to 8-bit image encodings, these adversarial inputs are
indistinguishable from the original inputs. In contrast, `1-norm adversaries are able to sharply
decrease the agent’s performance just by changing a few pixels (by large amounts).

We see that policies trained with A3C, TRPO, and DQN are all susceptible to adversarial inputs. Inter-
estingly, policies trained with DQN are more susceptible, especially to `∞-norm FGSM perturbations
on Pong, Seaquest, and Space Invaders.

4.2 VULNERABILITY TO BLACK-BOX ATTACKS

In practice, often an adversary does not have complete access to the neural network of the target
policy (Papernot et al., 2016), known as the black-box scenario. We investigate how vulnerable neural
network policies are to black-box attacks of the following two variants:

1. Transferability across policies: the adversary has access to the training environment and
knowledge of the training algorithm and hyperparameters. It knows the architecture of the
target policy network, but not its random initialization.

2. Transferability across algorithms: the adversary has no knowledge of the training algorithm.

As one might expect, we find that the less the adversary knows about the target policy, the less
effective the adversarial examples are (Supplementary Fig. S3, S4, S5). Transferability across
algorithms is less effective at decreasing agent performance than transferability across policies, which
is less effective than when the adversary does not need to rely on transferability (i.e., the adversary has
full access to the target policy network). However, for most games, transferability across algorithms
is still able to significantly decrease the agent’s performance, especially for larger values of ε. Notably
for `1-norm adversaries, transferability across algorithms is nearly as effective as no transferability,
for most game and algorithm combinations.

5 DISCUSSION AND FUTURE WORK

This direction of work has significant implications for both online and real-world deployment of neural
network policies. Our experiments show it is fairly easy to confuse such policies with computationally-
efficient adversarial examples, even in black-box scenarios. Based on Kurakin et al. (2016), these
adversarial perturbations could possibly be applied to objects in the real world, for example adding
strategically-placed paint to road surfaces to confuse an autonomous car’s lane-following policy.

Thus, an important direction of future work is developing defenses against adversarial attacks. This
could involve adding adversarially-perturbed examples during training time (as in Goodfellow et al.
(2015)), or it could involve detecting adversarial input at test time and dealing with it appropriately.

3

Workshop track - ICLR 2017

REFERENCES

V. Behzadan and A. Munir. Vulnerability of deep reinforcement learning to policy induction attacks.
arXiv preprint arXiv:1701.04143, 2017.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 06
2013.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym, 2016.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement
learning for continuous control. In Proceedings of the Thirty-Third International Conference on
Machine Learning, 2016.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In
Proceedings of the Third International Conference on Learning Representations, 2015.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. Proceed-
ings of the Fifth International Conference on Learning Representations, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. In NIPS Workshop on Deep Learning, 2013.

V. Mnih, A. Puigdomenech Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Proceedings of the
Thirty-Third International Conference on Machine Learning, 2016.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. Practical black-box
attacks against deep learning systems using adversarial examples. arXiv preprint arXiv:1602.02697,
2016.

J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust region policy optimization. In
Proceedings of the Thirty-Second International Conference on Machine Learning, 2015.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Accessorize to a crime: Real
and stealthy attacks on state-of-the-art face recognition. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1528–1540, 2016.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. In Proceedings of the Second International Conference on Learning
Representations, 2014.

4

Workshop track - ICLR 2017

A SUPPLEMENTARY FIGURES

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
ge

 R
et

ur
n

Chopper Command, A3C

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

30

20

10

0

10

20

30

A
ve

ra
ge

 R
et

ur
n

Pong, A3C

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

 R
et

ur
n

Seaquest, A3C

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Space Invaders, A3C

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

1000

2000

3000

4000

5000

6000

7000

8000

A
ve

ra
ge

 R
et

ur
n

Chopper Command, TRPO

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

30

20

10

0

10

20

30

A
ve

ra
ge

 R
et

ur
n

Pong, TRPO

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

200

300

400

500

600

700

800

900

1000

1100

A
ve

ra
ge

 R
et

ur
n

Seaquest, TRPO

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

200

400

600

800

1000

1200

1400

A
ve

ra
ge

 R
et

ur
n

Space Invaders, TRPO

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

400

600

800

1000

1200

1400

1600

1800

2000

2200

A
ve

ra
ge

 R
et

ur
n

Chopper Command, DQN

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

25

20

15

10

5

0

5

10

15

20

A
ve

ra
ge

 R
et

ur
n

Pong, DQN

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

500

1000

1500

2000

2500

A
ve

ra
ge

 R
et

ur
n

Seaquest, DQN

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

Space Invaders, DQN

Figure S2: Comparison of the effectiveness of `∞, `2, and `1 FGSM adversaries on four Atari games
trained with three learning algorithms. The average return is taken across ten rollouts. Constraint on
FGSM perturbation: `∞-norm `2-norm `1-norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
ge

 R
et

ur
n

Chopper Command, A3C, `∞ norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

30

20

10

0

10

20

30

A
ve

ra
ge

 R
et

ur
n

Pong, A3C, `∞ norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

 R
et

ur
n

Seaquest, A3C, `∞ norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

100

200

300

400

500

600

700

800

900

1000

A
ve

ra
ge

 R
et

ur
n

Space Invaders, A3C, `∞ norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

1000

2000

3000

4000

5000

6000

A
ve

ra
ge

 R
et

ur
n

Chopper Command, A3C, `1 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

30

20

10

0

10

20

30

A
ve

ra
ge

 R
et

ur
n

Pong, A3C, `1 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

 R
et

ur
n

Seaquest, A3C, `1 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Space Invaders, A3C, `1 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

1000

2000

3000

4000

5000

6000

7000

8000

A
ve

ra
ge

 R
et

ur
n

Chopper Command, A3C, `2 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

30

20

10

0

10

20

30

A
ve

ra
ge

 R
et

ur
n

Pong, A3C, `2 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

 R
et

ur
n

Seaquest, A3C, `2 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

100

200

300

400

500

600

700

800

900

1000

A
ve

ra
ge

 R
et

ur
n

Space Invaders, A3C, `2 norm

Figure S3: Transferability of adversarial inputs for policies trained with A3C. Type of transfer:
algorithm policy none

5

Workshop track - ICLR 2017

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

1000

2000

3000

4000

5000

6000

7000

8000

A
ve

ra
ge

 R
et

ur
n

Chopper Command, TRPO, `∞ norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

30

20

10

0

10

20

30

A
ve

ra
ge

 R
et

ur
n

Pong, TRPO, `∞ norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

300

400

500

600

700

800

900

1000

1100

A
ve

ra
ge

 R
et

ur
n

Seaquest, TRPO, `∞ norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

200

400

600

800

1000

1200

1400

A
ve

ra
ge

 R
et

ur
n

Space Invaders, TRPO, `∞ norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

1000

2000

3000

4000

5000

6000

7000

8000

A
ve

ra
ge

 R
et

ur
n

Chopper Command, TRPO, `1 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

30

20

10

0

10

20

30

A
ve

ra
ge

 R
et

ur
n

Pong, TRPO, `1 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Seaquest, TRPO, `1 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

200

400

600

800

1000

1200

1400

A
ve

ra
ge

 R
et

ur
n

Space Invaders, TRPO, `1 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

1000

2000

3000

4000

5000

6000

7000

8000

A
ve

ra
ge

 R
et

ur
n

Chopper Command, TRPO, `2 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

30

20

10

0

10

20

30

A
ve

ra
ge

 R
et

ur
n

Pong, TRPO, `2 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

200

300

400

500

600

700

800

900

1000

1100

A
ve

ra
ge

 R
et

ur
n

Seaquest, TRPO, `2 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

200

400

600

800

1000

1200

1400

A
ve

ra
ge

 R
et

ur
n

Space Invaders, TRPO, `2 norm

Figure S4: Transferability of adversarial inputs for policies trained with TRPO. Type of transfer:
algorithm policy none

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

400

600

800

1000

1200

1400

1600

1800

2000

2200

A
ve

ra
ge

 R
et

ur
n

Chopper Command, DQN, `∞ norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

25

20

15

10

5

0

5

10

15

20

A
ve

ra
ge

 R
et

ur
n

Pong, DQN, `∞ norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

500

1000

1500

2000

2500

A
ve

ra
ge

 R
et

ur
n

Seaquest, DQN, `∞ norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

Space Invaders, DQN, `∞ norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

400

600

800

1000

1200

1400

1600

1800

2000

2200

A
ve

ra
ge

 R
et

ur
n

Chopper Command, DQN, `1 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

25

20

15

10

5

0

5

10

15

20

A
ve

ra
ge

 R
et

ur
n

Pong, DQN, `1 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

500

1000

1500

2000

2500

A
ve

ra
ge

 R
et

ur
n

Seaquest, DQN, `1 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

100

200

300

400

500

600

700

A
ve

ra
ge

 R
et

ur
n

Space Invaders, DQN, `1 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

600

800

1000

1200

1400

1600

1800

2000

2200

A
ve

ra
ge

 R
et

ur
n

Chopper Command, DQN, `2 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

25

20

15

10

5

0

5

10

15

20

A
ve

ra
ge

 R
et

ur
n

Pong, DQN, `2 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

500

1000

1500

2000

2500

A
ve

ra
ge

 R
et

ur
n

Seaquest, DQN, `2 norm

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
ε

0

100

200

300

400

500

600

700

A
ve

ra
ge

 R
et

ur
n

Space Invaders, DQN, `2 norm

Figure S5: Transferability of adversarial inputs for policies trained with DQN. Type of transfer:
algorithm policy none

6

Workshop track - ICLR 2017

B EXPERIMENTAL SETUP

We set up our experiments within the rllab (Duan et al., 2016) framework. We use a parallelized
version of the rllab implementation of TRPO, and integrate outside implementations of DQN2 and
A3C3. We use OpenAI Gym environments (Brockman et al., 2016) as the interface to the Arcade
Learning Environment (Bellemare et al., 2013).

The policies use the network architecture from Mnih et al. (2013): a convolutional layer with 16
filters of size 8× 8 with a stride of 4, followed by a convolutional layer with 32 filters of size 4× 4
with a stride of 2. The last layer is a fully-connected layer with 256 hidden units. All hidden layers
are followed by a rectified nonlinearity.

For all games, we set the frame skip to 4 as in Mnih et al. (2013). The frame skip specifies the number
of times the agent’s chosen action is repeated.

B.1 TRAINING

We trained policies with TRPO and A3C on Amazon EC2 c4.8xlarge machines. For each policy, we
ran TRPO for 2,000 iterations of 100,000 steps each, which took 1.5 to 2 days. We set the bound on
the KL divergence to 0.01, as in Schulman et al. (2015).

For A3C, we used 18 actor-learner threads and a learning rate of 0.0004. As in Mnih et al. (2016),
we use an entropy regularization weight of 0.01, use RMSProp for optimization with a decay factor
of 0.99, update the policy and value networks every 5 time steps, and share all weights except the
output layer between the policy and value networks. For each policy, we ran A3C for 200 iterations
of 1,000,000 steps each, which took 1.5 to 2 days.

For DQN, we trained policies on Amazon EC2 p2.xlarge machines. We used 100,000 steps per epoch
and trained for two days.

2github.com/spragunr/deep_q_rl
3github.com/muupan/async-rl

7

github.com/spragunr/deep_q_rl
github.com/muupan/async-rl

	Introduction
	Related Work
	Adversarial Attacks
	Applying FGSM to Policies
	Choosing a Norm Constraint

	Experimental Evaluation
	Vulnerability to White-Box Attacks
	Vulnerability to Black-Box Attacks

	Discussion and Future Work
	Supplementary Figures
	Experimental Setup
	Training

