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Abstract001

Once language models (LMs) are deployed,002
they can interact with users long-term, ideally003
evolving continuously based on user feedback.004
Asking direct feedback from users can be costly005
and disruptive, motivating our research in har-006
vesting implicit user feedback from user inter-007
action logs. In this work, we study implicit user008
feedback in two user-LM interaction datasets009
(WildChat and LMSYS). First, we analyze user010
feedback in the human-LLM conversation tra-011
jectory, providing insights on the patterns of012
implicit user feedback. Second, we study har-013
vesting learning signals from such implicit user014
feedback. We find that the contents of user015
feedback (e.g., user wanted clarification), not016
just the polarity (e.g., users were unhappy with017
the previous model response), can provide help-018
ful signals for improving model performance in019
some settings but not universally. We also find020
that the usefulness of user feedback is largely021
tied to the quality of the user’s initial prompt.022
Together, we provide an in-depth study in im-023
plicit user feedback, showing its potential and024
limitations.025

1 Introduction026

Real world user queries are often ambiguous and027

underspecified, making it challenging for LLMs to028

generate a satisfying response at once. Users often029

engage in multi-turn interactions with language as-030

sistants, providing multiple feedbacks for previous031

model responses like “Good job!” or additional032

requests like “Could you label y-axis in this plot?”,033

hinting their initial response does not fully satisfy034

their inquiry. Such implicit feedback is natural and035

very common in human-LLM interactions (Zheng036

et al., 2023a; Zhao et al., 2024).037

Our work builds upon recent work (Don-Yehiya038

et al., 2024) which prompts LLMs to identify such039

implicit user feedback in LMSys dataset (Zheng040

et al., 2023a) and use it as a learning signal to041

improve LLMs. They identify and use two types042

Figure 1: We identify user’s implicit feedback to
model’s initial response. New model response generated
incorporating such feedback (bottom right) can provide
more useful learning signal than the new model response
generated with the initial user input alone (bottom left).

of user feedback (promoting response that elicited 043

positive feedback and suppressing responses that 044

elicited negative feedback) to improve model per- 045

formances. While intuitive, our study reveals such 046

simplification can be harmful and one needs to be 047

careful in using implicit user feedback for learning 048

signals, as depicted in Figure 5. 049

We provide a comprehensive study (Section 3 050

and Section 4) on implicit feedback found in two 051

real-world datasets: LMSYS and WildChat (Zhao 052

et al., 2024). First we provide new dense annota- 053

tions on full conversation, labeling each user turn 054

after the intial prompt. This allows us to study feed- 055

back dynamics across turns, and we find feedback 056

is very frequent in longer multi-turn conversations, 057

consisting more than half of user utterances at later 058

turns. We further study what are the characteristics 059

of user prompt that elicits different types of feed- 060

back afterwards. We find that prompts that elicit 061

1



positive feedback can be lower quality and even062

more toxic than randomly sampled prompts.063

In the later two sections (Section 6 and Sec-064

tion 7), we study leveraging implicit user feed-065

back to improve LLM. Having identified issues066

with prompts that elicit positive feedback, we fo-067

cus mainly on leveraging implicit negative feed-068

back. Figure 1 visualizes this approach. We study069

a distillation setting, where we assume a stronger070

LLM, distinct from LLM used in user interaction071

logs. Our key hypothesis is that leveraging not072

only the feedback polarity but the contents of feed-073

back (what aspects of the initial model response074

was unsatisfactory) to regenerate improved model075

responses. We report mixed results, showing that076

such regeneration strategy can be helpful in certain077

settings but can hurt in others, painting the com-078

plexity of learning from noisy real-world user data.079

We discuss various considerations when incorpo-080

rating implicit user feedback into learning. We will081

release our datasets and code upon publication.082

2 Background083

We build upon a recent work (Don-Yehiya et al.,084

2024) which studies users’ interactions with LLMs,085

focusing on users’ implicit feedback to model re-086

sponses. They classify implicit feedback into two087

categories: (1) a positive feedback which praises088

the model’s response (i.e., “Great job!”) and (2)089

negative feedback which signals the model’s pre-090

vious response was not satisfactory. They further091

divide the negative feedback into the following four092

categories:093

• Rephrasing where the user rephrased their prior094

request to try and elicit a better LLM response.095

• Make Aware without Correction where the096

user’s response simply indicates that the model’s097

prior response was wrong.098

• Make Aware with Correction where the user’s099

response additionally provides instruction on100

how to correct the model’s prior response.101

• Asks for Clarification where the user asks the102

LLM to provide additional information that was103

missing from its prior response.104

We use their ontology of feedback types in this105

work, and aim to frame a classification task as be-106

low.107

2.1 Formulation108

We assume a multi-turn conversation between users109

and LLMs, c = {u1,m1, · · · ,un,mn}, where110

ui and mi are the i-th user and model responses, 111

respectively. Each i-th user turn after their initial 112

request may contain feedback for the prior model 113

response, mi−1. We assign each user turn ui for 114

2 ≤ i ≤ n with one label from a label set L. 115

We define three label sets L, differing in the 116

granularity of the labels. The binary classifica- 117

tion label set distinguishes between any feedback 118

(merging positive and all types of negative classes) 119

from no feedback. The three-way classification 120

label set consists of {positive feedback, all types 121

of negative feedback, no feedback}. Lastly, the 122

fine-grained label set consists of six labels, posi- 123

tive feedback, the four types of negative feedback 124

described above, and no feedback. 125

A classification model f takes the conversation 126

c and produces a n− 1 dimensional vector y. 127

f(c) → y 128

where y ∈ Ln−1 and yi−1 represent the label as- 129

signed to the i-th user turn. 130

3 Identifying Implicit User Feedback 131

3.1 Datasets 132

In this study, we examine two sources of user-LLM 133

interactions, the LMSYS-chat-1M and WildChat 134

datasets. While both capture natural user inter- 135

actions, the purpose of their interactions differs 136

substantially. 137

LMSYS-chat-1M (Zheng et al., 2023a) is col- 138

lected from Chatbot Arena,1 where users interact 139

with LLMs to evaluate them. Once a question is 140

asked, the user is presented with two answers from 141

different anonymous LLMs and provide a ranking 142

between the two answers. We will refer to this 143

dataset as LMSYS. 144

WildChat (Zhao et al., 2024) collected its con- 145

versations through a GPT API hosted free of charge 146

in exchange for the shared interaction logs between 147

users and GPT models performing daily tasks. 148

LMSYS is used mainly for model evaluation, 149

while WildChat more closely reflects real user 150

needs. The former is shorter, containing more 151

edge cases and ill-defined tasks, while the latter 152

has longer interactions and contains more complex 153

task instructions. 154

1https://lmarena.ai/
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Annotation Source # annotated # annotated N (# turns with fb / # turns annotated)
convs turns 2 3 4 ≥5

Sparse (Don-Yehiya et al., 2024) LMSYS 75 107 44 / 44 20 / 20 10 / 10 21 / 21
Dense (Ours) LMSYS 742 227 43 / 74 26 / 32 13 / 17 24 / 25
Dense (Ours) WildChat 34 206 30 / 34 24 / 30 26 / 29 85 / 86

Table 1: Statistics of annotated feedback data. N= i represents the number of feedback at ith turn of conversations.
# conv is the total number of conversations annotated, and # turns means the total number of user messages in the
conversation from this data split. Overall, WildChat has denser feedback ratios along all conversations turns.

3.2 Manually Annotated Feedback Dataset155

We start our study with examining the manually156

labeled feedback data provided by Don-Yehiya157

et al. (2024) on LM. They annotated 101 user turns158

over 77 unique conversations, only labeling user159

turns with positive or negative feedback. We refer160

to this set as Sparse, and it consists of three turn161

{ui,mi,ui+1} partial conversations, where the la-162

bel for ui+1 is either positive or one of the four163

negative feedback types. We present the distribu-164

tion of human-annotated labels in Figure 6 in the165

Appendix.166

These existing annotations are not comprehen-167

sive (i.e., not every turn in the conversation is168

labeled). To explore the dynamics of feedback169

throughout the entire conversation, we select a to-170

tal of 109 conversations (75 sampled from LMSYS171

and 34 from WildChat)3 and annotate them com-172

prehensively. We refer to these annotated sets as173

Dense. Table 1 compares the feedback data statis-174

tics from the Sparse and Dense annotated sets.175

The authors of this paper provided this annota-176

tion after reading the guidelines from Don-Yehiya177

et al. (2024). Two authors cross-annotated about 54178

conversations for measuring inter-annotator agree-179

ment. We report substantial agreement measured180

by Cohen’s kappa: 0.70 for binary classification,181

0.74 for three-way classification and 0.60 for fine-182

grained classification.183

3.3 Automatic Feedback Identification184

As manually annotating feedback is taxing, we185

explore automatically identifying feedback by186

prompting LLMs. LLMs have shown promising187

performances in various classification tasks (Brown188

2Upon examining our labels for 75 conversations from
LMSYS, we find one conversation has incorrect annotation (e.g.
feedback labeled in the first user turn) and removed this con-
versation.

3For LMSYS, we use the same set of conversations as their
released annotations; For WildChat, we randomly sample 34
conversations so that we have roughly 200 feedback instances
for both datasets.

Eval
Setting Prompt

Accuracy %
P % R %

Bin. Three. Fine.

Sparse Prior 41.4 45.3 43.2 84.2 44.9
Ours 81.1 60.2 47.4 100.0 69.2

Dense Prior 31.5 30.07 22.3 76.0 27.0
Ours 41.6 55.4 49.0 61.1 35.9

Table 2: Automatic feedback identification results with
prompting GPT-4o-mini. Prior refers to the prompt
from prior work (Don-Yehiya et al., 2024). In the last
two columns, we report Precison (P) and Recall (R) for
binary classification.

et al., 2020), and prior work (Don-Yehiya et al., 189

2024; Shaikh et al., 2025) has also explored prompt- 190

ing LLMs (specifically GPT-4o-mini) to classify 191

user feedback in multi-turn user-LLM interactions. 192

We do not fine-tune LLMs, and simply prompt 193

it with our new prompt template which contains 194

in-context examples. The exact prompt can be 195

found in the appendix B.2. The prompt takes the 196

entire conversation and provides labels for detected 197

feedback turns. 198

We compare the classification performance of 199

our prompt and the prompt used in their original 200

study (Don-Yehiya et al., 2024). We evaluate over 201

both feedback annotation sets: the easier (Sparse) 202

setting and the harder (Dense) setting described 203

in Section 3.2. For the sparse setting, the input 204

conversation is truncated, only consisting of three 205

turns (ui,mi,ui+1), and the last user turn (ui+1) 206

is always a positive or negative feedback. In the 207

harder setting (Dense), we task the model with 208

labeling all turns in the entire conversation. 209

Table 2 reports the feedback identification re- 210

sults. Overall, we find that our new prompt, with 211

in-context examples, shows significantly better de- 212

tection accuracy than the previous prompt. We 213

especially see gains in the dense annotation setting. 214
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Figure 2: Turn-level distribution over feedback cate-
gories from our new densly annotated dataset.
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Figure 3: Comparison of toxicity level between random
user prompts and prompts that trigger positive/negative
feedback. In both datasets, the toxicity is slightly higher
for responses that elicit positive feedback.

4 Analysis of Implicit Human Feedback215

With our automatic feedback detection method, we216

now launch a larger-scale analysis of implicit feed-217

back patterns in both datasets.218

Trends of Feedback across Conversation Turns219

Figure 2 shows per-turn fine-grained distribution220

of feedback in our newly annotated dense feed-221

back data. We use our manual annotation for this222

analysis instead of automatic detection, as the de-223

tection accuracy varies per feedback labels. We224

find that later user turns frequently contain negative225

feedback, and positive feedback is rare. We also226

find that WildChat has feedback signals that are227

more uniformly spread across user turns. Human228

feedback is distributed differently across different229

datasets. In LMSYS, more feedback exists in later230

turns, whereas in WildChat feedback spreads more231

evenly.232

User’s Toxic Pprompts We study the influence233

of toxic user messages on the presence and distri-234

bution of user feedback. To do this, we use the235

Perspective API 4 to compute the toxicity scores 236

over three different sets of sampled user utterances: 237

user utterance that elicited negative feedback, ran- 238

domly sampled user utterances, and user utterance 239

that elicited positive feedback. We sample 1K ut- 240

terances using each of these three methods for both 241

the LMSYS and WildChat datasets dataset, totaling 242

to 6k user utterances. 243

Figure 3 shows trends of the toxicity score. In 244

both datasets, we find that utterances that elicit pos- 245

itive feedback tend to be slightly higher than the 246

other two sets. Upon manual inspection, we find 247

that users tend to praise model output when it does 248

not refuse to provide answers to user’s inadequate 249

requests. In LMSYS user prompts in interactions ren- 250

dering negative feedback are slightly more toxic. In 251

WildChat dataset, we do not see significant differ- 252

ence between user uttrerances that invokes negative 253

feedback vs. randomly sampled utterances. 254

Impact of Model Refusals One potential rea- 255

son for negative feedback is the model’s refusal to 256

fulfill the user’s request. To investigate this, we 257

look at how frequently negative feedback stems 258

from refusal behaviors by models. We examine 259

how frequently model refuses to fulfill user’s re- 260

quest, and whether such refusal leads to negative 261

feedback. We sample 1K conversation turns from 262

six groups (negative, random, postive) and (LMSYS, 263

WildChat). We then cluster the text embedding of 264

model responses to identify cluster that exhibits 265

refusal behavior. 266

We find that model refusals are not common 267

across all settings, always consisting less than 3% 268

of responses. In LMSYS, around 2.5% responses 269

are refusals, while in WildChat there are less than 270

1%. The refusal rate did not meaningfully vary be- 271

tween feedback types in the same dataset. Broadly 272

speaking, we find that users tend to give feedback 273

in response to unsatisfactory model generations 274

rather than model refusals to provide an answer. 275

Analysis on Prompt Quality Li et al. (2024) pro- 276

vides a detailed rubric and scoring function for user 277

prompts, aiming to understand and analyze user 278

prompts in user-LLM interactions. We leverage 279

their setting to evaluate the user prompts in LMSYS 280

and WildChat datasets. We report the prompt qual- 281

ity in Figure 4. In general, WildChat has a higher 282

user prompt quality than LMSYS. In LMSYS, the nega- 283

tive conversations receive lower quality scores than 284

4https://perspectiveapi.com/
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Figure 4: Comparison of the quality of randomly sam-
pled user prompts and the quality of prompts that in-
curred positive/negative feedback (N=1000). In LMSYS,
prompts that incur negative or positive feedback are
slightly worse than randomly sampled prompts.

the randomly selected ones, while in WildChat we285

do not observe such trend.286

User prompts from WildChat that elicited pos-287

itive responses show the highest average quality,288

potentially reflecting users praising model’s good289

response to concrete, challenging initial prompt.290

However, such prompts from LMSYS shows from291

the lowest quality. Upon manual inspection, we292

find that many of these prompts have the goal of293

“jail-breaking” the LLM, where users provide pos-294

itive feedback to encourage models to perform295

harmful tasks. We provide a further breakdown296

of prompt quality scores across seven fine-grained297

aspects of prompt quality in Table 13 in the Ap-298

pendix.299

5 Using user Feedback to Improve Model300

Responses301

We now explore methods for leveraging implicit302

user feedback to improve LLMs. Prior work has303

studied training models by guiding them towards304

responses that elicited positive feedback and away305

from responses that elicited negative feedback306

(Ethayarajh et al., 2024). In this work, we ex-307

plore methods that further utilize the contents of the308

user’s feedback to improve the LLM, rather than309

just the polarity of the feedback. For prompts that310

have elicited negative feedback, we use the content311

of the negative feedback messages to generate im-312

proved model responses that directly address the313

negative feedback. For example, if user asks for314

a more detailed response after observing model’s315

initial response, we aim to train model to generate316

a more detailed response for user’s prior turn.317

Definitions For a conversation {u1,m1, · · · },318

we define a sub-conversation si as a partial con-319

versation sequence {ui,mi,ui+1,mi+1} involv-320

ing two user utterances and two model responses321

starting from i-th user turn. We examine the second322

user turn in the sequence ui+1 to see whether it con- 323

tains negative feedback for the model’s response 324

mj to the prior user message uj. 325

We define a set Dneg = {si : f(c)i = NEG}. 326

For control, we also collect a set Drand, a randomly 327

sampled set of subconversations without such re- 328

striction. We collect a total of four such datasets, 329

two Dneg and two Drand, each consisting of 1K 330

sub-conversations from 1K unique conversations 331

for both LMSYS and WildChat. 332

5.1 Response Regeneration Methods 333

Our proposed method, Regeneration w/ Seman- 334

tics, utilizes negative feedback in a user-LLM con- 335

versation to generate improved model responses 336

that can be used for SFT training. For each mini- 337

mal feedback instance si ∈ Dneg, we use an LLM 338

ϕ to generate mi
sem, an improved version of mi 339

that incorperates the user’s feedback: mi
sem = 340

ϕ(ui,mi,ui+1). 341

In our experiments below, we regenerate re- 342

sponses using LLMs ϕ that are stronger than the 343

original LLMs used in the conversations in LMSYS 344

and WildChat. Therefore, we expect regenerated 345

responses to improve both from incorperating the 346

user’s feedback and from the stronger LLM. To ac- 347

count for this, we introduce the following baseline, 348

described below. 349

Baseline: Regenerating from Scratch We com- 350

pare our above method for generating improved 351

model responses with regenerating responses from 352

scratch, without conditioning on the model’s orig- 353

inal response or the user’s feedback: mi
scra = 354

ϕ(ui). 355

Because regenerating responses from scratch 356

does not make use of conversation history, we com- 357

pare against regenerating responses that elicited 358

negative feedback from Dneg as well as random 359

model responses from Drand. 360

6 Experiments: Comparing Regenerated 361

Responses 362

We first compare response regeneration methods by 363

performing pairwise comparisons over regenerated 364

responses. 365

Pairwise Evaluations To compare two response 366

regeneration methods, we use a reward model RM 367
5 to generate a score s for each method’s responses. 368

5We use sfairXC/FsfairX-LLaMA3RM-v0.1 (Dong et al.,
2023; Xiong et al., 2024).
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Data
Split

Response A Response B Eval Setting

Model Method Model Method w/ fb w/o fb

Drand Better mi
scra Weak mi — 88%

Dneg

Better mi
scra Weak mi 81% 86%

Better mi
sem Weak mi 89% 61%

Better mi
sem Weak mi+1 81% 81%

Better mi
sem Better mi

scra 48% 19%
Weak mi+1 Weak mi 58% 25%

Table 3: Winrate scored by RM between the answers
from Response A versus Response B, evaluated both
with and without feedback (fb) on LMSys dataset. We
compare responses from Better in two settings (gen-
eration from scratch mscra

i , and generation with user
feedback msem

i ). For Weak LLMs, where originial
conversation derived, we compare the initial model re-
sponse mi and the model response after user feedback
mi+1. See Table 14 in the Appendix for similar results
on the WildChat dataset.

We then use these scores to track the pairwise win369

rate for each method. We experiment with two set-370

tings for generating scores from the reward model:371

(1) Eval w/ fb incorporates the user’s feedback into372

the prompt s = RM({ui,ui+1,a}) and (2) Eval373

w/o fb scores responses based only on the initial374

request s = RM({ui,a}). a is the regenerated375

answer. Conceptually, the first evaluation will pro-376

vide the reward model’s score when taking into377

consideration a more specified user intent (from378

two user utterances).379

Regenerating Responses with Different LLMs380

To explore the influence of the LLM’s strength381

on our response regeneration methods, we exper-382

iment with using a stronger model, ϕ = Better,383

and a weaker model, ϕ = Weak, for regenerat-384

ing responses. For Better, we use GPT-4o-mini385

to regenerate model responses. For Weak, we di-386

rectly take the interaction logs from the LMSYS and387

WildChat datasets: for each example fi, we simply388

take the original model responses, mi
scra = mi389

and mi
sem = mi+1. For LMSYS, the assistant390

turns are mostly (54% of conversations) generated391

with Vicuna-13B model (Chiang et al., 2023); For392

WildChat, assistant turns are generated with the393

2023 version of GPT.394

6.1 Results395

In Table 3, we report the results from comparing396

regenerated responses on Dneg and Drand on LMSYS397

dataset. The results on WildChat dataset exhibit398

similar trends and can be found in Table 14 in the399

Appendix. 400

Best LLMs can help weak models improve their 401

response to a sub-optimal answer, but adding 402

feedback semantics doesn’t help. We consis- 403

tently observe a high win rate of Better answers 404

over Weak model’s generations. Comparing two 405

answers generated from Better LLM (second to the 406

last row), we find that answers generated with the 407

feedback content mi
sem does not win over the an- 408

swer generated from scratch mi
scra, even in Eval 409

w/ fb setting (48%), and substantially lower in 410

Eval w/o fb setting (19%). However, mi
sem shows 411

slightly higher win rate (89%) against the original 412

response compared to mi
scra (81%). We hypoth- 413

esize that a better LLM could have generated out- 414

put incorporating the user’s feedback already, even 415

without targeted prompting. 416

When we look at rows involving mi
sem gen- 417

erated from better LLM (3rd-5th), we find 418

RM({ui,mi
sem}) ≤ RM({ui,ui+1,mi

sem}). 419

This suggests that the regenerated answer with feed- 420

back incorporated information from the feedback 421

to draft the new answer. 422

Weak LLMs could fail to address human feed- 423

back. In the last row, we compare the weak 424

model’s refined response mi+1 with its initial re- 425

sponse mi. The win rate is 58%, showing that self- 426

refinement is challenging. The number is higher 427

for WildChat at 74%, as it used GPT models. 428

7 Training LLMs with Regenerated 429

Responses 430

To train LLMs on responses from different regener- 431

ation methods, we use standard SFT training with 432

next token prediction loss. 433

7.1 Compared Settings 434

Similar to our experiments from Section 6 above, 435

we experiment with training LLMs on the revised 436

responses from both our regenerating from scratch 437

and regenerating with semantics methods, over on 438

both Dneg and Drand. For both methods, we exclu- 439

sively use ϕ = Better (Gpt-4o-mini) for generating 440

revised responses. To train models with KTO, we 441

also derived a set Dpos with positive feedback in- 442

stances, Dpos = {si : f(c)i = POS}. 443

7.2 Evaluation 444

Base Models For each data generation method, 445

we experiment with training two different LLMs: 446
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Data # prompts Avg # tokens complx.

MTBench 80 91.55 3.85
WildBench 1024 499.25 4.31

Table 4: Wildbench contains longer and more complex
questions compared to MTBench.

vicuna-7b (Zheng et al., 2023b) and mistral-7b447

(Jiang et al., 2023). We additionally compare448

against KTO (Ethayarajh et al., 2024) as a base-449

line, following the implementation of (Don-Yehiya450

et al., 2024). We use A100 GPUs for fine-tuning,451

where each run takes about 2 hours on one GPU.452

Datasets We evaluate our distilled models on MT-453

Bench (Zheng et al., 2023b) and WildBench (Lin454

et al., 2024), two benchmark datasets for evalu-455

ating LLM performances. MTBench contains 80456

2-turn questions that were manually constructed457

by human annotators to cover common questions458

types observed in LMSYS. WildBench contains 1024459

questions manually selected from the same source460

of WildChat.6 Both benchmarks use LLMs to rate461

the scores of model responses.7 For each setting,462

we report the average and variance perfomrance463

over 5 randomly initialized training runs.464

We briefly compare these two benchmarks in465

Table 4, reporting a data statistics like question466

amount, average number of turns in each question,467

average question length (tokens) and complexity468

score (Wang et al., 2024)). To measure complexity469

score, we follow (Wang et al., 2024) to prompt GPT-470

4o-mini with questions and rubrics to get a score471

between 1 and 5 , where high scores mean harder472

prompts. WildBench overall represents more chal-473

lenging examples, with longer and more complex474

questions.475

Metrics For both benchmarks, we use GPT-4476

as our LLM-Judge, and use the judge prompt re-477

leased in MTBench. We discuss the differences478

of using MTBench Judge and WildBench Judge479

in Appendix E. We first evaluate Vicuna models480

with both Judges and find MTBench Judge pro-481

vides more comparable scores while relative model482

rankings stay unchanged.483

6These are from same sources, but there are no overlapping
instances between WildChat and WildBench.

7Due to the high cost of LLM-as-a-Judge, we report results
on a random subset of 500 randomly sampled questions for
WildBench.

7.3 Results 484

We present the results from each setting in Table 5 485

and discuss the results below. Unsurprisingly, we 486

find that training LLMs with the outputs from a bet- 487

ter model (GPT-4o-mini) yields strong gains across 488

both base models and evaluation benchmarks. On 489

the other hand, we find that training with our KTO 490

baseline (Dneg,Dpos w/ KTO), which simply en- 491

courages responses that yielded positive feedback 492

and discourages ones that yielded negative feed- 493

back, showed mixed results. 494

Distilling GPT by SFT training on conversations 495

that were regenerated from responses that received 496

negative feedback (Dneg) can provide targeted su- 497

pervision for model failures. In contrast, distilling 498

GPT on randomly sampled responses (Drand) does 499

not provide such targeted supervision. We, there- 500

fore, expect that SFT training on mi
scra may per- 501

form better with Dneg than with Drand. Our results, 502

however, demonstrate that this is only true for our 503

MTBench evaluations, and that SFT training on 504

mi
scra with Drand outperforms training with Dneg 505

on our WildBench evaluations. 506

One hypothesis explaining these unintuitive re- 507

sults is that distilling on the more targeted data 508

from Dneg improves performance the easier tasks 509

in MT-Bench, but not on the much harder tasks in 510

WildBench. Another potential hypothesis is that 511

WildBench contains more well-specified user re- 512

quests and with clear, unamiguous instructions, and 513

training mdoels to incorporate negative user feed- 514

back can discourage such close prompt adherence. 515

We, however, are unable to verify either hypothesis 516

due to the limitations of the availible evaluations 517

sets and experimental settings, and leave such ex- 518

plorations to future work. On WildBench, we also 519

find that directly distilling from stronger models 520

(random) demonstrates consistent gains in perfor- 521

mance. This echoes our findings in the previous 522

section (Section 6), where we found that msem
i 523

is not consistently better than mscra
i according in 524

pairwise comparisons with a reward model. 525

8 Related Work 526

Refining LLM’s Answers Our work studies 527

LLM’s initial answer deemed inadequate by users 528

by regenerating answers based on the user feed- 529

back. Bai et al. (2022) explores fine-tuning mod- 530

els on LLM revising its own answers. Madaan 531

et al. (2024) proposes to refine model generation 532

based on its feedback iteratively. Similarly, Qu 533
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Train Data Split Method
MT-BENCH SCORE ↑ WILDBENCH SCORE ↑

Vicuna-7b Mistral-7B Vicuna-7b Mistral-7B

Base checkpoint 6.09 3.09 26.0 -19.01

LMSYS

Dneg,Dpos KTO 6.09 3.88 21.33 -18.81
Drand SFT on mi

scra 6.37±0.06 6.02±0.03 28.90±3.38 49.02±3.39

Dneg SFT on mi
scra 6.53±0.09 5.87±0.07 28.65±1.9 48.97±1.70

Dneg SFT on mi
sem 6.68±0.03 5.86±0.02 24.47±1.25 41.47±1.31

WildChat

Dneg,Dpos KTO 6.15 5.08 24.29 11.72
Drand SFT on mi

scra 6.19±0.02 5.96±0.44 28.74±1.16 56.16±1.26

Dneg SFT on mi
scra 6.38±0.07 5.77±0.04 27.97±1.36 51.66±1.30

Dneg SFT on mi
sem 6.86±0.02 6.32±0.03 23.38±1.94 31.80±0.62

Table 5: Results from training on response regenerations from Better LLM. We observe different result trends on
two datasets (MT-Bench and WildBench).

et al. (2024) introduces self-refinement techniques534

to optimize for multi-turn interactions. While these535

also refine model answers, they do not involve user536

feedback to achieve the goal.537

Harvesting Feedback from Interactions after De-538

ployment Prior work also studied understanding539

user’s satisfaction level and using it as feedback.540

Hancock et al. (2019) uses feedback responses as-541

sociated with the conversation partner’s attitude542

in chatbot applications. Pang et al. (2023) uses543

heuristics, such as user response length to measure544

user satisfaction for the dialogue agents. Chen et al.545

(2024) captures implicit feedback signals for model546

actions by inferring from the user’s following in-547

teraction. Gao et al. (2024) derives feedback from548

user edits on the model outputs. Most of these549

approaches are limited in their task application do-550

main.551

Borges et al. (2023) analyzes natural language552

feedback from the pedagogy angle and provides a553

framework covering various feedback aspects. The554

concepts from learning sciences can be limited to555

fully explain user feedback from the real-world556

LLM-human setting, as only half of the partici-557

pants (humans) can be characterized. And random558

users interacting with LLMs differ significantly559

from professional educators, limiting the quality560

and complexity of the feedback provided.561

Most closely relevant to our work, Don-Yehiya562

et al. (2024) also studied naturally occurring, im-563

plicit feedback in large-scale human-LLM interac-564

tions datasets. Another concurrent work (Shaikh565

et al., 2025) frames this interaction as a natural566

language grounding task, where both human and567

LLM initiate grounding acts in a multi-turn na-568

ture. Instead of framing user feedback as “posi-569

tive“ and “negative” feedback, they provide a more570

fine-grained ontology of multi-turn user responses 571

(e.g., “acknowledgement“). In this work, we study 572

using the semantics from implicit user negative 573

feedback, showing how it can direct LLMs to im- 574

prove the less-preferred response. 575

9 Conclusion 576

In this paper, we systematically study the existence 577

of user feedback in conversations, propose strong 578

feedback detection methods, and further explore 579

how to leverage it as useful training signals. 580

Limitations 581

In this work, we neglect the personal biases in user- 582

provided feedback. While the general goal of feed- 583

back is to align models better, different people may 584

have different preferences(e.g., some may favor 585

detailed explanations over short answers, and vice 586

versa). We leave it to future work to discuss whose 587

preferences we shall align with and how to avoid 588

amplifying personal biases. We also simplify our 589

assumption that feedback in all positions of conver- 590

sation are of equally importance. However, feed- 591

back in different stages of the interactions should 592

play different roles (e.g., revising answers, con- 593

firming the final goal is reached) and thus should 594

be emphasized differently. Finally, we assume the 595

feedback to be for the most recent model responses, 596

while there could be other cases when the user 597

wants to revise earlier model answers. 598
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Figure 5: A real user case from existing interaction logs,
where the user provides positive feedback upon model’s
jailbreaking responses.

B Feedback Detection715

B.1 Feedback Distribution716
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Figure 6: Distribution of dense human annotated labels.

We present the distribution of our annotated feed-717

back categories in Fig 6.718

B.2 Prompts 719

# Context
You will be given a multi-turn conversation
between a User and an Assistant. You should
act as a human annotator to identify User
feedback for the Assistant. Please read the
conversation and complete the task below.
# Task
Your task is to identify all feedback instances
for Assistant in the User responses that sat-
isfy the following feedback patterns:
## Repeat or Rephrase (NEG_1)
Does the user repeat or rephrase their con-
cern?
Examples for “yes”:
• By house, I mean apartments, not condo
• Actually, I wanted
Examples for “no”:
• Thank you
...
# Format
You should output annotations per User turn
except for the first query. You should both
output the content of the User turn where
feedback exists as well as the feedback pat-
tern category using a json format:

{
“User Response Pattern”: [Insert User
Response Pattern],
“User Response Text”: [Insert User Re-
sponse Text]
}
If there’s no feedback, please output: {
“User Response Pattern”: “NEU”,
“User Response Text”: [Insert User Re-
sponse Text]
}

Here are four examples of an input and
your expected output.
...
Now you try:
Input:

720

Table 6: Prompt for feedback detection.

B.3 Feedback Detection Performance 721

We present the detailed scores of feedback detec- 722

tion performance across Sparse and Dense Eval 723
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sets in Table 7,8,9,10,11, 12.724

Metric Theirs (%) Ours (%)

False positives 7.76 0.00
False negatives 50.86 18.86
True positives 41.38 42.29
True negatives 0.00 38.86

Accuracy 41.38 81.14
Recall 44.86 69.16
Precision 84.21 100.00

Table 7: Binary Detection performance on Sparse eval
set.

Metric Theirs Ours

# predicted feedback
/ conversation

1.1 2.11

False positives (%) 7.17 15.32
False negatives (%) 61.36 43.07
True positives (%) 22.71 24.09
True negatives (%) 8.77 17.52

Accuracy (%) 31.47 41.61
Recall (%) 27.01 35.87
Precision (%) 76.00 61.11

Table 8: Binary Detection performance on Dense eval
set.

Class P (%) R (%) F1 (%)

POS 66.67 50.00 57.14
NEG 80.43 37.37 51.03
NEU 24.71 70.00 36.52

Accuracy 45.26 45.26 45.26
Macro avg 57.27 52.46 48.23
Weighted avg 67.43 45.26 48.21

Table 9: Three-way classification (theirs) on Sparse eval.
“P”, “R”, and “F1” stand for precision, recall and F1-
score respectively.

C Analysis of Prompts Quality from725

Different Interaction Logs726

We report the prompt measured by BenchBuilder727

in (Li et al., 2024) in Table 13.728

Class Precision (%) Recall (%) F1-Score (%)

NEG 68.82 55.65 61.54
NEU 52.73 66.67 58.88
POS 62.50 55.56 58.82

Accuracy 60.19 60.19 60.19
Macro avg 61.35 59.29 59.75
Weighted avg 61.91 60.19 60.33

Table 10: Three-way classification (ours) on Sparse
eval.

Class Precision (%) Recall (%) F1-Score (%)

NEG 18.70 70.49 29.55
NEU 69.64 17.11 27.46
POS 70.00 100.00 82.35

Accuracy 30.07 30.07 30.07
Macro avg 52.78 62.53 46.46
Weighted avg 59.15 30.07 29.19

Table 11: Three-way classification (theirs) on Dense
eval.

Class Precision (%) Recall (%) F1-Score (%)

NEG 29.92 58.22 39.53
NEU 79.55 54.65 64.79
POS 25.81 32.00 28.57

Accuracy 55.35 55.35 55.35
Macro avg 45.09 48.29 44.30
Weighted avg 66.97 55.35 58.32

Table 12: Three-way classification (ours) on Dense eval.

D Winrate of LLM-Regenerated 729

Response on WildChat 730

We present the winrate of different answer regen- 731

eration methods for WildChat dataset in Table 14. 732

733

E Comparison between MTBench Judge 734

and WildBench Judge 735

We compare the scores from Judges released in 736

MTBench and WildBench in Table 15. 737
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Data Subset Specificity Domain
Knowledge Complexity Problem

Solving Creativity Technical
Accuracy

Real
World Mean

random 0.312 0.346 0.052 0.178 0.210 0.190 0.888 0.311
LMSYS follow-neg 0.222 0.236 0.036 0.130 0.166 0.122 0.708 0.231

follow-pos 0.124 0.178 0.010 0.078 0.210 0.056 0.610 0.181

random 0.242 0.388 0.076 0.190 0.236 0.220 0.844 0.314
WildChat follow-neg 0.240 0.376 0.056 0.206 0.254 0.216 0.870 0.317

follow-pos 0.168 0.284 0.142 0.168 0.546 0.128 0.880 0.331

LIMA - 0.173 0.368 0.035 0.165 0.397 0.148 0.929 0.316

Table 13: Average prompt quality in real human-LLM interactions (LMSYS and WildChat) and prompt quality in
instruction-tuning dataset (LIMA). For LMSYS and WildChat, we report prompt quality in three subsets: prompts
that elicited positive feedback in the next turn (follow-pos), prompts that elicinted negative feedback in the next turn
(follow-neg), and randomly sampled prompts. We find that in LMSYS, negative and positive feedback can be seen as
a response to less specific prompt.

Data Split
Setting A Setting B WildChat

Model Method Model Method Eval w/ fb Eval w/o fb

Drand Better mi
scra Weak mi — 88%

Dneg

Better mi
scra Weak mi 89% 90%

Better mi
sem Weak mi 84% 46%

Better mi
sem Weak mi+1 70% 71%

Better mi
sem Better mi

scra 44% 9%
Weak mi+1 Weak mi 74% 29%

Table 14: Winrate scored by RM between the answers, comparing answer from Setting A to Setting B. We compare
responses from Better in two settings (generation from scratch mscra

i , and generation with feedback from user
(msem

i ). For Weak LLMs, where originial conversation derived, we compare the initial model response mi and
the model response after user feedback mi+1. We empirically show: 1. Weak models could fail to address user
feedback. 2. User-written instructions are imperfect. 3. Human feedback may not always help improve model’s
response and the quality can vary across subests and datasets.

Train Data Split Method MT-JUDGE SCORE ↑ WILD-JUDGE SCORE ↑

WildChat
Drand SFT on mscra

i 30.51± 2.43 4.62± 0.95
Dneg SFT on mscra

i 31.08± 2.37 4.80± 1.69
Dneg SFT on msem

i 27.08± 1.29 0.1± 1.17

Table 15: Comparison of Vicuna evaluation results by MT-Judge (LLM Judge from MT-Bench) and Wild-Judge
(LLM Judge from WildBench).
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