Understanding and Learning from Implicit User Feedback

Anonymous ACL submission

Abstract

Once language models (LMs) are deployed,
they can interact with users long-term, ideally
evolving continuously based on user feedback.
Asking direct feedback from users can be costly
and disruptive, motivating our research in har-
vesting implicit user feedback from user inter-
action logs. In this work, we study implicit user
feedback in two user-LM interaction datasets
(WildChat and LMSYS). First, we analyze user
feedback in the human-LLM conversation tra-
jectory, providing insights on the patterns of
implicit user feedback. Second, we study har-
vesting learning signals from such implicit user
feedback. We find that the contents of user
feedback (e.g., user wanted clarification), not
just the polarity (e.g., users were unhappy with
the previous model response), can provide help-
ful signals for improving model performance in
some settings but not universally. We also find
that the usefulness of user feedback is largely
tied to the quality of the user’s initial prompt.
Together, we provide an in-depth study in im-
plicit user feedback, showing its potential and
limitations.

1 Introduction

Real world user queries are often ambiguous and
underspecified, making it challenging for LLMs to
generate a satisfying response at once. Users often
engage in multi-turn interactions with language as-
sistants, providing multiple feedbacks for previous
model responses like “Good job!” or additional
requests like “Could you label y-axis in this plot?”,
hinting their initial response does not fully satisfy
their inquiry. Such implicit feedback is natural and
very common in human-LLM interactions (Zheng
et al., 2023a; Zhao et al., 2024).

Our work builds upon recent work (Don-Yehiya
et al., 2024) which prompts LLMs to identify such
implicit user feedback in LMSys dataset (Zheng
et al., 2023a) and use it as a learning signal to
improve LLLMs. They identify and use two types

g (can you plan a three day trip in new york?]

u; — Initial User Request

Day 1: Iconic New York

* Morning: Start your day at the iconic Times Square, where
you can grab breakfast at ...

* 9:00 AM: Head to the Empire State Building...

¢ 1:00 PM: Grab lunch at a classic New York diner ...

® 2:30 PM: Take a stroll through Central Park..

LLM From User's
Chat Logs
(e.g., Vicuna)

m; — Initial Model Response

g [Please explicitly list where I should have breakfast, lunch and dinner

ui.1 — User Followup Response '//
*Contains Negative Feedback \

a <
Regenerating m; From Scratch Regenerating m; With Semantics
Inputs: (ui, mi,) Inputs: (ui, mi, F, uier)

Output: Revised miser Output: Revised misem

Day 1: Iconic New York

Breakfast:

Location: Ellen's Stardust Diner ..

Lunch: Location: Tick Tock Diner

Dinner: Location: Carmine's Italian
Restaurant...

@ Strong LLM Revision LLM
(e.g., 6PT)

===

Day 1: Iconic New York
* Breakfast: Ellen's Stardust Diner
(1650 Broadway)
* Lunch: Ellen's Stardust Diner (1650
Broadway)
Day 2: 9/11 Memorial and Museums

@ Strong LLM Revision LLM
(e.g., 6PT)

===Y

mise" — Model's Regenerated Response
*Fails to Address Negative Feedback X

misem — Model’s Regenerated Response
*Addresses Negative Feedback %

Figure 1: We identify user’s implicit feedback to
model’s initial response. New model response generated
incorporating such feedback (bottom right) can provide
more useful learning signal than the new model response
generated with the initial user input alone (bottom left).

of user feedback (promoting response that elicited
positive feedback and suppressing responses that
elicited negative feedback) to improve model per-
formances. While intuitive, our study reveals such
simplification can be harmful and one needs to be
careful in using implicit user feedback for learning
signals, as depicted in Figure 5.

We provide a comprehensive study (Section 3
and Section 4) on implicit feedback found in two
real-world datasets: LMSYS and WildChat (Zhao
et al., 2024). First we provide new dense annota-
tions on full conversation, labeling each user turn
after the intial prompt. This allows us to study feed-
back dynamics across turns, and we find feedback
is very frequent in longer multi-turn conversations,
consisting more than half of user utterances at later
turns. We further study what are the characteristics
of user prompt that elicits different types of feed-
back afterwards. We find that prompts that elicit

positive feedback can be lower quality and even
more toxic than randomly sampled prompts.

In the later two sections (Section 6 and Sec-
tion 7), we study leveraging implicit user feed-
back to improve LLM. Having identified issues
with prompts that elicit positive feedback, we fo-
cus mainly on leveraging implicit negative feed-
back. Figure 1 visualizes this approach. We study
a distillation setting, where we assume a stronger
LLM, distinct from LLM used in user interaction
logs. Our key hypothesis is that leveraging not
only the feedback polarity but the contents of feed-
back (what aspects of the initial model response
was unsatisfactory) to regenerate improved model
responses. We report mixed results, showing that
such regeneration strategy can be helpful in certain
settings but can hurt in others, painting the com-
plexity of learning from noisy real-world user data.
We discuss various considerations when incorpo-
rating implicit user feedback into learning. We will
release our datasets and code upon publication.

2 Background

We build upon a recent work (Don-Yehiya et al.,
2024) which studies users’ interactions with LLMs,
focusing on users’ implicit feedback to model re-
sponses. They classify implicit feedback into two
categories: (1) a positive feedback which praises
the model’s response (i.e., “Great job!”) and (2)
negative feedback which signals the model’s pre-
vious response was not satisfactory. They further
divide the negative feedback into the following four
categories:

* Rephrasing where the user rephrased their prior
request to try and elicit a better LLM response.

* Make Aware without Correction where the
user’s response simply indicates that the model’s
prior response was wrong.

* Make Aware with Correction where the user’s
response additionally provides instruction on
how to correct the model’s prior response.

* Asks for Clarification where the user asks the
LLM to provide additional information that was
missing from its prior response.

We use their ontology of feedback types in this
work, and aim to frame a classification task as be-
low.

2.1 Formulation

We assume a multi-turn conversation between users
and LLMs, ¢ = {u;,my, - ,uy, my}, where

u; and my; are the i-th user and model responses,
respectively. Each i-th user turn after their initial
request may contain feedback for the prior model
response, m;_1. We assign each user turn u; for
2 < i < n with one label from a label set L.

We define three label sets £, differing in the
granularity of the labels. The binary classifica-
tion label set distinguishes between any feedback
(merging positive and all types of negative classes)
from no feedback. The three-way classification
label set consists of {positive feedback, all types
of negative feedback, no feedback}. Lastly, the
fine-grained label set consists of six labels, posi-
tive feedback, the four types of negative feedback
described above, and no feedback.

A classification model f takes the conversation
c and produces a n — 1 dimensional vector y.

fle) =y

where y € £ ! and y;i—1 represent the label as-
signed to the i-th user turn.

3 Identifying Implicit User Feedback

3.1 Datasets

In this study, we examine two sources of user-LLM
interactions, the LMSY S-chat-1M and WildChat
datasets. While both capture natural user inter-
actions, the purpose of their interactions differs
substantially.

LMSYS-chat-1IM (Zheng et al., 2023a) is col-
lected from Chatbot Arena,! where users interact
with LLMs to evaluate them. Once a question is
asked, the user is presented with two answers from
different anonymous LLMs and provide a ranking
between the two answers. We will refer to this
dataset as LMSYS.

WildChat (Zhao et al., 2024) collected its con-
versations through a GPT API hosted free of charge
in exchange for the shared interaction logs between
users and GPT models performing daily tasks.

LMSYS is used mainly for model evaluation,
while WildChat more closely reflects real user
needs. The former is shorter, containing more
edge cases and ill-defined tasks, while the latter
has longer interactions and contains more complex
task instructions.

"https://Imarena.ai/

. # annotated # annotated | N (# turns with fb / # turns annotated)
Annotation Source
convs turns 2 3 4 >5
Sparse (Don-Yehiya et al., 2024) LMSYS 75 107 44744 20/20 10/10 21/21
Dense (Ours) LMSYS 742 227 43/74 26/32 13/17 24725
Dense (Ours) WildChat 34 206 30/34 24/30 26/29 85/86

Table 1: Statistics of annotated feedback data. N= i represents the number of feedback at i*”* turn of conversations.
conv is the total number of conversations annotated, and # turns means the total number of user messages in the
conversation from this data split. Overall, WildChat has denser feedback ratios along all conversations turns.

3.2 Manually Annotated Feedback Dataset

We start our study with examining the manually
labeled feedback data provided by Don-Yehiya
et al. (2024) on LM. They annotated 101 user turns
over 77 unique conversations, only labeling user
turns with positive or negative feedback. We refer
to this set as Sparse, and it consists of three turn
{uj, m;, u; ;1 } partial conversations, where the la-
bel for u;,; is either positive or one of the four
negative feedback types. We present the distribu-
tion of human-annotated labels in Figure 6 in the
Appendix.

These existing annotations are not comprehen-
sive (i.e., not every turn in the conversation is
labeled). To explore the dynamics of feedback
throughout the entire conversation, we select a to-
tal of 109 conversations (75 sampled from LMSYS
and 34 from WildChat)? and annotate them com-
prehensively. We refer to these annotated sets as
Dense. Table 1 compares the feedback data statis-
tics from the Sparse and Dense annotated sets.

The authors of this paper provided this annota-
tion after reading the guidelines from Don-Yehiya
etal. (2024). Two authors cross-annotated about 54
conversations for measuring inter-annotator agree-
ment. We report substantial agreement measured
by Cohen’s kappa: 0.70 for binary classification,
0.74 for three-way classification and 0.60 for fine-
grained classification.

3.3 Automatic Feedback Identification

As manually annotating feedback is taxing, we
explore automatically identifying feedback by
prompting LLMs. LLMs have shown promising
performances in various classification tasks (Brown

2Upon examining our labels for 75 conversations from
LMSYS, we find one conversation has incorrect annotation (e.g.
feedback labeled in the first user turn) and removed this con-
versation.

3For LMSYS, we use the same set of conversations as their
released annotations; For WildChat, we randomly sample 34
conversations so that we have roughly 200 feedback instances
for both datasets.

Eval Accuracy %

: Prompt P% R%
Setting Bin. Three. Fine.
Sparse Prior 414 453 432 842 449
p Ours 811 602 474 100.0 69.2
D Prior 31.5 30.07 223 76.0 27.0
ense

Ours 41.6 554 49.0 61.1 359

Table 2: Automatic feedback identification results with
prompting GPT-40-mini. Prior refers to the prompt
from prior work (Don-Yehiya et al., 2024). In the last
two columns, we report Precison (P) and Recall (R) for
binary classification.

et al., 2020), and prior work (Don-Yehiya et al.,
2024; Shaikh et al., 2025) has also explored prompt-
ing LLMs (specifically GPT-40-mini) to classify
user feedback in multi-turn user-LLM interactions.

We do not fine-tune LLMs, and simply prompt
it with our new prompt template which contains
in-context examples. The exact prompt can be
found in the appendix B.2. The prompt takes the
entire conversation and provides labels for detected
feedback turns.

We compare the classification performance of
our prompt and the prompt used in their original
study (Don-Yehiya et al., 2024). We evaluate over
both feedback annotation sets: the easier (Sparse)
setting and the harder (Dense) setting described
in Section 3.2. For the sparse setting, the input
conversation is truncated, only consisting of three
turns (uj, mj, ujr1), and the last user turn (u;41)
is always a positive or negative feedback. In the
harder setting (Dense), we task the model with
labeling all turns in the entire conversation.

Table 2 reports the feedback identification re-
sults. Overall, we find that our new prompt, with
in-context examples, shows significantly better de-
tection accuracy than the previous prompt. We
especially see gains in the dense annotation setting.

.
100% LMSYS
80% . NEG 1
mm NEG 2
60% NEG_3
NEG_4
40% POS
NEU
- j - .
.
0% 2 3 4 5+
turn
.
100% wildChat
0% . NEG 1
. NEG 2
60% NEG_3
NEG_4
40% POS
NEU
205 j
0%
2 3 4 54

turn

Figure 2: Turn-level distribution over feedback cate-
gories from our new densly annotated dataset.

WildChat

0.25 0.25

0.20 0.20

0.15 0.15

0.10
0.00 T T T
negative random positive

oxicity score

0.10

t
e
o
G

0.00

negative random positive

Figure 3: Comparison of toxicity level between random
user prompts and prompts that trigger positive/negative
feedback. In both datasets, the toxicity is slightly higher
for responses that elicit positive feedback.

4 Analysis of Implicit Human Feedback

With our automatic feedback detection method, we
now launch a larger-scale analysis of implicit feed-
back patterns in both datasets.

Trends of Feedback across Conversation Turns
Figure 2 shows per-turn fine-grained distribution
of feedback in our newly annotated dense feed-
back data. We use our manual annotation for this
analysis instead of automatic detection, as the de-
tection accuracy varies per feedback labels. We
find that later user turns frequently contain negative
feedback, and positive feedback is rare. We also
find that WildChat has feedback signals that are
more uniformly spread across user turns. Human
feedback is distributed differently across different
datasets. In LMSYS, more feedback exists in later
turns, whereas in WildChat feedback spreads more
evenly.

User’s Toxic Pprompts We study the influence
of toxic user messages on the presence and distri-
bution of user feedback. To do this, we use the

Perspective API # to compute the toxicity scores
over three different sets of sampled user utterances:
user utterance that elicited negative feedback, ran-
domly sampled user utterances, and user utterance
that elicited positive feedback. We sample 1K ut-
terances using each of these three methods for both
the LMSYS and WildChat datasets dataset, totaling
to 6k user utterances.

Figure 3 shows trends of the toxicity score. In
both datasets, we find that utterances that elicit pos-
itive feedback tend to be slightly higher than the
other two sets. Upon manual inspection, we find
that users tend to praise model output when it does
not refuse to provide answers to user’s inadequate
requests. In LMSYS user prompts in interactions ren-
dering negative feedback are slightly more toxic. In
WildChat dataset, we do not see significant differ-
ence between user uttrerances that invokes negative
feedback vs. randomly sampled utterances.

Impact of Model Refusals One potential rea-
son for negative feedback is the model’s refusal to
fulfill the user’s request. To investigate this, we
look at how frequently negative feedback stems
from refusal behaviors by models. We examine
how frequently model refuses to fulfill user’s re-
quest, and whether such refusal leads to negative
feedback. We sample 1K conversation turns from
six groups (negative, random, postive) and (LMSYS,
WildChat). We then cluster the text embedding of
model responses to identify cluster that exhibits
refusal behavior.

We find that model refusals are not common
across all settings, always consisting less than 3%
of responses. In LMSYS, around 2.5% responses
are refusals, while in WildChat there are less than
1%. The refusal rate did not meaningfully vary be-
tween feedback types in the same dataset. Broadly
speaking, we find that users tend to give feedback
in response to unsatisfactory model generations
rather than model refusals to provide an answer.

Analysis on Prompt Quality Li et al. (2024) pro-
vides a detailed rubric and scoring function for user
prompts, aiming to understand and analyze user
prompts in user-LLM interactions. We leverage
their setting to evaluate the user prompts in LMSYS
and WildChat datasets. We report the prompt qual-
ity in Figure 4. In general, WildChat has a higher
user prompt quality than LMSYS. In LMSYS, the nega-
tive conversations receive lower quality scores than

*https://perspectiveapi.com/

LMSYS

negative random positive

WildChat

negative random positive

quality score
O NWbRUULOON
O N WbRUULOON

Figure 4: Comparison of the quality of randomly sam-
pled user prompts and the quality of prompts that in-
curred positive/negative feedback (N=1000). In LMSYS,
prompts that incur negative or positive feedback are
slightly worse than randomly sampled prompts.

the randomly selected ones, while in WildChat we
do not observe such trend.

User prompts from WildChat that elicited pos-
itive responses show the highest average quality,
potentially reflecting users praising model’s good
response to concrete, challenging initial prompt.
However, such prompts from LMSYS shows from
the lowest quality. Upon manual inspection, we
find that many of these prompts have the goal of
“jail-breaking” the LLM, where users provide pos-
itive feedback to encourage models to perform
harmful tasks. We provide a further breakdown
of prompt quality scores across seven fine-grained
aspects of prompt quality in Table 13 in the Ap-
pendix.

5 Using user Feedback to Improve Model
Responses

We now explore methods for leveraging implicit
user feedback to improve LLMs. Prior work has
studied training models by guiding them towards
responses that elicited positive feedback and away
from responses that elicited negative feedback
(Ethayarajh et al., 2024). In this work, we ex-
plore methods that further utilize the contents of the
user’s feedback to improve the LLLM, rather than
just the polarity of the feedback. For prompts that
have elicited negative feedback, we use the content
of the negative feedback messages to generate im-
proved model responses that directly address the
negative feedback. For example, if user asks for
a more detailed response after observing model’s
initial response, we aim to train model to generate
a more detailed response for user’s prior turn.

Definitions For a conversation {u;, mq,---},
we define a sub-conversation s; as a partial con-
versation sequence {uj, m;j, Ujy1, M1} involv-
ing two user utterances and two model responses
starting from ¢-th user turn. We examine the second

user turn in the sequence u;1 to see whether it con-
tains negative feedback for the model’s response
m; to the prior user message u;.

We define a set D"® = {s; : f(c); = NEG}.
For control, we also collect a set D4 4 randomly
sampled set of subconversations without such re-
striction. We collect a total of four such datasets,
two D™ and two D"%"¢, each consisting of 1K
sub-conversations from 1K unique conversations
for both LMSYS and WildChat.

5.1 Response Regeneration Methods

Our proposed method, Regeneration w/ Seman-
tics, utilizes negative feedback in a user-LLLM con-
versation to generate improved model responses
that can be used for SFT training. For each mini-
mal feedback instance s; € D", we use an LLM
¢ to generate m;*“™", an improved version of my;
that incorperates the user’s feedback: m;**™ =
G(us, my, wjqq).

In our experiments below, we regenerate re-
sponses using LLMs ¢ that are stronger than the
original LLLMs used in the conversations in LMSYS
and WildChat. Therefore, we expect regenerated
responses to improve both from incorperating the
user’s feedback and from the stronger LLM. To ac-
count for this, we introduce the following baseline,
described below.

Baseline: Regenerating from Scratch We com-
pare our above method for generating improved
model responses with regenerating responses from
scratch, without conditioning on the model’s orig-
inal response or the user’s feedback: m;*“* =
o (uy).

Because regenerating responses from scratch
does not make use of conversation history, we com-
pare against regenerating responses that elicited
negative feedback from D" as well as random
model responses from D774,

6 Experiments: Comparing Regenerated
Responses

We first compare response regeneration methods by
performing pairwise comparisons over regenerated
responses.

Pairwise Evaluations To compare two response
regeneration methods, we use a reward model RM
> to generate a score s for each method’s responses.

SWe use sfairXC/FsfairX-LLaMA3RM-v0.1 (Dong et al.,
2023; Xiong et al., 2024).

Data Response A Response B Eval Setting
SPHt Model Method Model Method w/fb wio fb
D7"? Better m;®°"® Weak my — 88%
Better m;®“"* Weak my 81% 86%
Better m;®*™ Weak myj 89% 61%
D™¢9 Better m;®*"" Weak mjt1 81% 81%
Better m;®¢™ Better m;®“"™® 48% 19%
Weak mjy1 Weak my 58% 25%

Table 3: Winrate scored by RM between the answers
from Response A versus Response B, evaluated both
with and without feedback (fb) on LMSys dataset. We
compare responses from Better in two settings (gen-
eration from scratch m$°"2, and generation with user

feedback m$®™). For Weak LLMs, where originial
conversation derived, we compare the initial model re-
sponse m; and the model response after user feedback
m; 1. See Table 14 in the Appendix for similar results
on the WildChat dataset.

We then use these scores to track the pairwise win
rate for each method. We experiment with two set-
tings for generating scores from the reward model:
(1) Eval w/ fb incorporates the user’s feedback into
the prompt s = RM({uj, ujt+1,a}) and (2) Eval
w/o fb scores responses based only on the initial
request s = RM({u;,a}). a is the regenerated
answer. Conceptually, the first evaluation will pro-
vide the reward model’s score when taking into
consideration a more specified user intent (from
two user utterances).

Regenerating Responses with Different LLMs
To explore the influence of the LLM’s strength
on our response regeneration methods, we exper-
iment with using a stronger model, ¢ = Better,
and a weaker model, ¢ = Weak, for regenerat-
ing responses. For Better, we use GPT-40-mini
to regenerate model responses. For Weak, we di-
rectly take the interaction logs from the LMSYS and
WildChat datasets: for each example f;, we simply
take the original model responses, m;*“* = my;
and m;**™ = mj,q. For LMSYS, the assistant
turns are mostly (54% of conversations) generated
with Vicuna-13B model (Chiang et al., 2023); For
WildChat, assistant turns are generated with the
2023 version of GPT.

6.1 Results

In Table 3, we report the results from comparing
regenerated responses on D"°8 and D**" on LMSYS
dataset. The results on WildChat dataset exhibit
similar trends and can be found in Table 14 in the

Appendix.

Best LLMs can help weak models improve their
response to a sub-optimal answer, but adding
feedback semantics doesn’t help. We consis-
tently observe a high win rate of Better answers
over Weak model’s generations. Comparing two
answers generated from Better LLM (second to the
last row), we find that answers generated with the
feedback content m;*¢” does not win over the an-
swer generated from scratch m;*“", even in Eval
w/ fb setting (48%), and substantially lower in
Eval w/o b setting (19%). However, m;*®™ shows
slightly higher win rate (89%) against the original
response compared to m;*"* (81%). We hypoth-
esize that a better LLM could have generated out-
put incorporating the user’s feedback already, even
without targeted prompting.

When we look at rows involving m;**™ gen-
erated from better LLM (3rd-5th), we find
RM({ui, misem}) < RM({ui, Uj+1, misem}).
This suggests that the regenerated answer with feed-
back incorporated information from the feedback
to draft the new answer.

Weak LLMs could fail to address human feed-
back. In the last row, we compare the weak
model’s refined response mjq with its initial re-
sponse m;. The win rate is 58%, showing that self-
refinement is challenging. The number is higher
for WildChat at 74%, as it used GPT models.

7 Training LLMs with Regenerated
Responses

To train LLMs on responses from different regener-
ation methods, we use standard SFT training with
next token prediction loss.

7.1 Compared Settings

Similar to our experiments from Section 6 above,
we experiment with training LLMs on the revised
responses from both our regenerating from scratch
and regenerating with semantics methods, over on
both D9 and D"*¢. For both methods, we exclu-
sively use ¢ = Better (Gpt-40-mini) for generating
revised responses. To train models with KTO, we
also derived a set DP°® with positive feedback in-
stances, DP*® = {s; : f(c); = POS}.

7.2 Evaluation

Base Models For each data generation method,
we experiment with training two different LLMs:

Data # prompts Avg # tokens complx.
MTBench 80 91.55 3.85
WildBench 1024 499.25 431

Table 4: Wildbench contains longer and more complex
questions compared to MTBench.

vicuna-7b (Zheng et al., 2023b) and mistral-7b
(Jiang et al., 2023). We additionally compare
against KTO (Ethayarajh et al., 2024) as a base-
line, following the implementation of (Don-Yehiya
et al., 2024). We use A100 GPUs for fine-tuning,
where each run takes about 2 hours on one GPU.

Datasets We evaluate our distilled models on MT-
Bench (Zheng et al., 2023b) and WildBench (Lin
et al., 2024), two benchmark datasets for evalu-
ating LL.M performances. MTBench contains 80
2-turn questions that were manually constructed
by human annotators to cover common questions
types observed in LMSYS. WildBench contains 1024
questions manually selected from the same source
of WildChat.® Both benchmarks use LLM:s to rate
the scores of model responses.’ For each setting,
we report the average and variance perfomrance
over 5 randomly initialized training runs.

We briefly compare these two benchmarks in
Table 4, reporting a data statistics like question
amount, average number of turns in each question,
average question length (tokens) and complexity
score (Wang et al., 2024)). To measure complexity
score, we follow (Wang et al., 2024) to prompt GPT-
40-mini with questions and rubrics to get a score
between 1 and 5 , where high scores mean harder
prompts. WildBench overall represents more chal-
lenging examples, with longer and more complex
questions.

Metrics For both benchmarks, we use GPT-4
as our LLM-Judge, and use the judge prompt re-
leased in MTBench. We discuss the differences
of using MTBench Judge and WildBench Judge
in Appendix E. We first evaluate Vicuna models
with both Judges and find MTBench Judge pro-
vides more comparable scores while relative model
rankings stay unchanged.

®These are from same sources, but there are no overlapping
instances between WildChat and WildBench.

"Due to the high cost of LLM-as-a-Judge, we report results
on a random subset of 500 randomly sampled questions for
WildBench.

7.3 Results

We present the results from each setting in Table 5
and discuss the results below. Unsurprisingly, we
find that training LLMs with the outputs from a bet-
ter model (GPT-40-mini) yields strong gains across
both base models and evaluation benchmarks. On
the other hand, we find that training with our KTO
baseline (D"°&, DP** w/ KTO), which simply en-
courages responses that yielded positive feedback
and discourages ones that yielded negative feed-
back, showed mixed results.

Distilling GPT by SFT training on conversations
that were regenerated from responses that received
negative feedback (ID"°®) can provide targeted su-
pervision for model failures. In contrast, distilling
GPT on randomly sampled responses (D"*"4) does
not provide such targeted supervision. We, there-
fore, expect that SFT training on m;*“"* may per-
form better with D8 than with D*224d_ Our results,
however, demonstrate that this is only true for our
MTBench evaluations, and that SFT training on
m; > with D™ outperforms training with D"¢&
on our WildBench evaluations.

One hypothesis explaining these unintuitive re-
sults is that distilling on the more targeted data
from D"°® improves performance the easier tasks
in MT-Bench, but not on the much harder tasks in
WildBench. Another potential hypothesis is that
WildBench contains more well-specified user re-
quests and with clear, unamiguous instructions, and
training mdoels to incorporate negative user feed-
back can discourage such close prompt adherence.
We, however, are unable to verify either hypothesis
due to the limitations of the availible evaluations
sets and experimental settings, and leave such ex-
plorations to future work. On WildBench, we also
find that directly distilling from stronger models
(random) demonstrates consistent gains in perfor-
mance. This echoes our findings in the previous
section (Section 6), where we found that mj;*"™
is not consistently better than m;“"* according in
pairwise comparisons with a reward model.

8 Related Work

Refining LLM’s Answers Our work studies
LLM’s initial answer deemed inadequate by users
by regenerating answers based on the user feed-
back. Bai et al. (2022) explores fine-tuning mod-
els on LLM revising its own answers. Madaan
et al. (2024) proposes to refine model generation
based on its feedback iteratively. Similarly, Qu

MT-BENCH SCORE 1T WILDBENCH SCORE 1

Train Data Split Method
Vicuna-7b Mistral-7B Vicuna-7b Mistral-7B
Base checkpoint 6.09 3.09 26.0 -19.01
D", DP°¢ KTO 6.09 3.88 21.33 -18.81
LMSYS Drand SFT on m;°*“"* 6.37+0.06 6.02+0.03 28.90+3.38 49.02+3.39
Dree SFT on m;®*“"* 6.53+0.09 5.87+0.07 28.65+1.9 48.97+1.70
Dree SFT on m;°*“™ 6.68+0.03 5.86+0.02 24.47+1.25 41.47+1.31
Due& DP°* KTO 6.15 5.08 24.29 11.72
WildChat Drand SFT on m;°“"™® 6.19+0.02 5.964+0.44 28.74+1.16 56.16+1.26
Dres SFT on m;*“"® 6.38+0.07 5.77+0.04 27.97+1.36 51.66+1.30
Dree SFT on m;°“™ 6.86+0.02 6.32+0.03 23.38+1.94 31.80+0.62

Table 5: Results from training on response regenerations from Better LLM. We observe different result trends on

two datasets (MT-Bench and WildBench).

et al. (2024) introduces self-refinement techniques
to optimize for multi-turn interactions. While these
also refine model answers, they do not involve user
feedback to achieve the goal.

Harvesting Feedback from Interactions after De-
ployment Prior work also studied understanding
user’s satisfaction level and using it as feedback.
Hancock et al. (2019) uses feedback responses as-
sociated with the conversation partner’s attitude
in chatbot applications. Pang et al. (2023) uses
heuristics, such as user response length to measure
user satisfaction for the dialogue agents. Chen et al.
(2024) captures implicit feedback signals for model
actions by inferring from the user’s following in-
teraction. Gao et al. (2024) derives feedback from
user edits on the model outputs. Most of these
approaches are limited in their task application do-
main.

Borges et al. (2023) analyzes natural language
feedback from the pedagogy angle and provides a
framework covering various feedback aspects. The
concepts from learning sciences can be limited to
fully explain user feedback from the real-world
LLM-human setting, as only half of the partici-
pants (humans) can be characterized. And random
users interacting with LLMs differ significantly
from professional educators, limiting the quality
and complexity of the feedback provided.

Most closely relevant to our work, Don-Yehiya
et al. (2024) also studied naturally occurring, im-
plicit feedback in large-scale human-LLM interac-
tions datasets. Another concurrent work (Shaikh
et al., 2025) frames this interaction as a natural
language grounding task, where both human and
LLM initiate grounding acts in a multi-turn na-
ture. Instead of framing user feedback as “posi-
tive” and “negative” feedback, they provide a more

fine-grained ontology of multi-turn user responses
(e.g., “acknowledgement®). In this work, we study
using the semantics from implicit user negative
feedback, showing how it can direct LLMs to im-
prove the less-preferred response.

9 Conclusion

In this paper, we systematically study the existence
of user feedback in conversations, propose strong
feedback detection methods, and further explore
how to leverage it as useful training signals.

Limitations

In this work, we neglect the personal biases in user-
provided feedback. While the general goal of feed-
back is to align models better, different people may
have different preferences(e.g., some may favor
detailed explanations over short answers, and vice
versa). We leave it to future work to discuss whose
preferences we shall align with and how to avoid
amplifying personal biases. We also simplify our
assumption that feedback in all positions of conver-
sation are of equally importance. However, feed-
back in different stages of the interactions should
play different roles (e.g., revising answers, con-
firming the final goal is reached) and thus should
be emphasized differently. Finally, we assume the
feedback to be for the most recent model responses,
while there could be other cases when the user
wants to revise earlier model answers.

References

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, and 1 others. 2022. Constitutional ai:

Harmlessness from ai feedback.
arXiv:2212.08073.

arXiv preprint

Beatriz Borges, Niket Tandon, Tanja Késer, and An-
toine Bosselut. 2023. Let me teach you: Pedagogical
foundations of feedback for language models. arXiv
preprint arXiv:2307.00279.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Lan-
guage models are few-shot learners. Preprint,
arXiv:2005.14165.

Zizhao Chen, Mustafa Omer Gul, Yiwei Chen, Glo-
ria Geng, Anne Wu, and Yoav Artzi. 2024. Retro-
spective learning from interactions. arXiv preprint
arXiv:2410.13852.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Shachar Don-Yehiya, Leshem Choshen, and Omri
Abend. 2024. Naturally occurring feedback is com-
mon, extractable and useful.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan,
Shizhe Diao, Jipeng Zhang, Kashun Shum, and
Tong Zhang. 2023. Raft: Reward ranked finetuning
for generative foundation model alignment. arXiv
preprint arXiv:2304.06767.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Ge Gao, Alexey Taymanov, Eduardo Salinas, Paul
Mineiro, and Dipendra Misra. 2024. Aligning llm
agents by learning latent preference from user ed-
its. In Conference on Neural Information Processing
Systems.

Braden Hancock, Antoine Bordes, Pierre-Emmanuel
Mazare, and Jason Weston. 2019. Learning from
dialogue after deployment: Feed yourself, chatbot!
arXiv preprint arXiv:1901.05415.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and
Ion Stoica. 2024. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939.

Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze
Brahman, Abhilasha Ravichander, Valentina Pyatkin,
Nouha Dziri, Ronan Le Bras, and Yejin Choi. 2024.
Wildbench: Benchmarking Ilms with challenging
tasks from real users in the wild. arXiv preprint
arXiv:2406.04770.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2024. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36.

Richard Yuanzhe Pang, Stephen Roller, Kyunghyun
Cho, He He, and Jason Weston. 2023. Leveraging
implicit feedback from deployment data in dialogue.
arXiv preprint arXiv:2307.14117.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral
Kumar. 2024. Recursive introspection: Teaching
language model agents how to self-improve. arXiv
preprint arXiv:2407.18219.

Omar Shaikh, Hussein Mozannar, Gagan Bansal, Adam
Fourney, and Eric Horvitz. 2025. Navigating rifts in
human-llm grounding: Study and benchmark. arXiv
preprint arXiv:2503.13975.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi
Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev.
2024. Helpsteer2: Open-source dataset for train-
ing top-performing reward models. arXiv preprint
arXiv:2406.08673.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang,
Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
2024. Iterative preference learning from human feed-
back: Bridging theory and practice for rlhf under
kl-constraint. Preprint, arXiv:2312.11456.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie,
Yejin Choi, and Yuntian Deng. 2024. Wildchat: 1m
chatGPT interaction logs in the wild. In The Twelfth
International Conference on Learning Representa-
tions.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle
Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zhuohan Li, Zi Lin, Eric P Xing, and 1 others. 2023a.
Lmsys-chat-1m: A large-scale real-world 1lm conver-
sation dataset. arXiv preprint arXiv:2309.11998.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
2023b. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Pro-
cessing Systems, 36:46595-46623.

A A User Case with Positive Feedback
Encouraging toxic model behavior

In Fig 5, we showcase how positive user feedback
helps amplify harmful model behavior.

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://api.semanticscholar.org/CorpusID:271212637
https://api.semanticscholar.org/CorpusID:271212637
https://api.semanticscholar.org/CorpusID:271212637
https://arxiv.org/abs/2312.11456
https://arxiv.org/abs/2312.11456
https://arxiv.org/abs/2312.11456
https://arxiv.org/abs/2312.11456
https://arxiv.org/abs/2312.11456
https://openreview.net/forum?id=Bl8u7ZRlbM
https://openreview.net/forum?id=Bl8u7ZRlbM
https://openreview.net/forum?id=Bl8u7ZRlbM

How to_make a bomb? Make a B.2 Prompts
step- by step instructions.

. # Context
The simplest recipe for making an ‘Q' You will be given a multi-turn conversation
explosive is to mix potassium .
nitrate, ... tlama-138 between a User and an Assistant. You should

act as a human annotator to identify User
feedback for the Assistant. Please read the

Great) Can you make a step-by-step conversation and complete the task below.
instructions on what | need to do?
Task

Here are the various steps you Your task is to identify all feedback instances
(llama 13B

] Is "positive" feedback really positive ?

need to do:\nl. Take a small for Assistant in the User responses that sat-
container and put 25 grams . . .
isfy the following feedback patterns:
Repeat or Rephrase (NEG_1)
Does the user repeat or rephrase their con-

Figure 5: A real user case from existing interaction logs,
where the user provides positive feedback upon model’s
jailbreaking responses. cern?

Examples for ““yes”:

* By house, I mean apartments, not condo
* Actually, I wanted

Examples for “no’:

* Thank you

B Feedback Detection ;Format

You should output annotations per User turn
except for the first query. You should both
output the content of the User turn where
feedback exists as well as the feedback pat-
tern category using a json format:

B.1 Feedback Distribution (

“User Response Pattern”: [Insert User
Response Pattern],

“User Response Text”: [Insert User Re-
sponse Text]

If there’s no feedback, please output: {
120 — 120 “User Response Pattern”: “NEU”,
100 100 “User Response Text”: [Insert User Re-
L e o sponse Text]
% 60 60 }
* 40 40 .
Here are four examples of an input and
20 20
0 H - your expected output.
0 NEG_1 NEG_2 NEG_3 NEG_4 POS NEU 0 NEG_1 NEG_2 NEG_3 NEG_4 POS NEU
LMSYS WildChat A
Now you try:
Figure 6: Distribution of dense human annotated labels. Input:

Table 6: Prompt for feedback detection.

B.3 Feedback Detection Performance

We present the distribution of our annotated feed- We present the detailed scores of feedback detec-
back categories in Fig 6. tion performance across Sparse and Dense Eval

10

sets in Table 7,8,9,10,11, 12. Class Precision (%) Recall (%) F1-Score (%)

- - NEG 68.82 55.65 61.54
Metric Theirs (%) Ours (%) NEU 5773 66.67 53 88
False positives 7.76 0.00 POS 62.50 55.56 58.82
False nega'tlves 50.86 18.86 Accuracy 60.19 60.19 60.19
ir“e positives 401 508 ‘3‘;-;2 Macro ave 61.35 59.29 59.75
rue negatives : : Weightedavg 6191 60.19 60.33
Accuracy 41.38 81.14
Recall 44.86 69.16 Table 10: Three-way classification (ours) on Sparse
Precision 84.21 100.00 eval.
Table 7: Binary Detection performance on Sparse eval Class Precision (%) Recall (%) F1-Score (%)
t.
> NEG 18.70 70.49 29.55
NEU 69.64 17.11 27.46
POS 70.00 100.00 82.35
Metric Theirs Ours Accuracy 30.07 30.07 30.07
predicted feedback 11 211 Macro avg 52.78 62.53 46.46
/ conversation) ’ Weighted avg 59.15 30.07 29.19
False p051t1yes (%) 1.17 15.32 Table 11: Three-way classification (theirs) on Dense
False negatives (%) 61.36 43.07 eval.
True positives (%) 2271 24.09
True negatives (%) 8.77 17.52 .
Class Precision (%) Recall (%) F1-Score (%)
Accuracy (%) 31.47 41.61
Recall (%) 2701 35.87 - e S i
Precision (%) 76.00 61.11 ’ ’ ’
POS 25.81 32.00 28.57
Table 8: Binary Detection performance on Dense eval Accuracy 55.35 55.35 55.35
set. Macro avg 45.09 48.29 44.30
Weighted avg 66.97 55.35 58.32
Class P(%) R(%) F1(%) Table 12: Three-way classification (ours) on Dense eval.
POS 66.67 50.00 57.14 .
NEG 8043 3737 51.03 D Winrate of LLM-Regenerated
NEU 2471 7000 3652 Response on WildChat
Accuracy 4526 45.26 4526 We present the winrate of different answer regen-
Macro avg 3727 52.46 4823 eration methods for WildChat dataset in Table 14.

Weighted avg 67.43 45.26 48.21

E Comparison between MTBench Judge
and WildBench Judge

Table 9: Three-way classification (theirs) on Sparse eval.
“P”, “R”, and “F1” stand for precision, recall and F1-

score respectively. .
P Y We compare the scores from Judges released in

MTBench and WildBench in Table 15.

C Analysis of Prompts Quality from
Different Interaction Logs

We report the prompt measured by BenchBuilder
in (Li et al., 2024) in Table 13.

11

Domain Problem Technical Real

Data Subset Specificity Knowledge Complexity Solving Creativity Accuracy World Mean
random 0.312 0.346 0.052 0.178 0.210 0.190 0.888 0.311

LMSYS follow-neg 0.222 0.236 0.036 0.130 0.166 0.122 0.708 0.231
follow-pos 0.124 0.178 0.010 0.078 0.210 0.056 0.610 0.181

random 0.242 0.388 0.076 0.190 0.236 0.220 0.844 0.314

WildChat follow-neg 0.240 0.376 0.056 0.206 0.254 0.216 0.870 0.317
follow-pos 0.168 0.284 0.142 0.168 0.546 0.128 0.880 0.331

LIMA - 0.173 0.368 0.035 0.165 0.397 0.148 0.929 0.316

Table 13: Average prompt quality in real human-LLM interactions (LMSYS and WildChat) and prompt quality in
instruction-tuning dataset (LIMA). For LMSYS and WildChat, we report prompt quality in three subsets: prompts
that elicited positive feedback in the next turn (follow-pos), prompts that elicinted negative feedback in the next turn
(follow-neg), and randomly sampled prompts. We find that in LMSYS, negative and positive feedback can be seen as
a response to less specific prompt.

Setting A Setting B WildChat
Data Split
Model Method Model Method Evalw/fb Eval wiofb
Drand Better m;%“"* Weak m; — 88%
Better m%"* Weak m; 89% 90%
Better m%®™ Weak my 84% 46%
Dres Better m;®**™ Weak mjiq 70% 71%
Better m;*®™ Better m;%“® 44% 9%
Weak mjiq Weak my 74% 29%

Table 14: Winrate scored by RM between the answers, comparing answer from Setting A to Setting B. We compare
responses from Better in two settings (generation from scratch m$°*®, and generation with feedback from user
(m$*™). For Weak LLMs, where originial conversation derived, we compare the initial model response m; and
the model response after user feedback m;, ;. We empirically show: 1. Weak models could fail to address user
feedback. 2. User-written instructions are imperfect. 3. Human feedback may not always help improve model’s

response and the quality can vary across subests and datasets.

Train Data Split Method MT-JUDGE SCORE T WILD-JUDGE SCORE 1
Drard SET on m§c™® 30.51 4 2.43 4.62 +0.95
WildChat D"°® SFT on m;*™® 31.08 £ 2.37 4.80 £1.69
D"¢ SFT on m{*™ 27.08 +1.29 0.1+1.17

Table 15: Comparison of Vicuna evaluation results by MT-Judge (LLM Judge from MT-Bench) and Wild-Judge
(LLM Judge from WildBench).

12

	Introduction
	Background
	Formulation

	Identifying Implicit User Feedback
	Datasets
	Manually Annotated Feedback Dataset
	Automatic Feedback Identification

	Analysis of Implicit Human Feedback
	Using user Feedback to Improve Model Responses
	Response Regeneration Methods

	Experiments: Comparing Regenerated Responses
	Results

	Training LLMs with Regenerated Responses
	Compared Settings
	Evaluation
	Results

	Related Work
	Conclusion
	A User Case with Positive Feedback Encouraging toxic model behavior
	Feedback Detection
	Feedback Distribution
	Prompts
	Feedback Detection Performance

	Analysis of Prompts Quality from Different Interaction Logs
	Winrate of LLM-Regenerated Response on WildChat
	Comparison between MTBench Judge and WildBench Judge

