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ABSTRACT

Deep neural networks provide state-of-the-art performance for many applications
of interest. Unfortunately they are known to be vulnerable to adversarial exam-
ples, formed by applying small but malicious perturbations to the original inputs.
Moreover, the perturbations can transfer across models: adversarial examples
generated for a specific model will often mislead other unseen models. Conse-
quently the adversary can leverage it to attack against the deployed black-box
systems.
In this work, we demonstrate that the adversarial perturbation can be decomposed
into two components: model-specific and data-dependent one, and it is the latter
that mainly contributes to the transferability. Motivated by this understanding,
we propose to craft adversarial examples by utilizing the noise reduced gradient
(NRG) which approximates the data-dependent component. Experiments on vari-
ous classification models trained on ImageNet demonstrates that the new approach
enhances the transferability dramatically. We also find that low-capacity models
have more powerful attack capability than high-capacity counterparts, under the
condition that they have comparable test performance. These insights give rise to
a principled manner to construct adversarial examples with high success rates and
could potentially provide us guidance for designing effective defense approaches
against black-box attacks.

1 INTRODUCTION

With the resurgence of neural networks, more and more large neural network models are applied in
real-world applications, such as speech recognition, computer vision, etc. While these models have
exhibited good performance, recent works (Szegedy et al. (2013); Goodfellow et al. (2014)) show
that an adversary is always able to fool the model into producing incorrect outputs by manipulating
the inputs maliciously. The corresponding manipulated samples are called adversarial examples.
However, how to understand this phenomenon (Goodfellow et al. (2014); Tramèr et al. (2017b)) and
how to defend against adversarial examples effectively (Kurakin et al. (2016); Tramèr et al. (2017a);
Carlini & Wagner (2017)) are still open questions. Meanwhile it is found that adversarial examples
can transfer across different models, i.e., the adversarial examples generated from one model can
also fool another model with a high probability. We refer to such property as transferability, which
can be leveraged to attack black-box systems (Papernot et al. (2016); Liu et al. (2016)).

The phenomenon of adversarial vulnerability was first introduced and studied in Szegedy et al.
(2013). The authors modeled the adversarial example generation as an optimization problem solved
by box-constraint L-BFGS, and also attributed the presence of adversarial examples to the strong
nonlinearity of deep neural networks. Goodfellow et al. (2014) argued instead that the primary cause
of the adversarial instability is the linear nature and the high dimensionality, and the view yielded
the fast gradient sign method (FGSM). Similarly based on an iterative linearization of the classifier,
Moosavi-Dezfooli et al. (2015) proposed the DeepFool method. In Kurakin et al. (2016); Tramèr
et al. (2017a), it was shown that the iterative gradient sign method provides stronger white-box
attacks but does not work well for black-box attacks. Liu et al. (2016) analyzed the transferability
of adversarial examples in detail and proposed ensemble-based approaches for effective black-box
attacks. In Carlini & Wagner (2017) it was demonstrated that high-confidence adversarial examples
that are strongly misclassified by the original model have stronger transferability.
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In addition to crafting adversarial examples for attacks, there exist lots of works on devising more
effective defense. Papernot et al. (2015) proposed the defensive distillation. Goodfellow et al.
(2014) introduced the adversarial training method, which was examined on ImageNet by Kurakin
et al. (2016) and Tramèr et al. (2017a). Lu et al. (2017) utilized image transformation, such as
rotation, translation, and scaling, etc, to alleviate the harm of the adversarial perturbation. Instead
of making the classifier itself more robust, several works (Li & Li (2016); Feinman et al. (2017))
attempted to detect the adversarial examples, followed by certain manual processing. Unfortunately,
all of them can be easily broken by designing stronger and more robust adversarial examples (Carlini
& Wagner (2017); Athalye & Sutskever (2017)).

In this work, we give an explanation for the transferability of adversarial examples and use the
insight to enhance black-box attacks. Our key observation is that adversarial perturbation can be
decomposed into two components: model-specific and data-dependent one. The model-specific
component comes from the model architecture and random initialization, which is noisy and repre-
sents the behavior off the data manifold. In contrast, the data-dependent component is smooth and
approximates the ground truth on the data manifold. We argue that it is the data-dependent part that
mainly contributes to the transferability of adversarial perturbations across different models. Based
on this view, we propose to construct adversarial examples by employing the data-dependent compo-
nent of gradient instead of the gradient itself. Since this component is estimated via noise reduction
strategy, we call it noise-reduced gradient (NRG) method. Benchmark on the ImageNet validation
set demonstrates that the proposed noise reduced gradient used in conjunction with other known
methods could dramatically increase the success rate of black-box attacks. to perform black-box
attacks over ImageNet validation set.

We also explore the dependence of success rate of black-box attacks on model-specific factors, such
as model capacity and accuracy. We demonstrate that models with higher accuracy and lower capac-
ity show stronger capability to attack unseen models. Moreover this phenomenon can be explained
by our understanding of transferability, and may provide us some guidances to attack unseen models.

2 BACKGROUND

2.1 ADVERSARIAL EXAMPLES

We use f : Rd 7→ RK to denote the model function, which is obtained via minimizing the empirical
risk over training set. For simplicity we omit the dependence on the trainable model parameter θ,
since it is fixed in this paper. For many applications of interest, we always have d� 1 andK = o(1).
According to the local linear analysis in Goodfellow et al. (2014), the high dimensionality makes
f(x) inevitably vulnerable to the adversarial perturbation. That is, for each x, there exists a small
perturbation η that is nearly imperceptible to human eyes, such that

f(x) = ytrue, f(x+ η) 6= ytrue (1)

We call η adversarial perturbation and correspondingly xadv := x + η adversarial example. In
this work, we mainly study the adversarial examples in the context of deep neural networks, though
they also exist in other models, for example, support vector machine (SVM) and decision tree,
etc (Papernot et al. (2016)).

We call the attack (1) a non-targeted attack because the adversary has no control of the output other
than requiring x to be misclassified by the model.

In contrast, a targeted attack aims at fooling the model into producing a wrong label specified by
the adversary. I.e.

f(x+ η) = ytarget.

In contrast, we call the attack (1) a non-targeted attack.

In the black-box attack setting, the adversary has no knowledge of the target model (e.g. architecture
and parameters) and is not allowed to query the model. That is, the target model is a pure black-box.
However the adversary can construct adversarial examples on a local model (also called the source
model) that is trained on the same or similar dataset with the target model. Then it deploys those
adversarial examples to fool the target model. This is typically referred to as a black-box attack, as
opposed to the white-box attack whose target is the source model itself.
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2.2 MODELLING OF GENERATING ADVERSARIAL EXAMPLES

In general, crafting adversarial perturbation can be modeled as following optimization problem,

maximize J(f(x+ η), ytrue)

s.t. ‖η‖ ≤ ε, (2)

where J is a loss function measuring the discrepancy between the prediction and ground truth; ‖ · ‖
is the metric to quantify the magnitude of the perturbation. For image data, there is also an implicit
constraint: xadv ∈ [0, 255]d, with d being the number of pixels. In practice, the commonly choice of
J is the cross entropy. Carlini & Wagner (2016) introduced a loss function that directly manipulates
the output logit instead of probability. This loss function is also adopted by many works. As for the
measurement of distortion, The best metric should be human eyes, which is unfortunately difficult
to quantify. In practice, `∞ and `2 norms are commonly used.

Ensemble-based approaches To improve the strength of adversarial examples, instead of using a
single model, Liu et al. (2016) suggest using a large ensemble consisting of f1, f2, · · · , fQ as our
source models. Although there exist several ensemble strategies, similar as Liu et al. (2016), we
only consider the most commonly used method, averaging the predicted probability of each model.
The corresponding objective can be written as

maximize J

(
Q∑
i=1

wifi(x+ η), ytrue

)
s.t. ‖η‖ ≤ ε

(3)

where wi are the ensemble weights with
∑
wi = 1.

Objectives (2) and (3) are for non-targeted attacks, and the targeted counterpart can be derived
similarly.

2.3 OPTIMIZER

There are various optimizers to solve problem (2) and (3). In this paper, we mainly use the
normalized-gradient based optimizer.

Fast Gradient Based Method This method (Goodfellow et al. (2014)) attempts to solve (2) by
performing only one step iteration,

xadv ← x+ ε g(x), (4)

where g(x) is a normalized gradient vector. For `∞-attack ,

g∞(x) = sign
(
∇xJ(f(x); y

true)
)

(FGSM); (5)

similarly for `q-attack,

gq(x) =
∇xJ(f(x); y

true)

‖∇xJ(f(x); ytrue)‖q
(FGM). (6)

Both of them are called fast gradient based method (FGBM) and are empirically shown to be fast.
Also they have very good transferability (Kurakin et al. (2016); Tramèr et al. (2017a)) though not
optimal. So it is worth considering this simple yet effective optimizer.

Iterative Gradient Method This method (Madry et al. (2017); Kurakin et al. (2016)) performs
the projected normalized-gradient ascent

xt+1 ← clipx0,ε
(
xt + α g(xt)

)
(7)

for k steps, where x0 is the original clean image; clipx,ε(·) is the projection operator to enforce
xt ∈ [0, 255]d ∩ {x | ‖x− x0‖ ≤ ε}
and α is the step size. In analogous to the fast gradient based method, the normalized gradient g(x)
is chosen as g∞(x) for `∞-attack, called iterative gradient sign method (IGSM), and gq(x) for `q-
attack. The fast gradient based method (4) can be viewed as a special case of (7) when α = ε, k = 1.
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3 ENHANCING THE TRANSFERABILITY OF ADVERSARIAL EXAMPLES

3.1 DATA-DEPENDENT COMPONENTS ENABLE TRANSFERABILITY

There are few articles trying to understand why adversarial examples can transfer between models,
though it is extremely important for performing black-box attacks and building successful defenses.
To the best of our knowledge, the only two works are (Liu et al. (2016); Tramèr et al. (2017b)), which
suggested that the transferability comes from the similarity between the decision boundaries of the
source and target models, especially in the direction of transferable adversarial examples. Tramèr
et al. (2017b) also claimed that transferable adversarial examples span a contiguous subspace.

To investigate the transfer phenomenon, we ask a further question: what similarity between the
different models A and B that enables transferability of adversarial examples across them? Since
the model A and B have a high performance on the same dataset, they must have learned a similar
function on the data manifold. However, the behaviour of the models off the data manifold can be
different. This is determined by the architectures of the models and random initializations, both of
which are data-independent factors.

This clearly hints us to decompose the perturbation into two factors on and off the data manifold.
We referred to them as data-dependent and model-specific components. We hypothesize that the
component on the data manifold mainly contributes to the transferability from A to B, since this
component captures the data-dependent information shared between models. The model-specific
one contributes little to the transferability due to its different behaviours off the data manifold for
different models.

Class 1

Class
2Human

Model A Model B

/f 1/f21
/f∥1

(a) (b)

Figure 1: (a) Illustration of the decomposition and transferability of the adversarial perturba-
tion ∇fA. (b) Visualization of decision boundaries. Each point represents an image: x +
u∇fA‖ /‖∇fA‖ ‖2 + v∇fA⊥/‖∇fA⊥‖2, and the same color indicates the same predicted label. More
details can be found in Section 6.3.

Take η = ∇fA as the adversarial perturbation crafted from model A, we illustrate this explanation
in Figure 1. In the left panel, the decision boundaries of two models are similar in the inter-class area.
As can be observed, ∇fA can mislead both model A and B. Then we decompose the perturbation
into two parts, a data-dependent component∇fA‖ and a model-specific one∇fA⊥ , respectively. Since
∇fA‖ is almost aligned to the inter-class deviation (red line), i.e. on the data manifold, it can attack
model B easily. However, The model-specific ∇fA⊥ contributes little to the transfer from A to B,
though it can successfully fool model A with a very small distortion.

In the right panel, we plot the decision boundaries of resnet34 (model A) and densenet121 (model
B) for ImageNet. The horizontal axis represents the direction of data-dependent component ∇fA‖
estimated by our proposed NRG method (8) from resnet34; and the vertical axis depicts the direction
of model-specific component ∇fA⊥ . It is easily observed that for model A resnet34, a small pertur-
bation in both directions can produce wrong classification. However, when applied to model B
densenet121, a large perturbation along the ∇fA⊥ direction cannot change the classification results,
while a small perturbation along the data-dependent one can change the prediction easily.
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clean image m = 1, = 0.00 m = 5, = 0.10 m = 100, = 0.10

Figure 2: Visualization of the gradient with respect to input for resnet152. The leftmost is the
original image, and the rest three images are the visualization of the gradients.

This understanding suggests that to increase success rates of black-box adversarial attacks, we
should enhance the data-dependent component. We hence propose the NRG method which achieves
that by reducing the model-specific noise, as elaborated in the following.

3.2 NOISE-REDUCED GRADIENT METHODS

Noise-reduced gradient (NRG) The model-specific component ∇f⊥ inherits from the random
initialization, so it must be very noisy, i.e. high-frequency (the same observation is also systemat-
ically investigated in Balduzzi et al. (2017)); while ∇f‖ is smooth, i.e. low-frequency, since it en-
codes the knowledge learned from training data. Therefore, local average can be applied to remove
the noisy model-specific information, yielding an approximation of the data-dependent component,

∇f‖ ≈
1

m

m∑
i=1

∇f(x+ ξi), ξi ∼ N (0, σ2Id), (8)

where the m is the number of samples chosen for averaging. We call (8) noise-reduced gradient
(NRG), which captures more data-dependent information than ordinary gradient ∇f . To justify the
effectiveness of this method, similar to Smilkov et al. (2017), we visualize NRG for various m in
Figure 2. As shown, larger m leads to a smoother and more data-dependent gradient, especially for
m = 100 the NRG can capture the semantic information of the obelisk.

The noisy model-specific information of ∇f could mislead the optimizer into the solutions that are
overfitting to the specific source model, thus generalizing poorly to the other model. Therefore we
propose to perform attacks by using ∇f‖ in Eq.(8), instead of ∇f , which can drive the optimizer
towards the solutions that are more data-dependent.

Noise-reduced Iterative Sign Gradient Method (nr-IGSM) The iterative gradient sign method
mounted by NRG can be written as,

Gt =
1

m

m∑
i=1

∇J(xt + ξi), ξi ∼ N (0, σ2Id)

xt+1 = clipx0,ε
(
xt + α sign

(
Gt
))
,

(9)

The special case k = 1, α = ε is called noise-reduced fast gradient sign method (nr-FGSM) accord-
ingly. For `q-attack, the noise-reduced version is similar, replacing the second equation of (9) by

xt+1 = clipx0,ε
(
xt + αGt/‖Gt‖q

)
. (10)

For any general optimizer, the corresponding noise-reduced counterpart can be derived similarly.

4 EXPERIMENT SETTING

To justify and analyze the effectiveness of NRG for enhancing the transferability, we use the start-of-
the-art classification models trained on ImageNet dataset. We elaborate the details in the following.

Dataset We use the ImageNet ILSVRC2012 validation set that contains 50, 000 samples. For each
attack experiment, we randomly select 5, 000 images that can be correctly recognized by all the
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models, since it is meaningless to construct adversarial perturbations for the images that target mod-
els cannot classify correctly. And for the targeted attack experiments, each image is specified by a
random wrong label.

Models We use the pre-trained models provided by PyTorch including resnet18, resnet34, resnet50,
resnet101, resnet152, vgg11 bn, vgg13 bn, vgg16 bn, vgg19 bn, densenet121, densenet161,
densenet169, densenet201, alexnet, squeezenet1 1. The Top-1 and Top-5 accuracies of them can
be found on website1. To increas the reliability of experiments, all the models have been used,
however for a specific experiment we only choose several of them to save computational time.

Criteria Given a set of adversarial examples, {(xadv
1 , ytrue

1 ), (xadv
2 , ytrue

2 ), . . . , (xadv
N , ytrue

N )}, We cal-
culate their Top-1 success rates fooling a given model F (x) by

1

N

N∑
i=1

1[F (xadv
i ) 6= ytrue

i ]. (11)

If F is the model used to generate adversarial examples, then the rate indicates the the white-box
attack performance. For targeted attacks, each image xadv is associated with a pre-specified label
ytarget 6= ytrue. Then we evaluate the performance of the targeted attack by the following Top-1
success rate,

1

N

N∑
i=1

1[F (xadv
i ) = ytarget

i ]. (12)

The corresponding Top-5 rates can be computed in a similar way.

Attacks Throughout this paper the cross entropy 2 is chosen as our loss function J . We measure the
distortion by two distances: `∞ norm and scaled `2 norm, i.e. root mean square deviation (RMSD)√∑d

i=1 η
2
i /d, where d is the dimensionality of inputs. As for optimizers, both FGSM and IGSM

are considered.

5 EFFECTIVENESS OF NOISE-REDUCED METHODS

In this section we demonstrate the effectiveness of our noise-reduced gradient technique by combin-
ing it with several commonly-used methods.

5.1 SINGLE-MODEL BASED APPROACHES

Fast gradient based method We first examine the combination of noise reduced gradient and fast
gradient based methods. The success rates of FGSM and nr-FGSM are summarized in Table 1
(results of FGM `2-attacks can be found in Appendix C). We observe that, for any pair of black-
box attack, nr-FGSM performs better than original FGSM consistently and dramatically. Even the
white-box attacks (the diagonal cells) also have improvements. This result implies that the direc-
tion of noise-reduced gradient is indeed more effective than the vanilla gradient for enhancing the
transferability.

Iterative gradient sign method One may argue that the above comparison is unfair, since nr-
FGSM consumes more computational cost than FGSM, determined by m: number of perturbed
inputs used for local average. Here we examine IGSM and nr-IGSM under the same number of
gradient calculations. Table 2 presents the results. Except for the attacks from alexnet, as we expect,
adversarial examples generated by nr-IGSM indeed transfer much more easily than those generated
by IGSM. This indicates that the noise-reduced gradient (NRG) does guide the optimizer to explore
the more data-dependent solutions.

Some observations By comparing Table 1 with Table 2, we find that large models are more robust
to adversarial transfer than small models, for example the resnet152. This phenomenon has also
been extensively investigated by Madry et al. (2017). It also shows that the transfer among the

1http://pytorch.org/docs/master/torchvision/models.html
2We also tried the loss described in Carlini & Wagner (2016) but did not find its superiority to cross entropy.

We guess the reason is that hard constraints instead of soft penalizations are used in our formulation.
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Table 1: Top-1 success rates of non-targeted FGSM and nr-FGSM attacks between pairs of models.
The cell (S, T ) indicates the percentage of adversarial examples generated for model S (row) that
successfully fool model T (column). For each cell, the left is the success rate of FGSM; the right is
the one of nr-FGSM. In this experiment, distortion ε = 15.

alexnet densenet121 resnet152 resnet34 vgg13 bn vgg19 bn

alexnet 98.3 / 98.1 24.7 / 46.0 18.0 / 19.3 34.3 / 37.8 48.6 / 50.2 33.7 / 43.7
densenet121 58.2 / 62.1 91.2 / 98.8 34.4 / 66.7 46.2 / 74.5 53.0 / 72.5 44.9 /71.4

resnet152 53.2 / 56.9 39.2 / 67.2 81.4 / 95.9 45.4 / 71.3 43.3 / 62.4 36.8 / 61.5
resnet34 57.3 / 62.5 46.3 / 71.1 38.4 / 66.4 94.3 / 98.5 54.4 / 70.5 46.7 / 68.8
vgg13 bn 46.8 / 53.9 23.0 / 48.4 16.0 / 34.4 28.0 / 53.2 96.7 / 98.7 54.2 / 84.6
vgg19 bn 47.4 / 54.6 28.1 / 58.8 18.7 / 46.4 31.5 / 62.3 62.2 / 87.1 91.1 / 98.3

Table 2: Top-1 success rates of non-targeted IGSM and nr-IGSM attacks between pairs of models.
The cell (S,T ) indicates the percentage of adversarial examples generated for model S (row) that
successfully fool model T (column). For each cell: (1) the left is the success rate of IGSM (k =
100, α = 1); (2) the right is the one of nr-IGSM (m = 20, σ = 15, k = 5, α = 5). In this
experiment, distortion ε = 15.

alexnet densenet121 resnet152 resnet34 vgg13 bn vgg19 bn

alexnet 100 / 100 26.9 / 24.6 18.3 / 16.0 38.6 / 37.1 49.2 / 47.3 35.9 / 34.4
densenet121 30.6 / 46.8 100 / 99.9 50.1 / 80.6 59.9 / 87.2 62.2 / 82.2 56.5 / 84.3

resnet152 27.4 / 40.7 52.5 / 81.3 100 / 100 57.2 / 85.6 47.7 / 71.1 42.9 / 72.6
resnet34 29.7 / 44.5 51.5 / 76.4 46.5 / 73.1 100 / 100 53.8 / 74.8 49.1 / 74.5
vgg13 bn 28.4 / 41.2 24.1 / 49.2 14.3 / 33.5 25.1 / 54.1 100 / 100 90.6 / 96.4
vgg19 bn 24.9 / 39.2 27.1 / 57.5 16.7 / 41.6 27.6 / 60.7 92.0 / 96.1 99.9 / 99.9

models with similar architectures is much easier, such as the 90%+ transferability between vgg-
style networks in Table 2. This implies that the model-specific component also contributes to the
transfer across models with similar architectures.

Additionally in most cases, IGSM generates stronger adversarial examples than FGSM except the
attacks against alexnet. This contradicts the claims in Kurakin et al. (2016) and Tramèr et al. (2017a)
that adversarial examples generated by FGSM transfer more easily than the ones of IGSM. However
our observation is consistent with the conclusions of Carlini & Wagner (2016): the higher confi-
dence (smaller cross entropy) adversarial examples have in the source model, the more likely they
will transfer to the target model. We conjecture that this is due to the inappropriate choice of hy-
perparameters, for instance α = 1, k = min(ε + 4, 1.24ε) in Kurakin et al. (2016) are too small,
and the solution has not fit the source model enough (i.e. underfitting). When treated as a target
model to be attacked, the alexnet is significantly different from those source models in terms of both
architecture and test accuracy. And therefore, the multiple iterations cause the IGSM to overfit more
than FGSM, producing a lower fooling rate.

These phenomena clearly indicate that we should not trust the objective in Eq. (2) completely, which
might cause the solution to overfit to the source model-specific information and leads to poor trans-
ferability. Our noise reduced gradient technique regularizes the optimizer by removing the model-
specific information from the original gradients, and consequently, it can converge to a more data-
dependent solution that has much better cross-model generalization capability.

5.2 ENSEMBLE BASED APPROACHES

In this part, we apply NRG method into ensemble-based approaches described in Eq. (3). Due to
the high computational cost of model ensembles, we select 1, 000 images, instead of 5, 000, as our
evaluation set.
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For non-targeted attacks, both FGSM, IGSM and their noise reduced versions are tested. The Top-1
success rates of IGSM attacks are nearly saturated, so we report the corresponding Top-5 rates in
Table 3(a) to demonstrate the improvements of our methods more clearly. The results of FGSM and
nr-FGSM attacks can be found in Appendix C.

For targeted attacks, to generate an adversarial example predicted by unseen target models as a
specific label, is much harder than generating non-targeted examples. Liu et al. (2016) demonstrated
that single-model based approaches are very ineffective in generating targeted adversarial examples.
That is why we did not consider targeted attacks in Section 5.1.

Different from the non-targeted attacks, we find that targeted adversarial examples are sensitive to
the step size α used in the optimization procedures (6) and (9). After trying lots of α, we find that
a large step size is necessary for generating strong targeted adversarial examples. Readers can
refer to Appendix A for more detailed analysis on this issue, though we cannot fully understand it.
Therefore we use a much larger step size compared to the non-target attacks. The Top-5 success
rates are reported in Table 3(b).

By comparing success rates of normal methods and our proposed NRG methods in Table 3 for both
targeted and non-targeted attacks, we observed that NRG methods outperform the corresponding
normal methods by a remarkable large margin in this scenario.

Table 3: Top-5 success rates of ensemble-based approaches. The cell (S, T ) indicates the attack
performances from the ensemble S (row) against the target model T (column). For each cell: the
left is the rate of normal method, in contrast the right is the one of the noise-reduced counterpart.
The corresponding Top-1 success rates can be found in Appendix C (Table 7 and Table 8).

(a) Non-targeted attacks: IGSM (k = 200, α = 1) versus nr-IGSM (k = 10, α = 5,m = 20, σ =
15), distortion ε = 15.

Ensemble densenet121 resnet152 resnet50 vgg13 bn

resnet18+resnet34+resnet101 43.0 / 75.5 54.5 / 81.6 62.6 / 85.4 42.0 / 74.2
vgg11 bn +densenet161 40.5 / 73.5 18.5 / 56.4 33.4 / 70.2 68.3 / 85.6

resnet34+vgg16 bn+alexnet 26.5 / 65.2 15.7 / 55.3 33.8 / 72.8 77.8 / 89.9

(b) Targeted attacks: IGSM (k = 20, α = 15) versus nr-IGSM (k = 20, α = 15,m = 20, σ = 15), distortion
ε = 20.

Ensemble resnet152 resnet50 vgg13 bn vgg16 bn

resnet101+densenet121 28.1 / 56.8 26.2 / 52.4 7.7 / 23.6 8.1 / 29.7
resnet18+resnet34+resnet101+densenet121 50.4 / 70.4 54.7 / 72.4 23.2 / 44.2 28.1 / 52.6

vgg11 bn+vgg13 bn+resnet18
+resnet34+densenet121 24.3 / 55.8 36.9 / 65.9 - 62.2 / 83.5

6 ANALYSIS

6.1 INFLUENCE OF HYPER PARAMETERS

In this part, we explore the sensitivity of hyper parameters m,σ when applying our NRG methods
for black-box attacks. We take nr-FGSM approach as a testbed over the selected evaluation set
described in Section 4. Four attacks are considered here, and the results are shown in Figure 3. It
is not surprising that larger m leads to higher fooling rate for any distortion level ε due to the better
estimation of the data-dependent direction of the gradient. We find there is an optimal value of σ
inducing the best performance. Overly large σ will introduce a large bias in (8). Extremely small
σ is unable to remove the noisy model-specific information effectively, since noisy components of
gradients of different perturbed inputs are still strongly correlated for small σ. Moreover the optimal
σ varies for different source models, and in this experiment it is about 15 for resnet18, compared to
20 for densenet161.
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Figure 3: (a) The sensitivity of the hyper parameter σ. (b) Success rates for nr-FGSM attacks with
different m.

6.2 ROBUSTNESS ANALYSIS OF ADVERSARIAL EXAMPLES

In this part, we preliminarily explore the robustness of adversarial perturbations to image transfor-
mations, such as rotation, scaling, blurring, etc. This property is particularly important in practice,
since it directly affects whether adversarial examples can survive in the physical world (Kurakin
et al. (2016); Athalye & Sutskever (2017); Lu et al. (2017)). To quantify the influence of transfor-
mations, we use the notion of destruction rate defined in Kurakin et al. (2016),

R =

∑N
i=1 c(xi)

(
1− c(xadv

i )
)
c(T (xadv

i ))∑N
i=1 c(xi)

(
1− c(xadv

i )
) ,

where N is the number of images used to estimate the destruction rate, T (·) is an arbitrary image
transformation. The function c(x) indicates whether x is classified correctly:

c(x) :=

{
1, if image x is classified correctly
0, otherwise

And thus, the above rate R describes the fraction of adversarial images that are no longer misclassi-
fied after the transformation T (·).
Densenet121 and resnet34 are chosen as our source and target model, respectively; and four image
transformations are considered: rotation, Gaussian noise, Gaussian blur and JPEG compression.
Figure 4 displays the results, which show that adversarial examples generated by our proposed NRG
methods are much more robust than those generated by vanilla methods.

0 5 10 15 20 25 30

Angle

0.00

0.05

0.10

0.15

0.20

0.25

D
es

tr
uc

ti
on

ra
te

Rotation

0 5 10 15 20 25

Noise standard deviation

0.0

0.1

0.2

0.3

0.4

0.5

Gaussian noise

0 0.5 1.0 1.5 2.0

Filter radius

0.0

0.2

0.4

0.6

Gaussian blur

10090807060

Quality

0.0

0.1

0.2

0.3

JPEG compression
FGSM

IGSM: k=10

IGSM: k=30

nr-FGSM

nr-IGSM: k=10

nr-IGSM: k=30

Figure 4: Destruction rates of adversarial examples for various methods. For NRG methods, we
choose m = 20, σ = 15. The distortion ε is set to 15.
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Figure 5: Decision boundaries of various models. The first one is the source model resnet34 and the
others are the target models examined. The horizontal axis represents sign

(
∇f‖

)
of resnet34, and

the vertical axis indicates sign (∇f⊥). For each figure, the same color indicates the same predicted
label. The origin represents the clean image x, whose label is table lamp with ID in ILSVRC2012
validation set being 26 ( shown in Figure 8 of Appendix C ).

6.3 VISUALIZATION OF DECISION BOUNDARY

In this section we study the decision boundaries of different models to help us understand why
NRG-based methods perform better. Resnet34 is chosen as the source model and nine target models
are considered, including resnet18, resnet50, resnet101, resnet152, vgg11 bn, vgg16 bn, vgg19 bn,
densenet121, alexnet. The ∇f‖ is estimated by (8) with m = 1000, σ = 15. Each point (u, v) in
this 2-D plane corresponds to the image perturbed by u and v along sign

(
∇f‖

)
and sign (∇f⊥),

respectively, i.e.
clip

(
x+ u sign

(
∇f‖

)
+ v sign (∇f⊥) , 0, 255

)
(13)

where x represents the original image. We randomly select one image that can be recognized by all
the models examined. The Figure 5 shows the decision boundaries. We also tried a variety of other
source models and images, all the plots are similar.

From the aspect of changing the predicted label, the direction of sign
(
∇f‖

)
is as sensitive as the

direction of sign (∇f⊥) for the source model resnet34. However, except alexnet all the other target
models are much more sensitive along sign

(
∇f‖

)
than sign (∇f⊥). This is consistent with the

argument in Section 3.1. Removing ∇f⊥ from gradients can also be thought as penalizing the
optimizer along the model-specific direction, thus avoiding converging to a source model-overfitting
solution that transfers poorly to the other target models.

Moreover, we find that, along the sign
(
∇f‖

)
, the minimal distance u to produce adversarial transfer

varies for different models. The distances for complex models are significantly larger than those of
small models, for instance, the comparison between resnet152 and resnent50. This provides us
a geometric understanding of why big models are more robust than small models, as observed in
Section 5.1.

6.4 INFLUENCE OF MODEL CAPACITY AND ACCURACY ON ATTACK CAPABILITY

In earlier experiments (Table 1 and Table 2), we can observe that adversarial examples crafted from
alexnet generalize worst across models, for example nr-FGSM attack of alexnet → resnet152 only
achieves 19.3 percent. However, attacks from densenet121 consistently perform well for any target
model, for example 84.3% of nr-IGSM adversarial examples can transfer to vgg19 bn, whose archi-
tecture is completely different from densenet121. This observation indicates that different models
can exhibit different performances in attacking the same target model. Now we attempt to find the

10
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principle behind this important phenomenon, which can guide us to choose a better local model to
generate adversarial examples for attacking the remote black-box system.

We select vgg19 bn and resnet152 as our target model, and use a variety of models to perform both
FGSM and IGSM attacks against them. The results are summarized in Figure 6. The horizontal axis
is the Top-1 test error, while the vertical axis is the number of model parameters that roughly quan-
tifies the model capacity. We can see that the models with powerful attack capability concentrate in
the bottom left corner, while fooling rates are very low for those models with large test error and
number of parameters3. We can obtain an important observation that

the smaller test error and lower capacity a model has, the stronger its attack capability is.

Here we attempt to explain this phenomenon from our understanding of transferability in Sec-
tion 3.1. A smaller test error indicates a lower bias for approximating the ground truth along the
data manifold. On the other hand, a less complex model might lead to a smaller model-specific
component ∇f⊥, facilitating the data-dependent factor dominate. In a nutshell, the model with
small∇f⊥ and large∇f‖ can provide strong adversarial examples that transfer more easily. This is
consistent with our arguments presented previously.
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Figure 6: Top-1 success rates of FGSM and IGSM (k = 20, α = 5) attacks against vgg19 bn for
various models. The annotated value is the percentage of adversarial examples that can transfer to the
vgg 19. Here, the models of vgg-style have been removed, since the contribution from architecture
similarities is not in our consideration. The distortion is chosen as ε = 15. The plots of attacking
resnet152 are similar and can be found in Appendix C (Figure 9).

7 CONCLUSION

In this paper, we have verified that an adversarial perturbation can be decomposed into two com-
ponents: model-specific and data-dependent ones. And it is the latter that mainly contributes to the
transferability of adversarial examples. Based on this understanding, we proposed the noise-reduced
gradient (NRG) based methods to craft adversarial examples, which are much more effective than
previous methods. We also show that the models with lower capacity and higher test accuracy are
endowed with stronger capability for black-box attacks.

In the future, we will consider combining NRG-based methods with adversarial training to defend
against black-box attacks. The component contributing to the transferability is data-dependent,
which is intrinsically low-dimensional, so we hypothesize that black-box attacks can be defensi-
ble. On the contrary, the white-box attack origins from the extremely high-dimensional ambient

3Note that the number of model parameters is only an approximate measure of model capacity. For the
models with the same number of parameters but different architectures, their capacities might be different. To
further investigate the relationship between capacity and attack capability, we fix one particular architecture,
e.g. fully connected networks for MNIST, and compare this architecture with different layers, as shown in
Appendix B. And the observation is still consistent with that on ImageNet data.
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space, thus its defense is much more difficult. Another interesting thread of future research is to
learn stable features beneficial for transfer learning by incorporating our NRG strategy, since the
reduction of model-specific noise can lead to more accurate information on the data manifold.
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APPENDIX A: INFLUENCE OF STEP SIZE FOR TARGETED ATTACKS

When using IGSM to perform targeted black-box attacks, there are two hyper parameters including
number of iteration k and step size α. Here we explore their influence to the quality of adversarial
examples generated. The success rates are valuated are calculated on 1, 000 images randomly se-
lected according to description of Section 4. resnet152 and vgg16 bn are chosen as target models.
The performance are evaluated by the average Top-5 success rate over the three ensembles used in
Table 3(b).

Figure 7 shows that for the optimal step size α is very large, for instance in this experiment it is
about 15 compared to the allowed distortion ε = 20. Both too large and too small step size will
yield harm to the attack performances. It interesting noting that with small step size α = 5, the
large number of iteration provides worser performance than small number of iteration. One possible
explain is that more iterations lead optimizers to converge to more overfit solution. In contrast, a
large step size can prevent it and encourage the optimizer to explore more model-independent area,
thus more iteration is better.
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Figure 7: Average success rates over three ensembles for different step size α and number of iteration
k. The three ensembles are the same with those in Table 3(b). Distortion ε = 20.

APPENDIX B: MNIST EXPERIMENTS

To further confirm the influence of model redundancy on the attack capability, we conduct an ad-
ditional experiment on MNIST dataset. We use the fully networks of D layers with width of each
layer being 500, e.g. the architecture of model with D = 2 is 784 − 500 − 500 − 10. Models of
depth 1, 3, 5, 9 are considered in this experiment. The Top-1 success rates of cross-model attacks
are reported in Table 4.

The results of Table 4 demonstrate the low-capacity model has much stronger attack capability than
large-capacity. This is consistent with our observation in Section 6.4.

Table 4: Top-1 success rates of FGSM attacks with ε = 40. Each cell (S,T ) indicates the percentage
of adversarial examples generated for model S evaluated on model T .

D = 1 D = 3 D = 5 D = 9

D = 1 89.37 62.94 62.90 64.42
D = 3 52.86 60.32 48.25 49.38
D = 5 47.30 43.05 55.84 44.83
D = 9 31.19 29.22 29.02 39.60
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APPENDIX C: SOME ADDITIONAL EXPERIMENTAL RESULTS

Table 5: Top-1 Success rates of non-targeted FGM and vr-FGM `2-attacks between pairs of models.
The cell (S,T) indicates the percentage of adversarial examples generated for model S(row) that
successfully fool model T(column). For each cell: (1) The left is the success rate of FGM; (2) The
right rate is the one of vr-FGM. In this experiment, distortion ε = 15.

alexnet densenet121 resnet152 resnet34 vgg13 bn vgg19 bn

alexnet 98.0 / 97.0 27.2 / 30.5 19.9 / 24.6 38.1 / 41.0 47.2 / 46.2 34.5 / 39.0
densenet121 53.5 / 61.6 93.1 / 98.6 34.5 / 68.7 43.6 / 76.2 50.7 / 72.8 44.2 / 74.6

resnet152 50.2 / 54.1 37.9 / 67.9 82.8 / 95.7 45.5 / 72.5 40.6 / 63.4 35.7 / 64.7
resnet34 55.1 / 61.3 45.8 / 72.2 36.6 / 68.3 94.5 / 98.5 50.7 / 70.6 45.2 / 70.6
vgg13 bn 45.4 / 55.1 25.7 / 53.8 14.9 / 38.1 28.6 / 59.3 97.0 / 98.3 53.7 / 86.6
vgg19 bn 42.9 / 53.3 27.4 / 64.0 18.1 / 48.4 32.0 / 63.2 57.1 / 85.9 91.8 / 97.7

Table 6: Top-1 success rates of ensemble-based non-targeted FGSM and nr-FGSM attacks. Each
cell (S,T) indicate the percentages of targeted adversarial examples are predicted as the target label
by model (T). The left is the result of FGSM, while the right is the ones of nr-FGSM. Distortion
ε = 15

Ensemble densenet121 resnet152 resnet50 vgg13 bn

resnet18+resnet34+resnet101 62.0 / 86.0 59.0 / 86.2 67.3 / 89.6 63.7 / 83.2
vgg11 bn+densenet161 52.3 / 81.9 35.8 / 70.5 48.0 / 78.8 69.3 / 89.6

resnet34+vgg16 bn+alexnet 50.8 / 80.2 38.3 / 73.3 52.8 / 82.3 74.8 / 92.3

Table 7: Top-1 success rates of ensemble-based non-targeted IGSM and nr-IGSM attacks. Each cell
(S,T) indicate the percentages of targeted adversarial examples are predicted as the target label by
model (T). The left is the result of IGSM (k = 100, α = 3), while the right is the ones of nr-IGSM
(k = 50, α = 3,m = 20, σ = 15). Since targeted attacks are much more difficult, we choose
ε = 20.

Ensemble densenet121 resnet152 resnet50 vgg13 bn

resnet18+resnet34+resnet101 87.8 / 97.8 94.6 / 98.9 97.4 / 99.4 84.1/96.1
vgg11 bn+densenet161 86.8 / 97.2 62.9 / 89.7 80.3 / 94.8 94.9 / 98.4

resnet34+vgg16 bn+alexnet 68.9 / 91.3 54.6 / 87.2 77.9 / 96.2 98.1 / 99.1

Table 8: Top-1 success rates of ensemble-based targeted IGSM and nr-IGSM attacks. The cell
(S,T) indicates the percentages of targeted adversarial examples generated from model S(row) are
predicted as the target label by model T(column). For each cell: The left is the results of IGSM
(k = 20, α = 15), while the right is the ones of nr-IGSM (k = 20, α = 15,m = 20, σ = 15). Since
targeted attacks are harder, we set ε = 20.

Ensemble resnet152 resnet50 vgg13 bn vgg16 bn
resnet101+densenet121 11.6 / 37.1 11.9 / 34.5 2.6 / 10.5 2.6 / 14.1

resnet18+resnet34+resnet101+densenet121 30.3 / 55.2 36.8 / 57.3 10.8 /29.1 12.8/35.0
vgg11 bn+vgg13 bn+resnet18+

resnet34+densenet121 10.1 / 35.1 22.2 / 47.9 - 42.1/72.1
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Figure 8: The image used to perform decision boundary analysis. Its ID in ILSVRC2012 validation
set is 26, with ground truth label being table lamp.
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Figure 9: Top-1 success rates of FGSM and IGSM (k = 20, α = 5) attacks against resnet152 for
various models. The annotated value is the percentage of adversarial examples that can transfer
to the resnet152. Here, the models of resnet-style have been removed, since the contribution from
architecture similarities is not in our consideration. The distortion is chosen as ε = 15.
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