
Published as a conference paper at ICLR 2018

NEURAL-GUIDED DEDUCTIVE SEARCH FOR REAL-
TIME PROGRAM SYNTHESIS FROM EXAMPLES

Ashwin K. Vijayakumar∗†& Dhruv Batra
School of Interactive Computing
Georgia Tech
Atlanta, GA 30308, USA
{ashwinkv,dbatra}@gatech.edu

Abhishek Mohta†& Prateek Jain
Microsoft Research India
Bengaluru, Karnataka 560001, India
{t-abmoht,prajain}@microsoft.com

Oleksandr Polozov & Sumit Gulwani
Microsoft Research Redmond
Redmond, WA 98052, USA
{polozov,sumitg}@microsoft.com

ABSTRACT

Synthesizing user-intended programs from a small number of input-output exam-
ples is a challenging problem with several important applications like spreadsheet
manipulation, data wrangling and code refactoring. Existing synthesis systems
either completely rely on deductive logic techniques that are extensively hand-
engineered or on purely statistical models that need massive amounts of data, and in
general fail to provide real-time synthesis on challenging benchmarks. In this work,
we propose Neural Guided Deductive Search (NGDS), a hybrid synthesis technique
that combines the best of both symbolic logic techniques and statistical models.
Thus, it produces programs that satisfy the provided specifications by construction
and generalize well on unseen examples, similar to data-driven systems. Our
technique effectively utilizes the deductive search framework to reduce the learning
problem of the neural component to a simple supervised learning setup. Further,
this allows us to both train on sparingly available real-world data and still leverage
powerful recurrent neural network encoders. We demonstrate the effectiveness
of our method by evaluating on real-world customer scenarios by synthesizing
accurate programs with up to 12× speed-up compared to state-of-the-art systems.

1 INTRODUCTION

Automatic synthesis of programs that satisfy a given specification is a classical problem in
AI (Waldinger & Lee, 1969), with extensive literature in both machine learning and programming
languages communities. Recently, this area has gathered widespread interest, mainly spurred by
the emergence of a sub-area – Programming by Examples (PBE) (Gulwani, 2011). A PBE system
synthesizes programs that map a given set of example inputs to their specified example outputs. Such
systems make many tasks accessible to a wider audience as example-based specifications can be
easily provided even by end users without programming skills. See Figure 1 for an example. PBE
systems are usually evaluated on three key criteria: (a) correctness: whether the synthesized program

Input Output
Yann LeCunn Y LeCunn
Hugo Larochelle H Larochelle
Tara Sainath T Sainath

Yoshua Bengio ?

Figure 1: An example input-output spec; the goal is to learn a
program that maps the given inputs to the corresponding outputs
and generalizes well to new inputs. Both programs below
satisfy the spec: (i) Concat(1st letter of 1st word, 2nd word), (ii)
Concat(4th-last letter of 1st word, 2nd word). However, program
(i) clearly generalizes better: for instance, its output on “Yoshua
Bengio” is “Y Bengio” while program (ii) produces “s Bengio”.

∗Work done during an internship at Microsoft Research.
†Equal contribution.

1

Published as a conference paper at ICLR 2018

satisfies the spec i.e. the provided example input-output mapping, (b) generalization: whether the
program produces the desired outputs on unseen inputs, and finally, (c) performance: synthesis time.

State-of-the-art PBE systems are either symbolic, based on enumerative or deductive search (Gulwani,
2011; Polozov & Gulwani, 2015) or statistical, based on data-driven learning to induce the most likely
program for the spec (Gaunt et al., 2016; Balog et al., 2017; Devlin et al., 2017). Symbolic systems are
designed to produce a correct program by construction using logical reasoning and domain-specific
knowledge. They also produce the intended program with few input-output examples (often just 1).
However, they require significant engineering effort and their underlying search processes struggle
with real-time performance, which is critical for user-facing PBE scenarios.

In contrast, statistical systems do not rely on specialized deductive algorithms, which makes their
implementation and training easier. However, they lack in two critical aspects. First, they require
a lot of training data and so are often trained using randomly generated tasks. As a result, induced
programs can be fairly unnatural and fail to generalize to real-world tasks with a small number of
examples. Second, purely statistical systems like RobustFill (Devlin et al., 2017) do not guarantee
that the generated program satisfies the spec. Thus, solving the synthesis task requires generating
multiple programs with a beam search and post-hoc filtering, which defeats real-time performance.

Neural-Guided Deductive Search Motivated by shortcomings of both the above approaches,
we propose Neural-Guided Deductive Search (NGDS), a hybrid synthesis technique that brings
together the desirable aspects of both methods. The symbolic foundation of NGDS is deductive
search (Polozov & Gulwani, 2015) and is parameterized by an underlying domain-specific language
(DSL) of target programs. Synthesis proceeds by recursively applying production rules of the DSL to
decompose the initial synthesis problem into smaller sub-problems and further applying the same
search technique on them. Our key observation I is that most of the deduced sub-problems do not
contribute to the final best program and therefore a priori predicting the usefulness of pursuing a
particular sub-problem streamlines the search process resulting in considerable time savings. In
NGDS, we use a statistical model trained on real-world data to predict a score that corresponds to the
likelihood of finding a generalizable program as a result of exploring a sub-problem branch.

Our key observation II is that speeding up deductive search while retaining its correctness or
generalization requires a close integration of symbolic and statistical approaches via an intelligent
controller. It is based on the “branch & bound” technique from combinatorial optimization (Clausen,
1999). The overall algorithm integrates (i) deductive search, (ii) a statistical model that predicts, a
priori, the generalization score of the best program from a branch, and (iii) a controller that selects
sub-problems for further exploration based on the model’s predictions.

Since program synthesis is a sequential process wherein a sequence of decisions (here, selections
of DSL rules) collectively construct the final program, a reinforcement learning setup seems more
natural. However, our key observation III is that deductive search is Markovian – it generates
independent sub-problems at every level. In other words, we can reason about a satisfying program
for the sub-problem without factoring in the bigger problem from which it was deduced. This brings
three benefits enabling a supervised learning formulation: (a) a dataset of search decisions at every
level over a relatively small set of PBE tasks that contains an exponential amount of information
about the DSL promoting generalization, (b) such search traces can be generated and used for offline
training, (c) we can learn separate models for different classes of sub-problems (e.g. DSL levels or
rules), with relatively simpler supervised learning tasks.

Evaluation We evaluate NGDS on the string transformation domain, building on top of PROSE,
a commercially successful deductive synthesis framework for PBE (Polozov & Gulwani, 2015).
It represents one of the most widespread and challenging applications of PBE and has shipped in
multiple mass-market tools including Microsoft Excel and Azure ML Workbench.1 We train and
validate our method on 375 scenarios obtained from real-world customer tasks (Gulwani, 2011;
Devlin et al., 2017). Thanks to the Markovian search properties described above, these scenarios
generate a dataset of 400, 000+ intermediate search decisions. NGDS produces intended programs
on 68% of the scenarios despite using only one input-output example. In contrast, state-of-the-art
neural synthesis techniques (Balog et al., 2017; Devlin et al., 2017) learn intended programs from a

1https://microsoft.github.io/prose/impact/

2

https://microsoft.github.io/prose/impact/

Published as a conference paper at ICLR 2018

single example in only 24-36% of scenarios taking ≈ 4× more time. Moreover, NGDS matches the
accuracy of baseline PROSE while providing a speed-up of up to 12× over challenging tasks.

Contributions First, we present a branch-and-bound optimization based controller that exploits
deep neural network based score predictions to select grammar rules efficiently (Section 3.2). Second,
we propose a program synthesis algorithm that combines key traits of a symbolic and a statistical
approach to retain desirable properties like correctness, robust generalization, and real-time perfor-
mance (Section 3.3). Third, we evaluate NGDS against state-of-the-art baselines on real customer
tasks and show significant gains (speed-up of up to 12×) on several critical cases (Section 4).

2 BACKGROUND

In this section, we provide a brief background on PBE and the PROSE framework, using established
formalism from the programming languages community.

Domain-Specific Language A program synthesis problem is defined over a domain-specific lan-
guage (DSL). A DSL is a restricted programming language that is suitable for expressing tasks in a
given domain, but small enough to restrict a search space for program synthesis. For instance, typical
real-life DSLs with applications in textual data transformations (Gulwani, 2011) often include condi-
tionals, limited forms of loops, and domain-specific operators such as string concatenation, regular
expressions, and date/time formatting. DSLs for tree transformations such as code refactoring (Rolim
et al., 2017) and data extraction (Le & Gulwani, 2014) include list/data-type processing operators
such as Map and Filter, as well as domain-specific matching operators. Formally, a DSL L is speci-
fied as a context-free grammar, with each non-terminal symbol N defined by a set of productions.
The right-hand side of each production is an application of some operator F (N1, . . . , Nk) to some
symbols of L. All symbols and operators are strongly typed. Figure 2 shows a subset of the Flash Fill
DSL that we use as a running example in this paper.

Inductive Program Synthesis The task of inductive program synthesis is characterized by a spec.
A spec ϕ is a set of m input-output constraints {σi ψi}mi=1, where:

• σ, an input state is a mapping of free variables of the desired program P to some correspondingly
typed values. At the top level of L, a program (and its expected input state) has only one free
variable – the input variable of the DSL (e.g., inputs in Figure 2). Additional local variables are
introduced inside L with a let construct.

• ψ is an output constraint on the execution result of the desired program P (σi). At the top level of
L, when provided by the user, ψ is usually the output example – precisely the expected result of
P (σi). However, other intermediate constraints arise during the synthesis process. For instance, ψ
may be a disjunction of multiple allowed outputs.

The overall goal of program synthesis is thus: given a spec ϕ, find a program P in the underlying
DSL L that satisfies ϕ, i.e., its outputs P (σi) satisfy all the corresponding constraints ψi.
Example 1. Consider the task of formatting a phone number, characterized by the spec ϕ =
{inputs : [“(612) 8729128”]} “612-872-9128”. It has a single input-output example,
with an input state σ containing a single variable inputs and its value which is a list with a single
input string. The output constraint is simply the desired program result.

The program the user is most likely looking for is the one that extracts (a) the part of the input
enclosed in the first pair of parentheses, (b) the 7th to 4th characters from the end, and (c) the last 4
characters, and then concatenates all three parts using hyphens. In our DSL, this corresponds to:

Concat
(
SubStr0(RegexPosition(x, 〈“(”, ε〉 , 0),RegexPosition(x, 〈ε, “)”〉 , 0)), ConstStr(“-”),
SubStr0(AbsolutePosition(x,−8),AbsolutePosition(x,−5)), ConstStr(“-”),
SubStr0(AbsolutePosition(x,−5),AbsolutePosition(x,−1))

)
where ε is an empty regex, SubStr0(pos1, pos2) is an abbreviation for “let x = std.Kth(inputs, 0)
in Substring(x, 〈pos1, pos2〉)”, and 〈·〉 is an abbreviation for std.Pair.

However, many other programs in the DSL also satisfy ϕ. For instance, all occurrences of “8” in
the output can be produced via a subprogram that simply extracts the last character. Such a program
overfits to ϕ and is bound to fail for other inputs where the last character and the 4th one differ.

3

Published as a conference paper at ICLR 2018

// Nonterminals
@start string transform := atom | Concat(atom, transform);
string atom := ConstStr(s)

| let string x = std.Kth(inputs, k) in Substring(x, pp);
Tuple<int, int> pp := std.Pair(pos, pos) | RegexOccurrence(x, r, k);
int pos := AbsolutePosition(x, k) | RegexPosition(x, std.Pair(r, r), k);
// Terminals
@input string[] inputs; string s; int k; Regex r;

Figure 2: A subset of the FlashFill DSL (Gulwani, 2011), used as a running example in this paper.
Every program takes as input a list of strings inputs, and returns an output string, a concatenation
of atoms. Each atom is either a constant or a substring of one of the inputs (x), extracted using
some position logic. The RegexOccurrence position logic finds kth occurrence of a regex r in x and
returns its boundaries. Alternatively, start and end positions can be selected independently either as
absolute indices in x from left or right (AbsolutePosition) or as the kth occurrence of a pair of regexes
surrounding the position (RegexPosition). See Gulwani (2011) for an in-depth DSL description.

As Example 1 shows, typical real-life problems are severely underspecified. A DSL like FlashFill
may contain up to 1020 programs that satisfy a given spec of 1-3 input-output examples (Polozov &
Gulwani, 2015). Therefore, the main challenge lies in finding a program that not only satisfies the
provided input-output examples but also generalizes to unseen inputs. Thus, the synthesis process
usually interleaves search and ranking: the search phase finds a set of spec-satisfying programs in the
DSL, from which the ranking phase selects top programs ordered using a domain-specific ranking
function h : L × ~Σ→ R where Σ is the set of all input states. The ranking function takes as input a
candidate program P ∈ L and a set of input states ~σ ∈ ~Σ (usually ~σ = inputs in the given spec + any
available unlabeled inputs), and produces a score for P ’s generalization.

The implementation of h expresses a subtle balance between program generality, complexity, and
behavior on available inputs. For instance, in FlashFill h penalizes overly specific regexes, prefers
programs that produce fewer empty outputs, and prioritizes lower Kolmogorov complexity, among
other features. In modern PBE systems like PROSE, h is usually learned in a data-driven manner
from customer tasks (Singh & Gulwani, 2015; Ellis & Gulwani, 2017). While designing and learning
such a ranking is an interesting problem in itself, in this work we assume a black-box access to h.
Finally, the problem of inductive program synthesis can be summarized as follows:

Problem 1. Given a DSL L, a ranking function h, a spec ϕ = {σi ψi}mi=1, optionally a set
of unlabeled inputs ~σu, and a target number of programs K, let ~σ = ~σu ∪ {σi}mi=1. The goal of
inductive program synthesis is to find a program set S = {P1, . . . , PK} ⊂ L such that (a) every
program in S satisfies ϕ, and (b) the programs in S generalize best: h(Pi, ~σ) ≥ h(P,~σ) for any
other P ∈ L that satisfies ϕ.

Search Strategy Deductive search strategy for program synthesis, employed by PROSE explores
the grammar of L top-down – iteratively unrolling the productions into partial programs starting from
the root symbol. Following the divide-and-conquer paradigm, at each step it reduces its synthesis
problem to smaller subproblems defined over the parameters of the current production. Formally,
given a spec ϕ and a symbol N , PROSE computes the set Learn(N,ϕ) of top programs w.r.t. h using
two guiding principles:

1. If N is defined through n productions N := F1(. . .) | . . . | Fn(. . .), PROSE finds a ϕ-satisfying
program set for every Fi, and unites the results, i.e., Learn(N,ϕ) = ∪i Learn(Fi(. . .), ϕ).

2. For a given production N := F (N1, . . . , Nk), PROSE spawns off k smaller synthesis problems
Learn(Nj , ϕj), 1 ≤ j ≤ k wherein PROSE deduces necessary and sufficient specs ϕj for each
Nj such that every program of type F (P1, . . . , Pk), where Pj ∈ Learn(Nj , ϕj), satisfies ϕ. The
deduction logic (called a witness function) is domain-specific for each operator F . PROSE then
again recursively solves each subproblem and unites a cross-product of the results.

Example 2. Consider a spec ϕ = {“Yann” “Y.L”} on a transform program. Via the first
production transform := atom, the only ϕ-satisfying program is ConstStr(“Y.L”). The second
production on the same level is Concat(atom, transform). A necessary & sufficient spec on the
atom sub-program is that it should produce some prefix of the output string. Thus, the witness
function for the Concat operator produces a disjunctive spec ϕa = {“Yann” “Y” ∨ “Y.”}. Each

4

Published as a conference paper at ICLR 2018

of these disjuncts, in turn, induces a corresponding necessary and sufficient suffix spec on the second
parameter: ϕt1 = {“Yann” “.L”}, and ϕt2 = {“Yann” “L”}, respectively. The disjuncts
in ϕa will be recursively satisfied by different program sets: “Y.” can only be produced via an
atom path with a ConstStr program, whereas “Y” can also be extracted from the input using many
Substring logics (their generalization capabilities vary). Figure 3 shows the resulting search DAG.

transform
“Y.L”

Concat(. . .)
“Y.L”

atom
“Y.L”

atom
“Y” ∨ “Y.”

transform
“L”

atom
“L”

transform
“.L”

atom
“.L”

Concat(. . .)
“.L”

atom
“.”

ConstStr(s)
“Y.L”

.

ConstStr(s)
“Y” ∨ “Y.”

let x = . . .
“Y” ∨ “Y.”

...
Substring(. . .)

“Y”

pp
(0, 1)

. . .

Figure 3: A portion of the search DAG from Example 2. Only the output parts of the respective specs
are shown in each node, their common input state is a single string “Yann”. Dashed arrows show
recursive Learn calls on a corresponding DSL symbol.

Notice that the above mentioned principles create logical non-determinism due to which we might
need to explore multiple alternatives in a search tree. As such non-determinism arises at every level of
the DSL with potentially any operator, the search tree (and the resulting search process) is exponential
in size. While all the branches of the tree by construction produce programs that satisfy the given
spec, most of the branches do not contribute to the overall top-ranked generalizable program. During
deductive search, PROSE has limited information about the programs potentially produced from
each branch, and cannot estimate their quality, thus exploring the entire tree unnecessarily. Our main
contribution is a neural-guided search algorithm that predicts the best program scores from each
branch, and allows PROSE to omit branches that are unlikely to produce the desired program a priori.

3 SYNTHESIS ALGORITHM

Consider an arbitrary branching moment in the top-down search strategy of PROSE. For example, let
N be a nonterminal symbol in L, defined through a set of productions N := F1(. . .) | . . . | Fn(. . .),
and let ϕ be a spec on N , constructed earlier during the recursive descent over L. A conservative
way to select the top k programs rooted at N (as defined by the ranking function h), i.e., to compute
Learn(N,ϕ), is to learn the top k programs of kind Fi(. . .) for all i ∈ [k] and then select the top k
programs overall from the union of program sets learned for each production. Naturally, exploring all
the branches for each nonterminal in the search tree is computationally expensive.

In this work, we propose a data-driven method to select an appropriate production rule N :=
Fi(N1, . . . , Nk) that would most likely lead to a top-ranked program. To this end, we use the current
spec ϕ to determine the “optimal” rule. Now, it might seem unintuitive that even without exploring
a production rule and finding the best program in the corresponding program set, we can a priori
determine optimality of that rule. However, we argue that by understanding ϕ and its relationship
with the ranking function h, we can predict the intended branch in many real-life scenarios.

Example 3. Consider a spec ϕ = {“alice” “alice@iclr.org”, “bob”
“bob@iclr.org”}. While learning a program in L given by Figure 2 that satisfies ϕ, it is clear
right at the beginning of the search procedure that the rule transform := atom does not apply. This
is because any programs derived from transform := atom can either extract a substring from the
input or return a constant string, both of which fail to produce the desired output. Hence, we should
only consider transform := Concat(. . .), thus significantly reducing the search space.

Similarly, consider another spec ϕ = {“alice smith” “alice”, “bob jones”
“bob”}. In this case, the output appears to be a substring of input, thus selecting transform := atom
at the beginning of the search procedure is a better option than transform := Concat(. . .).

However, many such decisions are more subtle and depend on the ranking function h itself. For
example, consider a spec ϕ = {“alice liddell” “al”, “bob ong” “bo”}. Now,

5

Published as a conference paper at ICLR 2018

LSTM for input encoding LSTM for output encoding

Char Embedding

Input state σ

Char Embedding

Output example(s) ψ

Embedding

Production rule Γ
Two
FC

layers

Pr
ed

ic
te

d
sc

or
e

Figure 4: LSTM-based model for predicting the score of a candidate production for a given spec ϕ.

both transform := atom and transform := Concat(. . .) may lead to viable programs because
the output can be constructed using the first two letters of the input (i.e. a substring atom) or by
concatenating the first letters of each word. Hence, the branch that produces the best program is
ultimately determined by the ranking function h since both branches generate valid programs.

Example 3 shows that to design a data-driven search strategy for branch selection, we need to learn
the subtle relationship between ϕ, h, and the candidate branch. Below, we provide one such model.

3.1 PREDICTING THE GENERALIZATION SCORE

As mentioned above, our goal is to predict one or more production rules that for a given spec ϕ will
lead to a top-ranked program (as ranked a posteriori by h). Formally, given black-box access to h,
we want to learn a function f such that,

f(Γ, ϕ) ≈ max
P ∈S(Γ, ϕ)

h(P,ϕ),

where Γ is a production rule in L, and S(Γ, ϕ) is a program set of all DSL programs derived from
the rule Γ that satisfy ϕ. In other words, we want to predict the score of the top-ranked ϕ-satisfying
program that is synthesized by unrolling the rule Γ . We assume that the symbolic search of PROSE
handles the construction of S(Γ, ϕ) and ensures that programs in it satisfy ϕ by construction. The
goal of f is to optimize the score of a program derived from Γ assuming this program is valid. If no
program derived from Γ can satisfy ϕ, f should return −∞. Note that, drawing upon observations
mentioned in Section 1, we have cast the production selection problem as a supervised learning
problem, thus simplifying the learning task as opposed to end-to-end reinforcement learning solution.

We have evaluated two models for learning f . The loss function for the prediction is given by:

L(f ;Γ, ϕ) =
(
f(Γ, ϕ)− max

P ∈S(Γ, ϕ)
h(P,ϕ)

)2
.

Figure 4 shows a common structure of both models we have evaluated. Both are based on a standard
multi-layer LSTM architecture (Hochreiter & Schmidhuber, 1997) and involve (a) embedding the
given spec ϕ, (b) encoding the given production rule Γ , and (c) a feed-forward network to output a
score f(Γ, ϕ). One model attends over input when it encodes the output, whereas another does not.

3.2 CONTROLLER FOR BRANCH SELECTION

A score model f alone is insufficient to perfectly predict the branches that should be explored at
every level. Consider again a branching decision moment N := F1(. . .) | . . . | Fn(. . .) in a search
process for top k programs satisfying a spec ϕ. One naïve approach to using the predictions of f is to
always follow the highest-scored production rule argmaxi f(Fi, ϕ). However, this means that any
single incorrect decision on the path from the DSL root to the desired program will eliminate that
program from the learned program set. If our search algorithm fails to produce the desired program
by committing to a suboptimal branch anytime during the search process, then the user may never
discover that such a program exists unless they supply additional input-output example.

Thus, a branch selection strategy based on the predictions of f must balance a trade-off of performance
and generalization. Selecting too few branches (a single best branch in the extreme case) risks
committing to an incorrect path early in the search process and producing a suboptimal program or
no program at all. Selecting too many branches (all n branches in the extreme case) is no different
from baseline PROSE and fails to exploit the predictions of f to improve its performance.

Formally, a controller for branch selection at a symbol N := F1(. . .) | . . . | Fn(. . .) targeting
k best programs must (a) predict the expected score of the best program from each program set:

6

Published as a conference paper at ICLR 2018

function THRESHOLDBASED(ϕ, h, k, s1, . . . , sn)
1: Result set S∗ ← []
2: i∗ ← argmaxi si
3: for all 1 ≤ i ≤ n do
4: if |si − si∗ | ≤ θ then

// Recursive search
5: S∗ += LEARN(Fi, ϕ, k)

6: return the top k programs of S w.r.t. h

function BNBBASED(ϕ, h, k, s1, . . . , sn)
1: Result set S∗ ← []; Program target k′ ← k
2: Reorder Fi in the descending order of si
3: for all 1 ≤ i ≤ n do
4: Si ← LEARN(Fi, ϕ, k

′) // Recursive search
5: j ← BINARYSEARCH(si+1,Map(h,Si))
6: S∗ = S∗i ∪ Si[0..j]; k′ ← k′ − j
7: if k′ ≤ 0 then break
8: return S∗

Figure 5: The controllers for guiding the search process to construct a most generalizable ϕ-satisfying
program set S of size k given the f -predicted best scores s1, . . . , sn of the productions F1, . . . , Fn.

Given: DSL L, ranking function h, controller C from Figure 5 (THRESHOLDBASED or BNBBASED),
symbolic search algorithm LEARN(Production rule Γ , spec ϕ, target k) as in PROSE (Polozov &
Gulwani, 2015, Figure 7) with all recursive calls to LEARN replaced with LEARNNGDS

function LEARNNGDS(Symbol N := F1(. . .) | . . . | Fn(. . .), spec ϕ, target number of programs k)
1: if n = 1 then return LEARN(F1, ϕ, k)
2: Pick a score model f based on depth(N,L)
3: s1, . . . , sn ← f(F1, ϕ), . . . , f(Fn, ϕ)
4: return C(ϕ, h, k, s1, . . . , sn)

Figure 6: Neural-guided deductive search over L, parameterized with a branch selection controller C.

si = f(Fi, ϕ) ∀ 1 ≤ i ≤ n, and (b) use the predicted scores si to narrow down the set of productions
F1, . . . , Fn to explore and to obtain the overall result by selecting a subset of generated programs. In
this work, we propose and evaluate two controllers. Their pseudocode is shown in Figure 5.

Threshold-based: Fix a score threshold θ, and explore those branches whose predicted score differs
by at most θ from the maximum predicted score. This is a simple extension of the naïve “argmax”
controller discussed earlier that also explores any branches that are predicted “approximately as good
as the best one”. When θ = 0, it reduces to the “argmax” one.

Branch & Bound: This controller is based on the “branch & bound” technique in combinatorial
optimization (Clausen, 1999). Assume the branches Fi are ordered in the descending order of their
respective predicted scores si. After recursive learning produces its program set Si, the controller
proceeds to the next branch only if si+1 exceeds the score of the worst program in Si. Moreover, it
reduces the target number of programs to be learned, using si+1 as a lower bound on the scores of
the programs in Si. That is, rather than relying blindly on the predicted scores, the controller guides
the remaining search process by accounting for the actual synthesized programs as well.

3.3 NEURAL-GUIDED DEDUCTIVE SEARCH

We now combine the above components to present our unified algorithm for program synthesis. It
builds upon the deductive search of the PROSE system, which uses symbolic PL insights in the form
of witness functions to construct and narrow down the search space, and a ranking function h to pick
the most generalizable program from the found set of spec-satisfying ones. However, it significantly
speeds up the search process by guiding it a priori at each branching decision using the learned
score model f and a branch selection controller, outlined in Sections 3.1 and 3.2. The resulting
neural-guided deductive search (NGDS) keeps the symbolic insights that construct the search tree
ensuring correctness of the found programs, but explores only those branches of this tree that are
likely to produce the user-intended generalizable program, thus eliminating unproductive search time.

A key idea in NGDS is that the score prediction model f does not have to be the same for all decisions
in the search process. It is possible to train separate models for different DSL levels, symbols, or even
productions. This allows the model to use different features of the input-output spec for evaluating
the fitness of different productions, and also leads to much simpler supervised learning problems.

Figure 6 shows the pseudocode of NGDS. It builds upon the deductive search of PROSE, but augments
every branching decision on a symbol with some branch selection controller from Section 3.2. We
present a comprehensive evaluation of different strategies in Section 4.

7

Published as a conference paper at ICLR 2018

Metric PROSE DC1 DC2 DC3 RF1 RF2 RF3 NGDS

Accuracy (% of 73) 67.12 35.81 47.38 62.92 24.53 39.72 56.41 68.49
Speed-up (× PROSE) 1.00 1.82 1.53 1.42 0.25 0.27 0.30 1.67

Table 1: Accuracy and average speed-up of NGDS vs. baseline methods. Accuracies are computed
on a test set of 73 tasks. Speed-up of a method is the geometric mean of its per-task speed-up (ratio
of synthesis time of PROSE and of the method) when restricted to a subset of tasks with PROSE’s
synthesis time is ≥ 0.5 sec.

4 EVALUATION

In this section, we evaluate our NGDS algorithm over the string manipulation domain with a DSL
given by Figure 2; see Figure 1 for an example task. We evaluate NGDS, its ablations, and baseline
techniques on two key metrics: (a) generalization accuracy on unseen inputs, (b) synthesis time.

Dataset. We use a dataset of 375 tasks collected from real-world customer string manipulation prob-
lems, split into 65% training, 15% validation, and 20% test data. Some of the common applications
found in our dataset include date/time formatting, manipulating addresses, modifying names, automat-
ically generating email IDs, etc. Each task contains about 10 inputs, of which only one is provided as
the spec to the synthesis system, mimicking industrial applications. The remaining unseen examples
are used to evaluate generalization performance of the synthesized programs. After running synthesis
of top-1 programs with PROSE on all training tasks, we have collected a dataset of ≈ 400,000
intermediate search decisions, i.e. triples 〈production Γ, spec ϕ, a posteriori best score h(P,ϕ)〉.
Baselines. We compare our method against two state-of-the-art neural synthesis algorithms: Ro-
bustFill (Devlin et al., 2017) and DeepCoder (Balog et al., 2017). For RobustFill, we use the
best-performing Attention-C model and use their recommended DP-Beam Search with a beam size of
100 as it seems to perform the best; Table 3 in Appendix A presents results with different beam sizes.
As in the original work, we select the top-1 program ranked according to the generated log-likelihood.
DeepCoder is a generic framework that allows their neural predictions to be combined with any
program synthesis method. So, for fair comparison, we combine DeepCoder’s predictions with
PROSE. We train DeepCoder model to predict a distribution over L’s operators and as proposed, use
it to guide PROSE synthesis. Since both RobustFill and DeepCoder are trained on randomly sampled
programs and are not optimized for generalization in the real-world, we include their variants trained
with 2 or 3 examples (denoted RFm and DCm) for fairness, although m = 1 example is the most
important scenario in real-life industrial usage.

Ablations. As mentioned in Section 3, our novel usage of score predictors to guide the search
enables us to have multiple prediction models and controllers at various stages of the synthesis
process. Here we investigate ablations of our approach with models that specialize in predictions for
individual levels in the search process. The model T1 is trained for symbol transform (Figure 2)
when expanded in the first level. Similarly, PP , POS refer to models trained for the pp and pos
symbol, respectively. Finally, we train all our LSTM-based models with CNTK (Seide & Agarwal,
2016) using Adam (Kingma & Ba, 2014) with a learning rate of 10−2 and a batch size of 32, using
early stopping on the validation loss to select the best performing model (thus, 100-600 epochs).

We also evaluate three controllers: threshold-based (Thr) and branch-and-bound (BB) controllers
given in Figure 5, and a combination of them – branch-and-bound with a 0.2 threshold predecessor
(BB0.2). In Tables 1 and 2 we denote different model combinations as NGDS(f , C) where f is a
symbol-based model and C is a controller. The final algorithm selection depends on its accuracy-
performance trade-off. In Table 1, we use NGDS(T1 + POS, BB), the best performing algorithm on
the test set, although NGDS(T1, BB) performs slightly better on the validation set.

Evaluation Metrics. Generalization accuracy is the percentage of test tasks for which the generated
program satisfies all unseen inputs in the task. Synthesis time is measured as the wall-clock time
taken by a synthesis method to find the correct program, median over 5 runs. We run all the methods
on the same machine with 2.3 GHz Intel Xeon processor, 64GB of RAM, and Windows Server 2016.

Results. Table 1 presents generalization accuracy as well as synthesis time speed-up of various
methods w.r.t. PROSE. As we strive to provide real-time synthesis, we only compare the times for
tasks which require PROSE more than 0.5 sec. Note that, with one example, NGDS and PROSE are

8

Published as a conference paper at ICLR 2018

Method Validation Test % of branches
Accuracy Speed-up Accuracy Speed-up

PROSE 70.21 1 67.12 1 100.00
NGDS(T1, Thr) 59.57 1.15 67.12 1.27 62.72
NGDS(T1, BB) 63.83 1.58 68.49 1.22 51.78
NGDS(T1, BB0.2) 61.70 1.03 67.12 1.22 63.16
NGDS(T1 + PP , Thr) 59.57 0.76 67.12 0.97 56.41
NGDS(T1 + PP , BB) 61.70 1.05 72.60 0.89 50.22
NGDS(T1 + PP , BB0.2) 61.70 0.72 67.12 0.86 56.43
NGDS(T1 + POS, Thr) 61.70 1.19 67.12 1.93 55.63
NGDS(T1 + POS, BB) 63.83 1.13 68.49 1.67 50.44
NGDS(T1 + POS, BB0.2) 63.83 1.19 67.12 1.73 55.73

Table 2: Accuracies, mean speed-ups, and % of branches taken for different ablations of NGDS.

significantly more accurate than RobustFill and DeepCoder. This is natural as those methods are
not trained to optimize generalization, but it also highlights advantage of a close integration with a
symbolic system (PROSE) that incorporates deep domain knowledge. Moreover, on an average, our
method saves more than 50% of synthesis time over PROSE. While DeepCoder with one example
speeds up the synthesis even more, it does so at the expense of accuracy, eliminating branches with
correct programs in 65% of tasks.

Table 2 presents speed-up obtained by variations of our models and controllers. In addition to
generalization accuracy and synthesis speed-up, we also show a fraction of branches that were
selected for exploration by the controller. Our method obtains impressive speed-up of > 1.5× in
22 cases. One such test case where we obtain 12× speedup is a simple extraction case which
is fairly common in Web mining: {“alpha,beta,charlie,delta” “alpha”}. For
such cases, our model determine transform := atom to be the correct branch (that leads to
the final Substring based program) and hence saves time required to explore the entire Concat
operator which is expensive. Another interesting test case where we observe 2.7× speed-up is:
{“457 124th St S, Seattle, WA 98111” “Seattle-WA”}. This test case involves
learning a Concat operator initially followed by Substring and RegexPosition operator. Appendix B
includes a comprehensive table of NGDS performance on all the validation and test tasks.

All the models in Table 2 run without attention. As measured by score flip accuracies (i.e. per-
centage of correct orderings of branch scores on the same level), attention-based models perform
best, achieving 99.57/90.4/96.4% accuracy on train/validation/test, respectively (as compared to
96.09/91.24/91.12% for non-attention models). However, an attention-based model is significantly
more computationally expensive at prediction time. Evaluating it dominates the synthesis time
and eliminates any potential speed-ups. Thus, we decided to forgo attention in initial NGDS and
investigate model compression/binarization in future work.

Error Analysis. As Appendix B shows, NGDS is slower than PROSE on some tasks. This occurs
when the predictions do not satisfy the constraints of the controller i.e. all the predicted scores are
within the threshold or they violate the actual scores during B&B exploration. This leads to NGDS
evaluating the LSTM for branches that were previously pruned. This is especially harmful when
branches pruned out at the very beginning of the search need to be reconsidered – as it could lead
to evaluating the neural network many times. While a single evaluation of the network is quick, a
search tree involves many evaluations, and when performance of PROSE is already < 1 s, this results
in considerable relative slowdown. We provide two examples to illustrate both the failure modes:

(a) “41.7114830017,-91.41233825683,41.60762786865,-91.63739013671”
“41.7114830017”. The intended program is a simple substring extraction. However, at depth 1,
the predicted score of Concat is much higher than the predicted score of Atom, and thus NGDS
explores only the Concat branch. The found Concat program is incorrect because it uses absolute
position indexes and does not generalize to other similar extraction tasks. We found this scenario
common with punctuation in the output string, which the model considers a strong signal for Concat.

(b) “type size = 36: Bartok.Analysis.CallGraphNode type size = 32:
Bartok.Analysis.CallGraphNode CallGraphNode” “36->32”. In this case,
NGDS correctly explores only the Concat branch, but the slowdown happens at the pos symbol.

9

Published as a conference paper at ICLR 2018

There are many different logics to extract the “36” and “32” substrings. NGDS explores the
RelativePosition branch first, but the score of the resulting program is less then the prediction for
RegexPositionRelative. Thus, the B&B controller explores both branches anyway, which leads to a
relative slowdown caused by the network evaluation time.

5 RELATED WORK

Neural Program Induction systems synthesize a program by training a new neural network model
to map the example inputs to example outputs (Graves et al., 2014; Reed & De Freitas, 2016;
Zaremba et al., 2016). Examples include Neural Turing Machines (Graves et al., 2014) that can learn
simple programs like copying/sorting, work of Kaiser & Sutskever (2015) that can perform more
complex computations like binary multiplications, and more recent work of Cai et al. (2017) that can
incorporate recursions. While we are interested in ultimately producing the right output, all these
models need to be re-trained for a given problem type, thus making them unsuitable for real-life
synthesis of different programs with few examples.

Neural Program Synthesis systems synthesize a program in a given L with a pre-learned neural
network. Seminal works of Bosnjak et al. (2017) and Gaunt et al. (2016) proposed first producing a
high-level sketch of the program using procedural knowledge, and then synthesizing the program by
combining the sketch with a neural or enumerative synthesis engine. In contrast, R3NN (Parisotto
et al., 2016) and RobustFill (Devlin et al., 2017) systems synthesize the program end-to-end using
a neural network; Devlin et al. (2017) show that RobustFill in fact outperforms R3NN. However,
RobustFill does not guarantee generation of spec-satisfying programs and often requires more than
one example to find the intended program. In fact, our empirical evaluation (Section 4) shows that
our hybrid synthesis approach significantly outperforms the purely statistical approach of RobustFill.

DeepCoder (Balog et al., 2017) is also a hybrid synthesis system that guides enumerative program
synthesis by prioritizing DSL operators according to a spec-driven likelihood distribution on the same.
However, NGDS differs from DeepCoder in two important ways: (a) it guides the search process at
each recursive level in a top-down goal-oriented enumeration and thus reshapes the search tree, (b) it
is trained on real-world data instead of random programs, thus achieving better generalization.

Symbolic Program Synthesis has been studied extensively in the PL community (Gulwani et al.,
2017; Alur et al., 2013), dating back as far as 1960s (Waldinger & Lee, 1969). Most approaches
employ either bottom-up enumerative search (Udupa et al., 2013), constraint solving (Torlak & Bodik,
2013), or inductive logic programming (Lin et al., 2014), and thus scale poorly to real-world industrial
applications (e.g. data wrangling applications). In this work, we build upon deductive search, first
studied for synthesis by Manna & Waldinger (1971), and primarily used for program synthesis
from formal logical specifications (Puschel et al., 2005; Chaudhari & Damani, 2015). Gulwani
(2011) and later Polozov & Gulwani (2015) used it to build PROSE, a commercially successful
domain-agnostic system for PBE. While its deductive search guarantees program correctness and also
good generalization via an accurate ranking function, it still takes several seconds on complex tasks.
Thus, speeding up deductive search requires considerable engineering to develop manual heuristics.
NGDS instead integrates neural-driven predictions at each level of deductive search to alleviate this
drawback. Work of Loos et al. (2017) represents the closest work with a similar technique but their
work is applied to an automated theorem prover, and hence need not care about generalization. In
contrast, NGDS guides the search toward generalizable programs while relying on the underlying
symbolic engine to generate correct programs.

6 CONCLUSION

We studied the problem of real-time program synthesis with a small number of input-output examples.
For this problem, we proposed a neural-guided system that builds upon PROSE, a state-of-the-art
symbolic logic based system. Our system avoids top-down enumerative grammar exploration required
by PROSE thus providing impressive synthesis performance while still retaining key advantages of
a deductive system. That is, compared to existing neural synthesis techniques, our system enjoys
following advantages: a) correctness: programs generated by our system are guaranteed to satisfy the
given input-output specification, b) generalization: our system learns the user-intended program with
just one input-output example in around 60% test cases while existing neural systems learn such a

10

Published as a conference paper at ICLR 2018

program in only 16% test cases, c) synthesis time: our system can solve most of the test cases in less
than 0.1 sec and provide impressive performance gains over both neural as well symbolic systems.

The key take-home message of this work is that a deep integration of a symbolic deductive inference
based system with statistical techniques leads to best of both the worlds where we can avoid extensive
engineering effort required by symbolic systems without compromising the quality of generated
programs, and at the same time provide significant performance (when measured as synthesis time)
gains. For future work, exploring better learning models for production rule selection and applying
our technique to diverse and more powerful grammars should be important research directions.

REFERENCES

Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A.
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. In Formal Methods in Computer-Aided Design (FMCAD), pp. 1–8, 2013.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
DeepCoder: Learning to write programs. In International Conference on Learning Representations
(ICLR), 2017.

Matko Bosnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. Programming with a
differentiable Forth interpreter. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 547–556, 2017.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize
via recursion. In International Conference on Learning Representations (ICLR), 2017.

Dipak L Chaudhari and Om Damani. Combining top-down and bottom-up techniques in program
derivation. In International Symposium on Logic-Based Program Synthesis and Transformation,
pp. 244–258. Springer, 2015.

Jens Clausen. Branch and bound algorithms – principles and examples. Department of Computer
Science, University of Copenhagen, 1999.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. RobustFill: Neural program learning under noisy I/O. In International Conference
on Machine Learning (ICML), 2017.

Kevin Ellis and Sumit Gulwani. Learning to learn programs from examples: Going beyond program
structure. In International Joint Conference on Artifical Intelligence (IJCAI), 2017.

Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan
Taylor, and Daniel Tarlow. TerpreT: A probabilistic programming language for program induction.
CoRR, abs/1608.04428, 2016. URL http://arxiv.org/abs/1608.04428.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing machines. CoRR, abs/1410.5401, 2014.
URL http://arxiv.org/abs/1410.5401.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In
Principles of Programming Languages (POPL), volume 46, pp. 317–330, 2011.

Sumit Gulwani and Prateek Jain. Programming by examples: Pl meets ml. In Asian Symposium on
Programming Languages and Systems, pp. 3–20. Springer, 2017.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Foundations and
Trends in Programming Languages, 4(1-2):1–119, 2017. doi: 10.1561/2500000010. URL https:
//doi.org/10.1561/2500000010.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http://dx.
doi.org/10.1162/neco.1997.9.8.1735.

Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. CoRR, abs/1511.08228, 2015.
URL http://arxiv.org/abs/1511.08228.

11

http://arxiv.org/abs/1608.04428
http://arxiv.org/abs/1410.5401
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1511.08228

Published as a conference paper at ICLR 2018

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2014.

Vu Le and Sumit Gulwani. FlashExtract: A framework for data extraction by examples. In ACM
SIGPLAN Notices, volume 49, pp. 542–553. ACM, 2014.

Dianhuan Lin, Eyal Dechter, Kevin Ellis, Joshua Tenenbaum, and Stephen Muggleton. Bias reformu-
lation for one-shot function induction. In Proceedings of the Twenty-first European Conference on
Artificial Intelligence, pp. 525–530. IOS Press, 2014.

Sarah M. Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided
proof search. In LPAR-21, 21st International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Maun, Botswana, 7-12th May 2017, pp. 85–105, 2017.

Zohar Manna and Richard J. Waldinger. Toward automatic program synthesis. Communications of
the ACM, 14(3):151–165, 1971.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. In International Conference on Learning Representa-
tions (ICLR), 2016.

Oleksandr Polozov and Sumit Gulwani. FlashMeta: A framework for inductive program synthesis. In
International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pp. 107–126, 2015.

Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua, Manuela M Veloso, Bryan W
Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, et al. SPIRAL: Code
generation for DSP transforms. Proceedings of the IEEE, 93(2):232–275, 2005.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. In International Conference on
Learning Representations (ICLR), 2016.

Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit
Gheyi, Ryo Suzuki, and Björn Hartmann. Learning syntactic program transformations from
examples. In International Conference on Software Engineering (ICSE), pp. 404–415, 2017.

Frank Seide and Amit Agarwal. CNTK: Microsoft’s open-source deep-learning toolkit. In Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pp. 2135–2135, 2016.

Rishabh Singh and Sumit Gulwani. Predicting a correct program in programming by example. In
Computer-Aided Verification (CAV), 2015.

Emina Torlak and Rastislav Bodik. Growing solver-aided languages with Rosette. In Proceedings
of the 2013 ACM international symposium on New ideas, new paradigms, and reflections on
programming & software, pp. 135–152. ACM, 2013.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M.K. Martin,
and Rajeev Alur. TRANSIT: Specifying protocols with concolic snippets. In Programming
Languages Design and Implementation (PLDI), pp. 287–296, 2013.

Richard J Waldinger and Richard CT Lee. PROW: A step toward automatic program writing. In
International Joint Conference on Artificial Intelligence (IJCAI), pp. 241–252, 1969.

Wojciech Zaremba, Tomas Mikolov, Armand Joulin, and Rob Fergus. Learning simple algorithms
from examples. In International Conference on Machine Learning (ICML), 2016.

12

Published as a conference paper at ICLR 2018

A ROBUSTFILL PERFORMANCE WITH DIFFERENT BEAM SIZES

For our experiments, we implemented RobustFill with the beam size of 100, as it presented a good
trade-off between generalization accuracy and performance hit. The following table shows a detailed
comparison of RobustFill’s generalization accuracy and performance for different beam sizes and
numbers of training examples.

Number of examples (m) Beam size Accuracy (%%%) Speed-up (× PROSE)

1
10 18.4 0.41
100 24.5 0.25
1000 34.1 0.04

2
10 32.2 0.43
100 39.7 0.27
1000 47.6 0.04

3
10 49.8 0.48
100 56.4 0.30
1000 63.4 0.04

Table 3: Generalization accuracy and performance of RobustFill for different beam sizes and numbers
of training examples.

B PERFORMANCE OF BEST NGDS MODEL ON ALL NON-TRAINING TASKS

Task # Test/Val PROSE Time (s) NGDS Time (s) Speed-up PROSE Correct? NGDS Correct?

1 Test 3.0032564 0.233686 12.85167 3 3
2 Validation 1.1687841 0.211069 5.53745 3 7
3 Validation 0.4490832 0.1307367 3.43502 3 3
4 Test 6.665234 2.012157 3.312482 3 7
5 Test 2.28298 0.83715 2.727086 7 7
6 Test 3.0391034 1.1410092 2.663522 3 7
7 Validation 0.5487662 0.2105728 2.606064 3 3
8 Test 2.4120103 0.9588959 2.515404 7 7
9 Validation 7.6010733 3.052303 2.490275 7 7
10 Test 2.1165486 0.8816776 2.400592 7 7
11 Test 0.9622929 0.405093 2.375486 3 3
12 Validation 0.4033455 0.1936532 2.082824 7 7
13 Test 0.4012993 0.1929299 2.080026 3 3
14 Validation 2.9467418 1.4314372 2.05859 3 3
15 Test 0.3855433 0.1987497 1.939843 7 7
16 Test 6.0043011 3.1862577 1.884437 7 7
17 Test 3.0316721 1.6633142 1.82267 7 7
18 Test 0.3414629 0.1933263 1.766252 3 3
19 Validation 0.3454594 0.2014236 1.715089 3 3
20 Test 0.3185586 0.202928 1.569811 7 7
21 Test 0.2709963 0.1734634 1.562268 3 3
22 Test 0.4859534 0.3169533 1.533202 3 3
23 Test 0.8672071 0.5865048 1.478602 3 7
24 Validation 0.3626161 0.2590434 1.399828 3 3
25 Validation 2.3343791 1.6800684 1.389455 3 3
26 Test 0.2310051 0.1718745 1.344034 3 3
27 Test 0.1950921 0.1456817 1.339167 3 3
28 Test 0.8475303 0.6425532 1.319004 3 3
29 Validation 0.4064375 0.316499 1.284167 3 3
30 Test 0.2601689 0.2083826 1.248515 7 7
31 Test 0.2097732 0.1753706 1.196171 3 3
32 Test 1.2224533 1.0264273 1.190979 7 7
33 Test 0.5431827 0.4691296 1.157852 3 3
34 Validation 0.4183223 0.3685321 1.135104 3 3

13

Published as a conference paper at ICLR 2018

Task # Test/Val PROSE Time (s) NGDS Time (s) Speed-up PROSE Correct? NGDS Correct?

35 Validation 0.2497723 0.2214195 1.12805 7 3
36 Validation 0.2385918 0.212407 1.123277 7 7
37 Test 0.2241414 0.2004937 1.117947 3 3
38 Validation 0.2079995 0.1880859 1.105875 3 3
39 Test 0.2788713 0.2654384 1.050606 3 3
40 Test 0.1821743 0.1758255 1.036109 3 3
41 Validation 0.1486939 0.1456755 1.02072 3 3
42 Test 0.3981185 0.3900767 1.020616 7 3
43 Test 0.9959218 0.9960901 0.999831 3 3
44 Test 0.2174055 0.2239088 0.970956 3 3
45 Test 1.8684116 1.9473475 0.959465 3 3
46 Test 0.1357812 0.1428591 0.950455 3 3
47 Validation 0.2549691 0.2709866 0.940892 7 7
48 Test 0.1650636 0.1762617 0.936469 3 3
49 Validation 0.5368683 0.5781537 0.928591 3 3
50 Test 0.1640937 0.1851361 0.886341 7 7
51 Validation 0.5006552 0.5736976 0.872681 3 3
52 Test 0.2064185 0.2401594 0.859506 3 3
53 Validation 0.2381335 0.277788 0.857249 7 7
54 Test 0.2171637 0.2677121 0.811184 3 3
55 Test 0.6307356 0.7807711 0.807837 3 3
56 Validation 0.3462029 0.4325302 0.800413 3 3
57 Test 0.4285604 0.5464594 0.784249 7 7
58 Validation 0.155915 0.1992245 0.78261 3 3
59 Test 0.1651815 0.2135129 0.773637 7 7
60 Validation 0.1212689 0.1571558 0.771648 3 3
61 Test 0.1980844 0.257616 0.768913 3 3
62 Validation 0.1534717 0.2004651 0.765578 3 3
63 Test 0.2443636 0.3258476 0.749932 7 7
64 Test 0.1217696 0.1635984 0.74432 3 3
65 Validation 0.2446501 0.3301224 0.741089 3 3
66 Validation 0.6579789 0.8886647 0.740413 3 7
67 Test 0.1490806 0.2022204 0.737218 3 3
68 Test 0.2668753 0.3681659 0.724878 3 3
69 Test 0.1072814 0.1487589 0.721176 3 3
70 Validation 0.1310034 0.181912 0.720147 3 7
71 Test 0.1954476 0.273414 0.714841 3 3
72 Test 0.3323319 0.468445 0.709436 3 3
73 Test 0.2679471 0.3806013 0.70401 3 3
74 Test 1.1505939 1.6429378 0.700327 3 3
75 Test 0.1318375 0.1898685 0.694362 7 7
76 Test 0.15018 0.2189491 0.685913 7 7
77 Test 0.146774 0.2144594 0.684391 3 3
78 Test 0.1123303 0.1665129 0.674604 3 3
79 Test 0.1623439 0.2468262 0.657726 7 7
80 Test 0.4243661 0.6563517 0.646553 7 7
81 Test 0.2945639 0.4662018 0.631838 7 3
82 Validation 0.0892761 0.1419142 0.629085 3 7
83 Test 0.1992316 0.3229269 0.616956 3 3
84 Validation 0.3260828 0.5294719 0.615864 3 3
85 Test 0.2181703 0.3576818 0.609956 3 3
86 Test 0.1757585 0.3006565 0.584582 3 3
87 Validation 0.1811467 0.3107196 0.582991 3 3
88 Test 0.2774191 0.4759698 0.58285 7 3
89 Test 0.137414 0.2358583 0.582613 3 3
90 Validation 0.1051238 0.1834589 0.57301 3 3
91 Validation 1.5624891 2.7446374 0.569288 3 3
92 Validation 0.1104184 0.1958337 0.563838 7 7
93 Validation 0.1233551 0.2228252 0.553596 7 7
94 Validation 0.189019 0.3445496 0.548597 7 7
95 Validation 0.2997031 0.5486731 0.546233 3 3
96 Test 0.1057559 0.19453 0.543648 3 3
97 Validation 0.129731 0.2426926 0.534549 3 3

14

Published as a conference paper at ICLR 2018

Task # Test/Val PROSE Time (s) NGDS Time (s) Speed-up PROSE Correct? NGDS Correct?

98 Test 0.1706376 0.320323 0.532705 3 3
99 Test 0.0936175 0.1764753 0.530485 3 3
100 Test 0.2101397 0.40277 0.521736 7 7
101 Test 0.1816704 0.3507656 0.517925 3 3
102 Validation 0.1516109 0.2993282 0.506504 3 3
103 Test 0.1102942 0.2185006 0.504778 3 3
104 Validation 1.1538661 2.3299578 0.49523 7 3
105 Test 0.1241092 0.251046 0.494368 7 3
106 Test 1.068263 2.176145 0.490897 7 7
107 Validation 0.1899474 0.389012 0.488282 3 3
108 Validation 0.205652 0.4312716 0.47685 3 7
109 Test 0.1332348 0.2819654 0.472522 3 3
110 Test 0.2137989 0.4625152 0.462253 7 7
111 Validation 0.2233911 0.4898705 0.456021 7 7
112 Validation 0.1742123 0.3872159 0.44991 3 3
113 Test 0.1798306 0.4059525 0.442984 3 3
114 Validation 0.1576141 0.3592128 0.438776 3 3
115 Test 0.1441545 0.3462711 0.416305 3 3
116 Validation 0.189833 0.4649153 0.408317 7 7
117 Validation 0.3401477 1.0468088 0.324938 3 3
118 Validation 0.1575744 0.6015111 0.261964 7 7
119 Validation 0.7252624 3.2088775 0.226017 3 7
120 Test 0.1288099 0.5958986 0.216161 3 3

C ML-BASED RANKER

As noted in Section 2, learning a ranking function is an interesting problem in itself and is orthogonal
to our work. Since our method can be used along with any accurate ranking function, we assume
black-box access to such a high-quality ranker and specifically, use the state-of-the-art ranking
function of PROSE that involves a significant amount of hand engineering.

In this section, we evaluate the performance of our method and PROSE when employing a
competitive ranker learned in a data-driven manner (Gulwani & Jain, 2017). From the table below, it
can be observed that when using an ML-based ranking function, our method achieves an average
≈ 2× speed-up over PROSE while still achieving comparable generalization accuracy .

Metric PROSE NGDS (T1, BB) NGDS (T1 + POS, BB)
Accuracy (% of 73) 65.75 65.75 64.38
Speed-up (× PROSE) 1.00 2.15 2.46

Table 5: Generalization accuracy and speed-up of NGDS variants vs. PROSE where all methods use
a machine learning based ranking function from Gulwani & Jain (2017).

15

	Introduction
	Background
	Synthesis Algorithm
	Predicting the Generalization Score
	Controller for Branch Selection
	Neural-Guided Deductive Search

	Evaluation
	Related Work
	Conclusion
	RobustFill Performance with Different Beam Sizes
	Performance of Best NGDS Model on All Non-Training Tasks
	ML-based Ranker

