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ABSTRACT

Canonical Correlation Analysis (CCA) computes maximally-correlated linear pro-
jections of two modalities. We propose Differentiable CCA, a formulation of CCA
that can be cast as a layer within a multi-view neural network. Unlike Deep CCA,
an earlier extension of CCA to nonlinear projections, our formulation enables
gradient flow through the computation of the CCA projection matrices, and free
choice of the final optimization target. We show the effectiveness of this approach
in cross-modality retrieval experiments on two public image-to-text datasets, sur-
passing both Deep CCA and a multi-view network with freely-learned projections.
We assume that Differentiable CCA could be a useful building block for many
multi-modality tasks.

1 INTRODUCTION

Deep Canonical Correlation Analysis (DCCA) (Andrew et al., 2013) is a non-linear extension of
classic Canonical Correlation Analysis (CCA) (Hotelling, 1936) that learns highly correlated latent
representations on top of two different neural networks. The central idea of our work is to extend
this formulation and cast CCA as a fully differentiable neural network layer which allows for param-
eter optimization via back-propagation through the CCA projection matrices. This is in contrast to
DCCA, where correlation analysis is the topmost part of the network and only used as an optimiza-
tion target for maximizing the correlation between the respective views. DCCA in general gained
a lot of attention recently. It inspired related methods such as Deep Linear Discriminant Analysis
(Dorfer et al., 2015) as well as a discriminative re-formulation of DCCA (Elmadany et al., 2016)
applied to improve speech-based emotion recognition. Wang et al. (2015a) show that joint optimiza-
tion of correlation and reconstruction error in auto-encoder configurations is successfully used for
representation learning on a multi-modal speech production dataset. We take this as a motivation to
evolve and extend the applicability of DCCA.

In our experiments, we employ the proposed differentiable CCA layer in a cross-modality retrieval
setup. Cross-modality retrieval is the task of retrieving relevant data of another type when a sample
of a different modality is given as a search query. A recent survey by Wang et al. (2016) categorizes
the task into binary and real-valued representation learning. In the case of real-valued representation
learning, End-to-End DCCA (Yan & Mikolajczyk, 2015) achieves state of the art retrieval results
in combination with retrieval by cosine distance computation. With differentiable CCA, it becomes
possible to train the networks to directly minimize the objective which will be used for retrieval
(e.g., the cosine distance), while still benefitting from the optimally-correlated projections obtained
by CCA. Results on two publicly available datasets (Flickr30k (Young et al., 2014), IAPR TC-12
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(Grubinger et al., 2006)) suggest that our approach is capable to improve retrieval results in both
directions.

The remainder of our paper is structured as follows. In Section 2, we review classic and deep
CCA, which are the basis for the differentiable CCA layer proposed in Section 3. In Section 4, we
show results of an experimental evaluation in a cross-modality retrieval setting and provide further
investigations on the representations learned by our networks. Finally, Section 5 concludes the
paper.

2 FOUNDATION: CANONICAL CORRELATION ANALYSIS AND DEEP CCA

In this section, we review the concepts of classical and deep Canonical Correlation Analysis, the
basis for the methodology proposed in this work.

2.1 CANONICAL CORRELATION ANALYSIS (CCA)

Let x ∈ Rdx and y ∈ Rdy denote two random vectors with covariances Σxx and Σyy and cross-
covariance Σxy . The objective of CCA is to find two matrices A∗ ∈ Rdx×k and B∗ ∈ Rdy×k (with
k ≤ dx and k ≤ dy) that project x and y into a common space maximizing their cross-correlation:

(A∗,B∗) = arg max
A,B

corr(A′x,B′y) (1)

To fix the scale of A and B and force the projected dimensions to be uncorrelated, the optimization
is further constrained to A′ΣxxA = B′ΣyyB = I, arriving at:

(A∗,B∗) = arg max
A′ΣxxA=B′ΣyyB=I

A′ΣxyB (2)

Let T = Σ
−1/2
xx ΣxyΣ

−1/2
yy , and let T = U diag(d)V′ be the Singular Value Decomposition (SVD)

of T with ordered singular values di ≥ di+1. As shown by Mardia et al. (1979), we obtain A∗ and
B∗ from the top k left- and right-singular vectors of T:

A∗ = Σ−1/2
xx U:k B∗ = Σ−1/2

yy V:k (3)

Moreover, the cross-correlation in the projection space is the sum of the top k singular values:

corr(A∗′x,B∗′y) =
∑
i≤k

di (4)

In practice, the covariances and cross-covariance of x and y are usually not known, but estimated
from a training set of m paired vectors, expressed as matrices X ∈ Rdx×m,Y ∈ Rdy×m:

X = X− 1

m
X1 Y = Y − 1

m
Y1 (5)

Σ̂xx =
1

m− 1
XX′ + rI Σ̂xy =

1

m− 1
XY′ Σ̂yy =

1

m− 1
YY′ + rI (6)

Here, r is a regularization parameter ensuring the matrices are positive definite. Substituting these
estimates for Σxx, Σxy and Σyy , respectively, we can estimate A∗ and B∗ using Equation 3.

2.2 DEEP CANONICAL CORRELATION ANALYSIS (DCCA)

Andrew et al. (2013) propose an extension of CCA that allows learning parametric nonlinear trans-
formations of two variables maximizing the cross-correlation after optimal projection. Specifically,
let a ∈ Rda and b ∈ Rdb denote two random vectors, and let x = f(a; Θf ) and y = g(b; Θg)
denote their nonlinear transformations, parameterized by Θf and Θg . For example, f and g could
be feed-forward neural networks. As before, Equation 3 gives the linear transformations of x and y
optimizing the CCA objective in Equation 2. Deep CCA optimizes Θf and Θg to further increase
the cross-correlation. For dx = dy = k, the CCA objective is equal to the sum of all singular values
of T (Equation 4), which is equal to its trace norm:

corr(f(a; Θf ), g(b; Θg)) = corr(x,y) = ||T||tr = tr(T′T)1/2 (7)
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(a) DCCA (b) CCA Layer

Figure 1: Comparison of DCCA and the prosed differentiable CCA layer. DCCA optimizes the
correlation of the two different views and is therefore the topmost part of the network. In contrast,
our CCA layer establishes gradient flow over the CCA computation. This allows us to use the
projection output of CCA as input for subsequent components in a multi-view network (e.g., a
retrieval objective such as cosine distance).

Andrew et al. (2013) show how to compute the gradient of this Trace Norm Objective (TNO) with
respect to x and y. Assuming f and g are differentiable with respect to Θf and Θg (as is the
case for neural networks), this allows to optimize the nonlinear transformations via a gradient-based
method. Figure 1a shows a schematic sketch of DCCA, as a fixed objective backpropagated through
two neural networks.

3 DIFFERENTIABLE IMPLEMENTATION OF CCA

In this section, we further extend DCCA to allow not only an arbitrary nonlinear transformation of
the inputs, but also arbitrary transformations of (or objectives on) the projected vectors. This allows
CCA to be used as a building block within a multi-modality neural network, instead of as a final
objective only. In the following, we will discuss how to enable backpropagation through CCA, what
to consider when doing stochastic updates, and how to apply it for cross-modality retrieval.

3.1 GRADIENT OF CCA

As mentioned above, we can compute the canonical correlation along with the optimal projection
matrices from the singular value decomposition T = Σ

−1/2
xx ΣxyΣ

−1/2
yy = Udiag(d)V′. Specifi-

cally, we obtain the correlation as
∑

i di, and projections as A∗ = Σ
−1/2
xx U and B∗ = Σ

−1/2
yy V. For

DCCA, it suffices to compute the gradient of the total correlation wrt. x and y in order to backprop-
agate it through the two networks f and g. Using the chain rule, Andrew et al. (2013) decompose
this into the gradients of the total correlation wrt. Σxx, Σxy and Σyy, and the gradients of those wrt.
x and y. Their derivations of the former make use of the fact that both the gradient of

∑
i di wrt. T

and the gradient of ||T||tr (the trace norm objective in Equation 7) wrt. T′T have a simple form; see
Andrew et al. (2013, Sec. 7) for details.

For our differentiable CCA, we instead need the gradients of the projected data A∗′x and B∗′y wrt.
x and y, which require ∂U

∂x,y and ∂V
∂x,y . We could again decompose this into the gradients wrt. T,

the gradients of T wrt. Σxx, Σxy and Σyy and the gradients of those wrt. x and y. However, while
the gradients of U and V wrt. T are known (Papadopoulo & Lourakis, 2000), they involve solving
O((dxdy)2) linear 2×2 systems. To arrive at a more practical implementation that does not require
the gradient of the SVD, we reformulate the solution to use two symmetric eigendecompositions
TT′ = Udiag(e)U′ and T′T = V diag(e)V′ (Petersen & Pedersen, 2012, Eq. 270). This gives
us the same left and right eigenvectors we would obtain from the SVD (save for possibly flipped
signs, which are easy to fix), along with the squared singular values (ei = d2

i ). The gradients of
eigenvectors of symmetric real eigensystems have a simple form (Magnus, 1985, Eq. 7) and both
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TT′ and T′T are differentiable wrt. x and y, enabling a sufficiently efficient implementation in a
graph-based, auto-differentiating math compiler such as Theano (Theano Development Team, 2016).

3.2 STOCHASTIC OPTIMIZATION

For classical CCA, Σxx, Σxy and Σyy are estimated from a large set of m training examples (Equa-
tion 6). In contrast, gradient-based optimization of neural networks usually estimates the gradients
wrt. network parameters from mini-batches of n randomly drawn examples, with n � m. In Deep
CCA as well as in our extension, the correlations are functions of the network parameters that we
need to backpropagate through, effectively enforcing m = n.

Andrew et al. (2013) solve this discrepancy by optimizing the network parameters with L-BFGS on
the full training set, which is infeasible for very large datasets. Yan & Mikolajczyk (2015) instead
train on small mini-batches, estimating correlation matrices of size 4096×4096 from 100 examples
only, which seems risky. We will choose a way in between, training on large mini-batches to obtain
stable estimates. This approach was also taken by Wang et al. (2015b, Sec. 5.1), who found mini-
batches of 400–1000 examples to even outperform full-batch L-BFGS. In addition, for testing, we
optionally re-estimate the correlation matrices (and the corresponding projection matrices) using a
larger set of m > n examples.

Another tempting option is to train on small mini-batches, but use exponential moving averages
updated with each mini-batch as follows:

Σxx ← Σxx(1− α) + Σ̂xxα Σxy ← Σxy(1− α) + Σ̂xyα Σyy ← Σyy(1− α) + Σ̂yyα

With proper initialization and a sufficiently small coefficient α, this gives stable estimates even for
small n. However, since only the estimates from the current mini-batch Σ̂xx, Σ̂xy and Σ̂yy can be
practically considered in backpropagation, this changes the learning dynamics: For too small α,
the projection matrices will be virtually degraded to constants. Empirically, we found that large
mini-batches perform slightly better than small batches with moving averages (see Appendix B).

3.3 CROSS-MODALITY RETRIEVAL WITH DIFFERENTIABLE CCA

DCCA maximizes the correlation between the latent representations of two different neural net-
works. When the two network inputs a and b represent different views of an entity (e.g., an image
and its textual description), DCCA projects them into a common space where they are highly cor-
related. This can be exploited for cross-modality retrieval: Projecting one modality of an entity, we
can find the best-matching representations of the second modality (e.g., an image for a textual de-
scription, or vice versa). To find the best matches, a common option is to compute nearest neighbors
in terms of cosine distance (Yan & Mikolajczyk, 2015), which is closely related to correlation.

Given the methodology introduced above, we now have the means to optimize DCCA projections
directly for the task at hand. In Figure 1b, we show a possible setting where we put the differentiable
CCA layer on top of a multi-view network. Instead of optimizing the networks to maximize the
correlation of the projected views (the TNO), we can optimize the networks towards a task-specific
objective and still benefit from the optimality of the CCA projections.

For this work, we optimize towards minimal cosine distance between the correlated views, the very
metric used for retrieval. In the next section, we empirically show that this is indeed beneficial in
terms of quantitative retrieval performance as well as convergence speed of network training.

4 EXPERIMENTS

We evaluate our approach in cross-modality retrieval experiments on two publicly available datasets
(also considered by Yan & Mikolajczyk (2015)) and provide investigations on the representations
learned by the network.

4.1 EXPERIMENTAL SETUP

For the evaluation of our approach, we consider Flickr30k and IAPR TC-12, two publicly available
datasets for cross-modality retrieval. Flickr30k consists of image-caption pairs, where each image
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A man in a white cowboy hat reclines in front of a window in an airport.

A young man rests on an airport seat with a cowboy hat over his face.

A woman relaxes on a couch , with a white cowboy hat over her head.

A man is sleeping inside on a bench with his hat over his eyes.

A person is sleeping at an airport with a hat on their head.

a green and brown embankment with brown houses on the right and a light
brown sandy beach at the dark blue sea on the left; a dark mountain range
behind it and white clouds in a light blue sky in the background;

Table 1: Example images for Flickr30k (top) and IAPR TC-12 (bottom)

is annotated with five different textual descriptions. The train-validation-test split for Flickr30k
is 28000-1000-1000. In terms of evaluation setup, we follow the related work and report results
on two different evaluation protocols. Protocol pooled pools the five available captions into one
"concatenated" text, meaning that only one but richer text annotation remains per image. This is
done for all three sets. Protocol 5 captions pools only the captions of the train set and keeps five
separate annotations for validation and test set. The IAPR TC-12 dataset contains 20000 natural
images where only one – but compared to Flickr30k more detailed – caption is available for each
image. As no predefined train-validation-test split is provided, we randomly select 2000 images for
testing, 1000 for validation and keep the rest for training. Yan & Mikolajczyk (2015) also use 2000
images for testing, but did not explicitly mention hold out images for validation. Table 1 shows an
example image along with its corresponding captions or caption for either dataset.

The task at hand for both datasets is to retrieve the correct counterpart – either text or image –
when given a query element of the other modality. We follow Yan & Mikolajczyk (2015) and use
the cosine distance for retrieval in the projection space. As evaluation measures we consider the
Recall@k (R@k) as well as the Median Rank (MR) and the Mean Average Precision (MAP). The
R@k rate (high is better) is the ratio of queries which have the correct corresponding counterpart in
the first k retrieval results. The MR is the median position (low is better) of the target in a similarity-
ordered list of available candidates. Finally, we define the MAP (high is better) as the mean value of
1/Rank over all queries.

The input to our networks is a 4096-dimensional image feature vector along with a correspond-
ing text vector representation (5793 for Flickr30k, 2048 for IAPR TC-12). In terms of text pre-
processing, we follow Yan & Mikolajczyk (2015), tokenizing and lemmatizing the raw captions
as the first step. Based on the lemmatized captions, we compute l2-normalized TF/IDF-vectors,
omitting words with an overall occurrence smaller than 5 times for Flickr30k and 3 times for IAPR
TC-12, respectively. The image represenations are computed from the last hidden layer of a network
pretrained on ImageNet (layer fc7 of CNN_S by Chatfield et al. (2014)).

4.2 NETWORK ARCHITECTURES AND OPTIMIZATION DETAILS

We feed 4096-dimensional image vectors along with the corresponding text representation into our
networks. The image representation is followed by a linear dense layer with 128 units (this will also
be the dimensionality k = 128 of the resulting CCA retrieval space). The text vector is processed
by two batch-normalized (Ioffe & Szegedy, 2015) dense layers of 1024 units each and an ELU
activation function (Clevert et al., 2015). As a last layer for the text representation network, we
again apply a dense layer with 128 linear units. For a fair comparison, we keep the structure (and
number of parameters) of all networks in our experiments the same. The only parameters that vary
are the objectives and the corresponding optimization/regularization strategies. In particular, we
apply a grid search on the respective hyper-parameters and report the best results for each method.
Optimization is performed either using Stochastic Gradient Descent (SGD) with momentum or by
the adam (Kingma & Ba, 2014) update rule.
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Table 2: Cross-modality retrieval results on Flickr30k. “E2E-DCCA” is taken from Yan & Mikola-
jczyk (2015), all other results are our own. Methods marked with "*" re-estimate projection matrices
from a larger batch than used during training (10,000 training examples), see Section 3.2.

Image-to-Text Text-to-Image

Protocol Method R@1 R@5 R@10 MR R@1 R@5 R@10 MR

pooled

E2E-DCCA 27.9 56.9 68.2 4 26.8 52.9 66.9 4
TNO* 29.9 57.9 67.9 4 21.8 48.1 64.0 6
learned-cos2 9.0 23.3 32.8 28 8.5 23.3 32.8 26
CCAL-l2 18.2 42.0 53.6 9 17.7 42.2 53.2 9
CCAL-cos 28.9 57.5 69.1 4 25.1 53.1 66.4 5
CCAL-cos2 30.7 58.8 70.1 4 28.0 56.2 68.3 4
CCAL-cos2* 34.1 60.0 70.6 3.5 29.2 58.3 69.7 4

5 captions

E2E-DCCA 16.7 39.3 52.9 8 12.6 31.0 43.0 15
TNO* 17.5 39.3 51.4 10 13.4 31.7 41.3 19
CCAL-cos2 21.2 44.4 55.8 8 14.9 35.9 47.5 12
CCAL-cos2* 20.6 45.9 57.2 7 15.6 37.0 49.4 11

As optimization targets, we consider the following candidates: (1) The Trace Norm Objective (TNO)
as our base line for cross-modality retrieval (Yan & Mikolajczyk, 2015). (2) The proposed differ-
entiable CCA layer in combination with the objectives cosine distance (CCAL-cos), squared cosine
distance (CCAL-cos2) and euclidean distance (CCAL-l2). As an additional setting, we consider a
freely-learnable projection layer where the projection matrices A and B are randomly initialized
weights that can be optimized by the network using SGD in the conventional way. This allows to
assess the benefit of using CCA-derived projections within a multi-view network under otherwise
unchanged objectives. For this experiment, we optimize for the squared cosine distance and denote
the setting by learned-cos2. The batch size is set to 1000 samples to allow stable covariance esti-
mates for the CCA (Section 3.2). For further stabilization, we regularize the covariance matrices
(Andrew et al., 2013) by adding scaled (r = 10−3) identity matrices to the estimates Σxx, Σyy and
T (Section 2.1). The variants based on differentiable CCA are additionally regularized by L2 weight
decay. No dropout is used in this settings as it harmed optimization in our experiments. When opti-
mizing with the TNO we follow Yan & Mikolajczyk (2015) and use dropout (p = 0.5) after the first
two dense layers of the text network. In Table 4 in Appendix A we provide the optimization settings
for all configurations in detail, found using a grid search optimizing MAP on the validation set.

4.3 EXPERIMENTAL RESULTS ON CROSS-MODALITY RETRIEVAL

Table 2 lists our results on Flickr30k. Along with our experiments, we also show the results re-
ported in (Yan & Mikolajczyk, 2015) as a reference (E2E-DCCA). However, a direct comparison
to our results may not be fair: E2E-DCCA uses a different ImageNet-pretrained network for the
image representation, and finetunes this network while we keep it fixed (as we are only interested
in comparing differentiable CCA to alternatives, not in obtaining the best possible results). Our
TNO results use the same objective as E2E-DCCA, but our network architecture, permitting direct
comparison.

When comparing the performance of our networks, we observe a gain both for image-to-text and
text-to-image retrieval when training with the CCAL-cos2 objective compared to TNO (e.g., R@1
of 34.1 compared to 29.9 under protocol pooled). This indicates that training a network directly
on the objective used for retrieval (using differentiable CCA) is a reasonable design choice. A
closer look at the results also reveals that the squared cosine distance is superior compared to the
remaining objectives. We further observe that the randomly initialized projection matrices learned
entirely by SGD (learned-cos2) show poor performance compared to their CCA counterpart (even
though in theory, they could converge to exactly the same solution). This suggests that exploiting the
beneficial properties of the CCA projections directly within a network during training is a powerful
tool, supporting optimization of related objectives. CCAL-l2 for example performs poorer than the
variants including cosine losses but still better than the version with learned weights. On protocol
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Table 3: Cross-modality retrieval results on IAPR TC-12

Image-to-Text Text-to-Image

Method R@1 R@5 MAP MR R@1 R@5 MAP MR

E2E-DCCA 30.2 57.0 0.426 29.5 60.0 0.415
TNO* 30.0 56.7 0.424 4 28.0 55.4 0.410 5
CCAL-cos2* 31.1 58.4 0.439 4 26.8 55.1 0.403 4
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Figure 2: Comparison of the TNO and CCAL-cos2 based on the total amount of canonical correla-
tion (sum over singular values d) as well as the cosine distance between corresponding samples.

5 captions, we only report the best results (CCAL-cos2) along with the TNO and observe similar
tendencies. Note that there are various other methods reporting results on Flickr30k (Karpathy et al.,
2014; Socher et al., 2014; Mao et al., 2014; Kiros et al., 2014) which partly surpass ours, for example
by using more elaborate processing of the textual descriptions. We omit these results as we focus on
the comparison of DCCA with the proposed differentiable CCA layer.

In Table 3, we list our results on the IAPR TC-12 dataset. We again show the retrieval performances
of Yan & Mikolajczyk (2015) as a baseline (again with limited comparability, due to a different ar-
chitecture and a different train-validation-test split), along with our implementation of the TNO and
the CCA layer trained with squared cosine distance. For image-to-text retrieval, we achieve slightly
better retrieval performances when training with cosine distance and propagating the gradients back
through the differentiable CCA layer. For the other direction, results are slightly worse.

4.4 INVESTIGATIONS ON LEARNED REPRESENTATIONS

In this section, we provide a more detailed look at the learned representations. We compare the
representations learned with the TNO to the proposed CCA layer optimized with the squared cosine
distance objective. For easier comparison, we re-train both networks with a reduced projection
dimensionality of h = 64 – otherwise, the TNO takes much longer to converge than the CCA layer.
This results in slightly decreased performance for both, but the relative tendences are preserved.

Figure 2a shows the evolution of the mean correlation (mean over singular values with maximum
1.0) on the training set during optimization. Allong with the correlation, we also plot the average
cosine distance between corresponding pairs on the validation set. As expected, for the TNO we
observe a continous decrease of cosine distance when the correlation increases. Interestingly, this
is not the case for CCAL-cos2. The result suggests that the network found a way of minimizing
the cosine distance other than by increasing correlation between the representations – the latter even
decreases after a few training epochs. In Figure 2b, we plot the corresponding evolution of MAP
on the training and validation set, confirming that the decreased cosine distance indeed also leads
to improved retrieval performance. Finally, in Figure 2c we compare the individual correlation
coefficients (magnitudes of CCA singular values on the training set) of both representations after the
last training epoch. This details the observation in Figure 2a: not only the total correlation, but also
the individual correlation coefficients are considerably higher when training with TNO, even though
the retrieval performance is lower.
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5 CONCLUSION

We presented a fully differentiable version of Canonical Correlation Analysis which enables us
to back-propagate errors directly through the computation of CCA. As this requires to establish
gradient flow through CCA, we formulate it to allow easy computation of the partial derivatives
∂A∗

∂x,y and ∂B∗

∂x,y of CCA’s projection matrices A∗ and B∗ with respect to the input data x and y.
With this formulation, we can incorporate CCA as a building block within multi-modality neural
networks that produces maximally-correlated projections of its inputs. In our experiments, we use
this building block within a cross-modality retrieval setting, optimizing a network to minimize the
cosine distance of the correlated CCA projections. Experimental results show that when using the
cosine distance for retrieval (as is common for correlated views), this is superior to optimizing a
network for maximally-correlated projections (as done in Deep CCA), or not using CCA at all. We
further observed (Section 4.4) that it is not necessarily required to have maximum correlation to
achieve a high retrieval performance. Finally, our differentiable CCA layer could provide a useful
basis for further research, e.g., as an intermediate processing step for learning binary cross-modality
retrieval representations.
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APPENDIX A: OPTIMIZATION SETTINGS

The table below provides a detailed listing of the optimization strategies for all our experiments. All
our configurations are of course also available in our experimental code published at (will be added).

Flickr30k
Objective Optimizer Units lrini lr-schedule Dropout L2 r

TNO momentum 2048 0.05 constant 0.5 none 10−3

CCAL momentum 1024 0.5 ×0.7 from epoch 10 none 0.002 10−3

learned-cos2 momentum 1024 0.25 none none 0.002 10−3

IAPR TC-12
Objective Optimizer Units lrini lr-schedule Dropout L2 r

TNO adam 1024 0.001 ×0.1 in epoch 30 none 0.0001 10−3

CCAL adam 1024 0.001 ×0.1 in epoch 50 none 0.0002 10−3

Table 4: Details on optimization strategies for the respective networks
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Figure 3: Influence of parameter α.

APPENDIX B: INFLUENCE OF RUNNING AVERAGE STATISTICS

In this additional section, we investigate the influence of weighting coefficient α when using ex-
ponential moving average estimates of the covariance matrices for CCA computation (see Section
3). A high α (close to 1.0) means that the averaged estimate of Σxx, Σyy and Σxy mostly depends
on the current batch, and a low α (close to 0.0) means it more strongly depends on the history of
previous batches. To assess whether and under what circumstances exponential moving averages are
helpful, we run an additional experiment on the IAPR TC-12 dataset as follows: We re-train one of
the models of Section 4 both with batch size 1000 and with batch size 200, varying α from 1.0 to 0.1
with a step size of 0.1 and measuring the MAP achieved on the validation set. We run each setting
three times and report the average over the three runs. Figure 3 shows the results of this experiment.
For batch size 1000, we draw the same conclusion as was reported in (Wang et al., 2015a;b): If the
batch size is sufficiently large and representative for the entire population, learning on distribution
parameters (in this case covariance matrices) is feasible, and the network performs best when trained
with an α close to one. This is not the case for batch size 200. In particular, the configurations with
a large α (small effective running average window) perform poorly. We conclude that a batch size
of 200 is too small to obtain stable and representative covariances. However, when choosing a small
α, it is still possible to train the models and achieve reasonable retrieval performance. As a prac-
tical recommendation, we suggest to use large batch sizes whenever possible (e.g., if feasible with
available hardware). If the batch size needs to be reduced (e.g., for very large models and limited
memory), using small alpha values still allows for training canonically correlated retrieval networks.
For this work, we use a batch size of 1000 and fix α = 1, disabling moving averages.
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