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Abstract

Approximate Bayesian Computation (ABC) provides a generic framework of Bayesian in-
ference for likelihood-free models, but sampling based posterior approximation is often
time-consuming and has difficulty accessing the convergence. Stochastic variational infer-
ence forms the posterior inference to a optimization problem and enable the ABC scalable
for large dataset. However, complex simulation models involved in ABC always lead to
complex posteriors, which is not easy to approximate by simple parametric variational dis-
tributions. We draw upon recent advances in the implicit model of variational distribution
and introduce the Stein variational gradient descent (SVGD) approach to approximate the
posterior by nonparametric particles. We also find that the kernel in the SVGD algorithm
helps in reducing the large variance of the gradient estimators of ABC likelihood. More-
over, energy distance is proposed as the statistics in the evaluation of ABC likelihood,
which reduce the difficulty in selecting proper statistics. Simulation studies are provided
to demonstrate the correctness and efficiency of our algorithm.

1. Introduction

ABC constitutes a class of computational methods that can be used to estimate the pos-
terior distributions of various complex models, where the analytical likelihood is elusive
or the likelihood is computationally very costly to evaluate.Various Monte Carlo sampling
methods has been proposed for ABC computation. Sampling methods are widely used
in ABC literature: rejection sampling (Tavaré et al., 1997), Markov Chain Monte Carlo
(MCMC)(Paul Marjoram and Tavaré, 2003), and population-based sampling (Beaumont
et al., 2009; Moral et al., 2006; Sisson et al., 2007). However, these methods tend to con-
verge slowly and requires many calls to the simulator, making them ineffective for large-scale
problems. Variational inference provides an alternative for Bayesian inference by forming
the posterior inference to an optimization problem. In previous work (Moreno et al., 2016),
they provide a general framework to incorporate variational inference (VI) (Jordan et al.,
1999; Hoffman et al., 2012) with ABC and emphasis the variance reduction issue in using
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the ABC likelihood. Another difficulty of variational inference for ABC problem is that
ABC problem always involve complex posteriors, such as multi-modal distribution or long
tail distribution. Simple parametric variational distribution can not approximate such pos-
teriors well. Recently several implicit models, such as stein variational gradient descent
(Liu and Wang, 2016), normalizing flows (Rezende and Mohamed, 2015), are proposed for
variational distribution to extend the ability to approximate complex posteriors. In this
work, we study the SVGD in ABC. We discuss two advantage in SVGD for ABC, first, the
SVGD is an nonparametric method, which can in theory approximate any complex poste-
rior given sufficient particles; second, SVGD tends to smooth the gradient and reduce its
variance due to the kernel term in the evaluation of the gradient, so it benefits the gradient
of ABC. Moreover, the selection of statistics is a trick work, we provide a statistics-energy
distance, which has shown being a good choice in most of case.

2. Stein Variational inference ABC

2.1. Variational inference for ABC

VI frames the posterior estimation to an optimization problem by introduce a surrogate
loss, the evidence lower bound (ELBO), L =

∫
q(θ;λ)[log(p(y|θ)p(θ))− log q(θ;λ)] (Jordan

et al., 1999), which is a lower bound of the model evidence log p(y), where y denotes the
given dataset. When the likelihood p(y|θ) is intractable or extremely expensive to compute,
the ABC method introduce a ε-kernel to approximate p(y|θ) (Moreno et al., 2016),

pε(y|θ) =

∫
Kε[S(y), S(x)]p(x|θ) ≈ 1

M

M∑
m=1

Kε[S(y), S(x(m))] (1)

where the simulator generates synthetic data x according to the parameters θ, S(y) and S(x)
are summary statistics to represent the entire deta set, Kε measures the discrepancy between
S(y) and S(x) with a controlling parameter bandwidth ε. Replace the true likelihood p(y|θ)
with the ABC likelihood, we have

L =

∫
q(θ;λ) log

∫
Kε[S(y), S(x)]p(x|θ)dxdθ −KL[q(θ;λ)||p(θ)] (2)

then we replace expectations by samples to obtain the noisy estimation of L and apply
the SGD algorithm to optimize the variational parameter λ iteratively. But the parametric
form of variational distribution q(θ;λ) limits its ability to approximate complex p(y|θ).

2.2. Stein variational gradient descent

Conventional variational inference approximates the target distribution p(θ|y) using a sim-
ple distribution q(θ;λ) found in a predefined set of distributions by minimizing the KL
divergence KL[q(θ;λ)||p(θ|y)]. The choice of the proposal distribution q(θ;λ) is critical,
while simple parametric form prevents it to express complex posterior. Recently implicit
models are proposed to utilize a set of distributions obtained by smooth transforms from
a tractable reference distribution to approximate the posterior (Rezende and Mohamed,
2015). Stein variational inference belongs to the family of VI with implicit model. It takes
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a set of particles {θ0i }ni=1 from a tractable reference distribution q0(θ) with iteration of the
form below:

θt+1
i ← θti + εtφ̂

∗(θti), where φ̂∗(θ) =
1

n

n∑
j=1

[k(θtj , θ)∇θtj log p(θtj |y)) +∇θtjk(θtj , θ)],

and εt is a step size. The form of φ̂∗(·) is from Stein identity(Liu et al., 2016), and φ̂∗(·) is
optimal perturbation direction in reproducing kernel Hilbert space (RKHS) Hd as

φ̂∗ = argmax
φ∈Hd

{− d

dε
KL[qεφ||p(|y)]

∣∣∣
ε=0
},

where qεφ denotes the density of T (θ) = θ + εφ(θ). This relation is the key founding of

SVGD in (Liu and Wang, 2016). Furthermore, max
φ∈Hd

{− d
dεKL[qεφ||p(|y)]

∣∣∣
ε=0
} is defined as

kernelized Stein discrepancy (KSD), which is a powerful measurement of the difference
between two distributions (Liu et al., 2016). So when we iteratively transform θ by T (θ),
the KL-divergence KL(qT ||p) decrease at the steepest descent direction, which make qT
approximates p gradually.

SVGD holds MCMC’s consistency and VI’s efficiency, and it can deal with complex
distribution particle-efficiently due to its diversity. (Liu, 2017; Liu et al., 2019; Lu et al.,
2019) have studied SVGD’s convergence in different perspectives. And SVGD also has many
extensions and applications (Han and Liu, 2018; Gong et al., 2019; Wang and Liu, 2019).

2.3. Energy distance

In the ABC likelihood evaluation, we have to select proper statistics S(·) and ε-kernel. If
two or more statistics are selected, we have to weighting these statistics, which introduce
extra efforts. Here, we introduce energy distance as the ε-kernel. Energy distance (Rizzo,
2003) between d-dimensional independent random variable X and Y is defined as follows,
E(X,Y ) = 2E||X − Y ||p − E||X −X ′ ||p − E||Y − Y ′ ||p, where E||X||p < ∞, E||Y ||p < ∞,
X

′
, Y

′
are iid copy of X,Y respectively. Energy distance measures the distance between two

distributions. Therefore it can be used in various fields, including two-sample test (Székely
and Rizzo, 2004), one sample goodness-of-fit test (Székely and Rizzo, 2005). It has been
shown in (Székely and Rizzo, 2013) that, E(X,Y ) ≥ 0 with equality to zero if and only if
X and Y are identically distributed. Let x = {x1, · · · , xn1} and y = {y1, · · · , yn2} denote
two independent random sample sets drawn from two distribution Fx and Fy respectively.
Energy statistics is defined as follows,

E(x,y) =
n1n2
n1 + n2

(
2

n1n2

n1∑
i=1

n2∑
j=1

||xi − yj ||p (3)

− 1

n21

n1∑
i=1

n1∑
j=1

||xi − xj ||p −
1

n22

n2∑
i=1

n2∑
j=1

||yi − yj ||p), (4)

where || · ||p denotes the p-norm.
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2.4. The algorithm

To implement the SVGD algorithm to approximate the posterior in ABC, we first draw a
set of particles {θ0i }ni=1 from a simple initial distribution q0, and then iteratively update
the particles with a empirical smooth transform T̂ (θ) = θ + εφ̂∗(θ). This procedure allows
to deterministically transport the points {θi}ni=1 to match the posterior distribution. The
kernel k(θ, θ′) in the perturbation direction affects the diversity of these particles, which
forces the particles to spread enough to cover complex posterior. Moreover, the SVGD tends
to smooth the gradient due to the kernel k(θ, θ′) which weights the gradient at other particles
positions. This variance reduction behavior benefits the convergence of the optimization
procedure. In the implementation of the algorithm, we obtain the numerical gradient in
φ∗(θ) leveraging on the automatic differentiation tools, such as Pytorch (Paszke et al., 2017).
Advanced SGD type algorithms, such as Adam (Kingma and Ba, 2014), help in accelerating
the convergence. In addition, the bandwidth of the kernel in φ̂∗ can be selected by heat
equation (HE) method from (Liu et al., 2019). The ε in pε(y|θ) matters bias and variance
tradeoff like the way (Wilkinson, 2013), and specific form of energy statistics can be chosen
as randomly projected energy statistics (RPES) (Huang and Huo, 2017), which can speed
up the computation of energy statistics by fast approximations. The proposal algorithm is
summarized in Algorithm 1.

Algorithm 1: Stein variational gradient descent ABC

• Input: Initialize p for the p-norm of energy distance, temprature τ in ε -kernel, and a
set of initial particles {θ0i }ni=1.

• For t = 0 : T

– For each particles θti , run the simulator to produce out put x(1:M)

– Evaluate the ABC likelihood pε(y|θti) using equation (1)

– Update each particles according to θt+1
i = θti + εtφ̂

∗(θti), where φ̂∗(θ) =
1
n

∑n
j=1

[
k(θtj , θ)∇θtj log[pε(y|θtj)p(θtj)] +∇θtjk(θtj , θ)

]
, εt is the step size at the

t-iteration

• Output: a set of particles {θi}ni=1 that approximates the target distribution.

3. Simulation studies

Bimodal posterior: consider a linear regression model that contains a univariate response
variable yi with a p-dimensional predictor Xi for i = 1, ..., n. The regression coefficient is
denoted by θ ∈ Rp; i.e., yi = XT

i θ + εi, where εi ∼ N(0, σ2). We consider the case of p = 1
and n = 500, where Xi is i.i.d. standard Gaussian. The data-generating process follows
yi = γiXi − (1 − γi)Xi + εi, where γi ∼ Bernoulli(1/2) and εi ∼ N(0, 0.22). The scatter
plot of the synthetic data set is illustrated in Figure 1 (left), which has the ‘scissors’ like
shape. The SVGD algorithm takes 30 particles and a mini-batch of 50 data. We plot the
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Figure 1: The scatter plot of a ’scissor’ example (left); the estimated posterior distribution by
SVGD, and MCMC.
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Figure 2: The estimated posterior distribution by SVGD with energy distance as statistics, MCMC
with summary statistics and energy distance.

kernel density estimation based on optimized particles of SVGD and MCMC samples. The
SVGD produces similar results with MCMC, and captures the bimodal.

g-and-k distribution: the g-and-k and related distributions have been analysed in
the ABC setting by Allingham et al. (2009). Its density function is defined through a

quantile function, Q(q|A,B, g, k) = A + B
[
1 + 0.8 ∗ 1−exp(−gz(q))

1+exp(−gz(q))

]
(1 + z(q)2)kz(q), where

z(q) = Φ−1(q) is the q-th quantile of the standard normal distribution function. Given
θ = (A,B, g, k), simulations z(q) ∼ N(0, 1) can be transformed into samples from the
g-and-k distribution. A simulated dataset of length n = 1000 generated from the g-and-k
distribution with parameter vector θ = (3, 1, 2, 0.5). The SVGD algorithm takes 30 particles
and a mini-batch of 200 data. For comparison, we use the MCMC method with traditional
summary statistics and energy distance. The SVGD produces competitive results with
MCMC.
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