
A Hitchhiker’s Guide to Statistical Comparisons of
Reinforcement Learning Algorithms

Cédric Colas∗
INRIA - Flowers Team

Bordeaux, France

Olivier Sigaud
Sorbonne University - ISIR

Paris, France

Pierre-Yves Oudeyer
INRIA - Flowers team

Bordeaux, France

Abstract

Consistently checking the statistical significance of experimental results is the
first mandatory step towards reproducible science. This paper presents a hitch-
hiker’s guide to rigorous comparisons of reinforcement learning algorithms. After
introducing the concepts of statistical testing, we review the relevant statistical
tests and compare them empirically in terms of false positive rate and statistical
power as a function of the sample size (number of seeds) and effect size. We
further investigate the robustness of these tests to violations of the most common
hypotheses (normal distributions, same distributions, equal variances). Beside
simulations, we compare empirical distributions obtained by running Soft-Actor
Critic and Twin-Delayed Deep Deterministic Policy Gradient on Half-Cheetah. We
conclude by providing guidelines and code to perform rigorous comparisons of RL
algorithm performances.

1 Introduction

Reproducibility in Machine Learning and Reinforcement Learning in particular (RL) has become
a serious issue in the recent years. As pointed out in Islam et al. [1] and Henderson et al. [2],
reproducing the results of an RL paper can turn out to be much more complicated than expected. In
a thorough investigation, Henderson et al. [2] showed it can be caused by differences in codebases,
hyperparameters (e.g. size of the network, activation functions) or the number of random seeds used
by the original study. Henderson et al. [2] states the obvious: the claim that an algorithm performs
better than another should be supported by evidence, which requires the use of statistical tests.
Building on these observations, this paper presents a hitchhiker’s guide for statistical comparisons of
RL algorithms. The performances of RL algorithm have specific characteristics (they are independent
of each other, they are not paired between algorithms etc.). This paper reviews some statistical tests
relevant in that context and compares them in terms of false positive rate and statistical power. Beside
simulations, it compares empirical distributions obtained by running Soft-Actor Critic (SAC) [3]
and Twin-Delayed DDPG (TD3) [4] on Half-Cheetah [5]. We finally provide guidelines to perform
robust difference testing in the context of RL. A repository containing the raw results and the code to
reproduce all experiments is available at https://github.com/ccolas/rl_stats.

2 Comparing RL Algorithms: Problem Definition

2.1 Model

In this paper, we consider the problem of conducting meaningful comparisons of Algorithm 1 and
Algorithm 2. Because the seed of the random generator is different for each run2, two runs of a
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same algorithm yield different measures of performance. An algorithm performance can therefore be
modeled as a random variable X , characterized by a distribution. Measuring the performance x at
the end of a particular run is equivalent to measuring a realization of that random variable. Repeating
this N times, we obtain a sample x = (x1, ..., xN ) of size N .

2 2

Algo 1

Algo 2

Figure 1: Two normal distributions
representing the performances of two
algorithms. Dashed lines: performance
measures (realizations). Plain lines:
empirical means of the two samples
(N = 3).

To compare RL algorithms on the basis of their perfor-
mances, we focus on the comparisons of the central ten-
dencies (µ1, µ2): the means or the medians of the associ-
ated random variables X1, X2.3 Unfortunately, we cannot
know µ1, µ2 exactly. Given a sample xi of Xi, we can
estimate µi by the empirical mean: xi = 1/N

∑N
j=1x

j
i

(resp. the empirical median). However, comparing central
performances does not simply boil down to the compari-
son of their estimates. As an illustration, Figure 1 shows
two normal distributions describing the distributions of
two algorithm performances X1 and X2. Two samples of
sample size N = 3 are collected. In this example, we have
µ1 < µ2 but x1 > x2. The rest of this text uses central
performance to refer to either the mean or the median of the performance distribution i. It is noted µi
while its empirical estimate is noted xi. The distinction is made where necessary.

2.2 A Few Definitions

Statistical difference testing. Statistical difference testing offers a principled way to compare
the central performances of two algorithms. It defines two hypothesis: 1) the null hypothesis
H0 : ∆µ = µ1−µ2 = 0 and 2) the alternative hypothesis Ha: |∆µ| > 0. When performing a
test, one initially assumes the null hypothesis to be true. After having observed (x1, x2), statistical
tests usually estimate the probability to observe two samples whose empirical central difference
is at least as extreme as the observed one (|∆x| = |x1−x2|) under H0 (e.g. given ∆µ = 0). This
probability is called the p-value. If the p-value is very low, the test rejectsH0 and concludes that a
true underlying difference (Ha) is likely. When the p-value is high, the test does not have enough
evidence to conclude. This could be due to the lack of true difference, or to the lack of statistical
power (too few measurements given how noisy they are). The significance level α (usually ≤ 0.05)
draws the line between rejection and conservation ofH0: if p-value < α,H0 is rejected.

Table 1: Hypothesis testing

TrueH0 TrueHa
Pred. H0 True neg. 1−α∗ False neg. β∗

Pred. Ha False pos. α∗ True pos. 1−β∗

Statistical errors. Note that having a p-value
of 0.05 still results in 1 chance out of 20 to claim
a difference that does not exist. This is called a
type-I error or false positive. The false positive
rate is usually noted α, just like the significance
level. Indeed, statistical tests with significance
level α are supposed to enforce a false positive
rate of α. Further experiments demonstrate it is not always the case, which is why we prefer to note
the false positive rate α∗. False negatives occur when the statistical test fails to recognize a true
difference in the central performances. This depends on the size of the underlying difference: the
larger the difference, the lower the risk of false negative. The false negative rate is noted β∗.

Trade-off between false positive and statistical power. Ideally, we would like to set α = 0 to
ensure the lowest possible false positive rate α∗. However, decreasing the confidence level makes the
statistical test more conservative. The test requires even bigger empirical differences ∆x to reject
H0, which decreases the probability of true positive. This probability of true positive 1−β∗ is called
the statistical power of a test. It is the probability to rejectH0 whenHa holds. It is directly impacted
by the effect size: the larger the effect size, the easier it is to detect (larger statistical power). It is also
a direct function of the sample size: larger samples bring more evidence to support the rejection of
H0. Generally, the sample size is chosen so as to obtain a theoretical statistical power of 1−β∗ = 0.8.
Different tests have different statistical powers depending on the assumptions they make, whether
they are met, how the p-value is derived etc.

3 Because of space constraints, we do not investigate other possible criteria for comparing RL algorithms
(e.g. lower variance, high minimal performance, area under the learning curve, etc.)
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Parametric vs. non-parametric. Parametric tests usually compare the means of two distributions
by making assumptions on the distributions of the two algorithms’ performances. Non-parametric
tests on the other hand usually compare the medians and do not require assumptions on the type
of distributions. Non-parametric tests are often recommended when one wants to compare median
rather than means, when the data is skewed or when the sample size is small. Section 4.2 shows that
these recommendations are not always justified.

Test statistic. Statistical tests usually use a test statistic. It is a numerical quantity computed from
the samples that summarizes the data. In the t-test for instance, the statistic tα is computed as
tα = |∆x|/σpool, where σpool is the pooled standard deviation (σpool =

√
(σ2

1 + σ2
2)/2). Under the

t-test assumptions, this statistic follows the analytic Student’s distribution with density function fS(t).
The probability to obtain a difference more important than the sample difference ∆x (p-value) can be
rewritten p-value = P (|t| > tα) and can be computed as the area under fS(t) such that |t| > tα.

Relative effect size. The relative effect size ε is the absolute effect size |∆µ|, scaled by the pooled
standard deviation σpool, such that ε = |∆µ|/σpool. The relative effect size is independent of the
spread of the considered distributions.

3 Statistical Tests for RL

3.1 Assumptions in the Context of RL

Each test makes some assumptions (e.g. about the nature of the performance distributions, their
variances, the sample sizes etc.). In the context of RL, some assumptions are reasonable while others
are not. It is reasonable to assume that RL performances are measured at random and independently
from one another. The samples are not paired, and here we assume they have the same size.4 Other
common assumptions might be discussed:

• Normal distributions of performances: this might not be the case (skewed distributions,
bimodal distributions, truncated distributions).

• Continuous performances: the support of the performance distribution might be bounded:
e.g. in the Fetch environments of Gym [5], the performance is a success rate in [0, 1].

• Known standard deviations: this is not the case in RL.

• Equal standard deviations: this is often not the case (see [2]).

3.2 Relevant Statistical Tests

This section briefly presents various statistical tests relevant to the comparison of RL performances. It
focuses on the underlying assumptions [6] and provides the corresponding implementation from the
Python Scipy library when available. Further details can be found in any statistical textbook. Contrary
to Henderson et al. [2], we do not recommend using the Kolmogorov-Smirnov test as it tests for the
equality of the two distributions and does not test for a difference in their central tendencies [7].

T-test. This parametric test compares the means of two distributions and assumes the two distribu-
tions have equal variances [8]. If this variance is known, a more powerful test is available: the Z-test
for two population means. The test is accurate when the two distributions are normal, it gives an
approximate guide otherwise. Implementation: scipy.stats.ttest_ind(x1, x2, equal_var=True).

Welch’s t-test. It is a t-test where the assumption of equal variances is relaxed [9]. Implementation:
scipy.stats.ttest_ind(x1, x2, equal_var=False).

Wilcoxon Mann-Whitney rank sum test. This non-parametric test compares the median of two
distributions. It does not make assumptions about the type of distributions but assumes they are
continuous and have the same shape and spread [10]. Implementation: scipy.stats.mannwhitneyu(x1,
x2, alternative=‘two-sided’).

4 This assumption could be relaxed as none of the test requires it.
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Ranked t-test. In this non-parametric test that compares the medians, all realizations are ranked
together before being fed to a traditional t-test. Conover and Iman [11] shows that the computed
statistic is a monotonically increasing function of the statistic computed by the Wilcoxon Mann-
Whitney test, making them really close. Implemented in our code.

Bootstrap confidence interval test. In the bootstrap test, the sample is considered to be an approx-
imation of the original distribution [12]. Given two observed samples (x1, x2) of size N , we obtain
two bootstrap samples (x̃1, x̃2) of size N by sampling with replacement in (x1, x2) respectively
and compute the difference in empirical means ∆x̃. This procedure is repeated a large number of
times (e.g. 103). The distance between percentiles α×100

2 and 100(1−α2 ) is considered to be the
100(1−α)% confidence interval around the true mean difference ∆µ. If it does not include 0, the
test rejects the null hypothesis with confidence level α. This test does not require any assumptions
on the performance distributions, but we will see it requires large sample sizes. Implementation:
https://github.com/facebookincubator/bootstrapped.

Permutation test. Under the null hypothesis, the realizations of both samples would come from
distributions with the same mean. The empirical mean difference (∆x) should not be affected by the
relabelling of the different realization (in average). The permutation test performs permutations of
the realization labels and computes ∆x̃ = x̃1−x̃2. This procedure is repeated many times (e.g. 103).
H0 is rejected if the proportion of |∆x̃| that falls below the original difference |∆x| is higher than
1−α. Implemented in our code.

4 Empirical Comparisons of Statistical Tests

This section compares the above statistical tests in terms of their false positive rates and statistical
powers. A false positive rate estimates the probability to claim that two algorithms perform differently
when H0 holds. It impacts directly the reproducibility of a piece of research and should be as low
as possible. Statistical power is the true positive rate and refers to the probability to find evidence
for an existing effect. The following study is an extension of the one performed in [13]. We
conduct experiments using models of RL distributions (analytic distributions) and true empirical RL
distributions collected by running 192 trials of both SAC [3] and TD3 [4] on Half-Cheetah-v2 [5] for
2M timesteps.5

4.1 Methods

2 0 2 4 6

normal =1
bimod. =1
log-norm. =1
normal =2
bimod. =2
log-norm. =2

Figure 2: Candidate distributions to represent algo-
rithm performances.

Investigating the case of non-normal distri-
butions. Several candidate distributions are
selected to model RL performance distributions
(Figure 2): a standard normal distribution, a log-
normal distribution and a bimodal distribution
that is an even mixture of two normal distribu-
tions. All these distributions are tuned so that
µ = 0, σ = 1. In addition we use two empirical
distributions of size 192 collected from SAC and
TD3.

Investigating the case of unequal standard deviations. To investigate the effect of unequal stan-
dard deviations, we tune the distribution parameters to double the standard deviation of Algorithm 2
as compared to Algorithm 1. We also compare SAC and TD3 which have different standard deviations
(σTD3 = 1.15 σSAC).

Measuring false positive rates. To test for false positive rates α∗, we simply enforce H0 by
aligning the central performances of the two distributions: µ1 = µ2 = 0 (the median for the Mann-
Whitney test and the ranked t-test, the mean for others). Given one test, two distributions and a
sample size, we sample x1 and x2 from distributions X1, X2 and compare them using the test with
α= 0.05. We repeat this procedureNr = 103 times and estimate α∗ as the proportion ofH0 rejection.

5 Using the spinning up implementation of OpenAI: https://github.com/openai/spinningup
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The standard error of this estimate is: se(α∗) =
√

(α∗(1−α∗)/Nr. It is smaller than the widths of
the lines on the reported figures. This procedure is repeated for every test, every combination of
distributions and for several sample sizes (see pseudo-code in the supplementary material).

Measuring true positive rates (statistical power). Here, we enforce the alternative hypothesis
Ha by sampling x1 from a given distribution centered in 0 (mean or median depending on the test),
and x2 from a distribution whose mean (resp. median) is shifted by an effect size ∆µ. Given one test,
two distributions (the second being shifted) and the sample size, we repeat the procedure above and
obtain an estimate of the true positive rate. Tables reporting the statistical powers for various effect
sizes, sample sizes, tests and assumptions are made available in the supplementary results.

4.2 Results: Comparison of False Positive Rates

Same distributions, equal standard deviations. Figure 3(a) and 3(b) represent the false positive
rates α∗ as a function of the sample size (number of seeds), for various tests when the samples are
drawn from (a): the same standard normal distribution (ideal situation, all assumptions are met), and
(b): the same bimodal distribution. Given the sample sizes used estimate α∗ (Nr = 103), we can
directly compare the mean estimates (the lines) to the significance level α = 0.05, the standard errors
being smaller than the widths of these lines.6 α∗ is very large when using bootstrap tests, unless large
sample sizes are used (>40). Using small sample sizes (<5), the permutation and the ranked t-test
also show large α∗. Results using two log-normal distributions show similar behaviors and can be
found in the supplementary results.
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Figure 3: False positive rates for same distributions, equal standard deviations. Both samples are drawn
from the same distribution (µ = 0, σ = 1). (a): A standard normal distribution. (b): A bimodal distribution.

Same distributions, unequal standard deviations. Here, we sample x1 from a distribution, and
x2 from the same type of distribution with doubled standard deviation. Comparing two normal
distributions with different standard deviation does not differ much from the case with equal standard
deviations. Figure 4(a) (bimodal distributions) shows that Mann-Whitney and ranked t-test (median
tests) constantly overestimate α∗, no matter the sample size (α∗ > 0.1). For log-normal distributions
on the other hand (Figure 4(b)), the false positive rate using these tests respects the confidence level
(α∗ ≤ α) with sample sizes higher than N = 10. However, other tests tend to show large α∗, even
for large sample sizes (α∗ ≈ 0.07 up to N > 50).

Different distributions, equal standard deviations. Now we compare samples coming from
different distributions with equal standard deviations. Comparing normal and bimodal distributions of
equal standard deviation does not impact much the false positive rates curves (similar to Figure 3(a)).
However, Figure 5(a) and 5(b) show that when one of the two distributions is skewed (log-normal),
the Mann-Whitney and the ranked t-test demonstrate very important false positive rate, a phenomenon
that gets worse with larger sample sizes. Section 4.5 discusses why it might be the case.

Different distributions, unequal standard deviations. We now combine different distributions
and different standard deviations. As before, comparing a skewed distribution (log-normal) and a
symmetric one leads to high false positive rates for the Mann-Whitney test and the ranked t-test

6We reproduced all the results twice, hardly seeing any difference in the figures.
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Figure 4: False positive rates for same distributions, different standard deviations. x1 and x2 are drawn
from the same type of distribution, centered in 0 (mean or median), with σ1 =1 and σ2 = 2. (a): Two bimodal
distributions. (b): Two log-normal distributions.
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Figure 5: False positive rates for different distributions, equal standard deviations. x1 and x2 are drawn
from two different distributions, centered in 0 (mean or median), with σ1 = σ2 = 1. (a): normal and log-normal
distributions. (b): bimodal and log-normal distributions.

(Figure 6(a) and 6(b)). Comparing a normal distribution and a skewed log-normal with higher
standard deviation leads to high positive rates for all other tests as well (α∗ ≈ 0.1), even using large
sample sizes (Figure 6(a)).
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Figure 6: False positive rates for different distributions, different standard deviations. x1 and x2 are
drawn from two different distributions, centered in 0 (mean or median), with σ1 =1 and σ2 = 2. (a): normal
and log-normal distributions. (b): bimodal and log-normal distributions.

4.3 Results: Comparison of Statistical Powers

All tests show similar estimations of statistical power. More than 50 samples are needed to detect a
relative effect size ε = 0.5 with 80% probability, close to 20 with ε = 1 and a bit more than 10 with
ε = 2. Tables reporting statistical power for all conditions, tests, sample sizes and relative effect sizes
are provided in the supplementary results.
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4.4 Results: Comparison of Real RL Distributions: SAC and TD3
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Figure 7: False positive rates when com-
paring SAC and TD3. x1 is drawn from SAC
performances, x2 from TD3 performances.
Both are centered in 0 (mean or median),
with σ1 = 1.313 and σ2 = 1.508.

Finally, we compare two empirical distributions obtained
from running two RL algorithms (SAC, TD3) 192 times
each, on Half-Cheetah. We observe a small increase in
false positive rates when using the ranked t-test (Figure 7).
The relative effect size estimated from the empirical distri-
butions is ε = 0.80 (median), or ε = 0.93 (mean), in favor
of SAC. For such relative effect sizes, the sample sizes
required to achieve a statistical power of 0.8 are between
10 and 15 for tests comparing the mean and between 15
and 20 for tests comparing the median (see full table in
supplementary results). Using a sample size N = 5 with
the Welch’s t-test, the effect size would need to be 3 to 4
times larger to be detected with 0.8 probability.

4.5 Discussion of Empirical Results

No matter the distributions. From the above results, it seems clear that the bootstrap test should
never be used for sample sizes below N = 50 and the permutation test should never be used for
sample sizes below N = 10. The bootstrap test in particular, uses the sample as an estimate of the
true performance distribution. A small sample is a very noisy estimate, which leads to very high
false positive rates. The ranked t-test shows a false positive rate of 0 and a statistical power of 0
when N = 2 in all conditions. As noted in [13], comparing two samples of size N = 2 can result
in only four possible p-values (only 4 possible orders when ranked), none of which falls below
α = 0.05. Such quantization issues make this test unreliable for small sample sizes, see [13] for
further comments and references on this issue.

When distributions do not meet assumptions. In addition to the behaviors reported above, Sec-
tion 4.2 shows that non-parametric tests (Mann-Whitney and ranked t-test) can demonstrate very
high false positive rates when comparing a symmetric distribution with a skewed one (log-normal).
This effect gets worse linearly with the sample size. When the sample size increases, the number of
samples drawn in the skewed tail of the log-normal increases. All these realizations will be ranked
above any realizations from the other distribution. Therefore, the larger the sample size, the more
realization are ranked first in favor of the log-normal, which leads to a bias in the statistical test. This
problem does not occur when two log-normal are compared to one another. Comparing a skewed
distribution to a symmetric one violates the Mann-Whitney assumptions stating that distributions
must have the same shape and spread. The false positive rates of Mann-Whitney and ranked t-test are
also above the confidence level whenever a bimodal distribution is compared to another distribution.
The traditional recommendation to use non-parametric tests when the distributions are not normal
seems to be failing when the two distributions are different.

Most robust tests. The t-test and the Welch’s t-test were found to be more robust than others to
violations of their assumptions. However, α∗ was found to be slightly above the required level
(α∗ > α) when at least one of the two distributions is skewed (α∗ ≈ 0.1) no matter the sample size,
and when one of the two distributions is bimodal, for small sample sizes N < 10. Welch’s α∗ is
always a bit lower than the t-test’s α∗.

Statistical power. Except for the anomalies in small sample size mentioned above due to over-
confident tests like the bootstrap or the permutation tests, statistical powers stay qualitatively stable
no matter the distributions compared, or the test used: ε = 0.5: N ≈ 100; ε = 1: N ≈ 20 and ε = 2:
N ≈ 5, 10.

5 Guidelines for Comparison of RL Algorithm Performances

Measuring the performance of RL Algorithms. Before using any statistical test, one must obtain
measures of performance. RL algorithms should ideally be evaluated offline. The algorithm perfor-
mance after t steps is measured as the average of the returns over E evaluation episodes conducted
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independently from training, usually using a deterministic version of the current policy (e.g. E = 20).
Evaluating agents by averaging performances over several training episodes results in a much less
interpretable performance measure and should be stated clearly. The collection of performance
measures forms a learning curve.

Representing learning curves. After obtaining a learning curve for each of the N runs, it can
be rendered on a plot. At each evaluation, one can represent either the empirical mean or median.
Whereas the empirical median directly represents the center of the collected sample, the empirical
mean tries to model the sample as coming from a Gaussian distribution, and under this assumptions
represents the maximum likelihood estimate of that center. Error bars should also be added to this plot.
The standard deviation (SD) represents the variability of the performances, but is only representative
when the values are approximately normally distributed. When it is not normal, one should prefer
to represent interpercentile ranges (e.g. 10% − 90%). If the sample size is small (e.g. <10), the
most informative solution is to represent all learning curves in addition to the mean or median. When
performances are normally distributed, the standard error of the mean (SE) or confidence intervals
can be used to represent estimates of the uncertainty on the mean estimate.

Robust comparisons. Which test, which sample sizes? The results in Section 4.2 advocate for
the use of the Welch’s t-test, which shows lower false positive rate and similar statistical powers than
other tests. However, the false positive rate often remains superior to the confidence level α∗ > α
when the distributions are not normal. When in doubt, we recommend using lower confidence levels
α < 0.05 (e.g. α = 0.01) to ensure that α∗ < 0.05. The number of random seeds to be used to
achieve a statistical power of 0.8 depends on the expected relative effect size: ε = 0.5: N ≈ 100;
ε = 1: N ≈ 20 and ε = 2: N ≈ 5,10. The analysis of a real case comparing SAC and TD3 algorithms,
required a sample size between N = 10 and N = 15 for a relatively strong effect ε = 0.93 when
comparing the means, and about 5 more seeds when comparing the medians (ε= 0.80). Small sample
sizes like N = 5 would require 3 to 4 times larger effects.

A word on multiple comparisons. When performing multiple comparisons (e.g. between different
pairs of algorithms evaluated in the same setting), the probability to have at least one false positive
increases linearly with the number of comparisons nc. This probability is called the Family-Wise
Error Rate (FWER). To correct for this effect, one must apply corrections. The Bonferroni correction
for instance adapts the confidence level αBonf. = α/nc [14]. This ensures that the FWER stays
below the initial α. Using this corrections makes each test more conservative and decreases its
statistical power.

Comparing full learning curves. Instead of only comparing the final performances of the two
algorithms after T timesteps in the environment, we can compare performances along learning. This
consists in performing a statistical comparison for every evaluation step. This might reveal differences
in speed of convergence and can provide more robust comparisons. Further discussions on how this
relates to the problem of multiple comparison is given in the supplementary materials.

6 Conclusion

In conclusion, this paper advocates for the use of Welch’s t-test with low confidence level (α < 0.05)
to ensure a false positive rate below α∗ < 0.05. The sample size must be selected carefully depending
on the expected relative effect size. It also warns against the use of other unreliable tests, such as
the bootstrap test (for N < 50), the Mann-Whitney and the ranked t-test (unless assumptions are
carefully checked), or the permutation test (for N < 10). Using the t-test or the Welch’s t-test with
small sample sizes (<5) usually leads to high false positive rate and would require very large relative
effect sizes (over ε = 2) to show good statistical power. Sample sizes above N = 20 generally meet
the requirement of a 0.8 statistical power for a relative effect size ε = 1.
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7 Supplementary Methods

7.1 Pseudo-code

Algorithm 1 represents the pseudo-code of the experiment. The whole code can be found at https:
//github.com/ccolas/rl_stats. distributions refers to a list of pairs of distributions. When
comparing tests for an equal distribution setting, the pairs represent twice the same type of distribution.
When comparing for an unequal variance setting, the standard deviation of the second distribution is
doubled. The number of repetitions is set to 10.000. The rejection variable refers to the rejection
of the null hypothesis. The false positive error rates can be found in results_array[:, :, 0, :] when
there is no shift between the distributions (null effect size), while the statistical powers are found in
results_array[:, :, 1:, :].

Algorithm 1 Comparisons of statistical tests

1: Input: distributions, tests, nb_repets, effect_sizes, sample_sizes, α
2: Initialize: results_array . of size (nb_distrib, nb_tests, nb_effects, nb_sample_sizes)
3: for i_d, distrib in distributions do
4: for i_t, test in tests do
5: for i_e, effect_size in effect_sizes do
6: for i_ss, N in sample_sizes do
7: rejection_list = []
8: for i_r = 1: nb_repets do
9: distrib[1].shift(effect)

10: sample1 = distrib[0].sample(N)
11: sample2 = distrib[1].sample(N)
12: rejection_list.append(test.test(sample1, sample2, α))
13: results_array[i_d, i_t, i_e, i_ss] = mean(rejection_list)

7.2 Correcting for Multiple Comparison when Comparing Learning Curves

The correction to apply when comparing two learning curves depends 1) on the number of compar-
isons, 2) on the criteria that is used to conclude whether an algorithm is better than the other. The
criteria used to draw a conclusion must be decided before running any test. An example can be: if
when comparing the last 100 performance measures of the two algorithms, more than 50 comparisons
show a significant difference, then Algorithm 1 is better than Algorithm 2. In that case, the number
of comparisons performed is Nc = 100, and the criterion is Nrejection > Ncrit = 50. We want to
constrain the probability FWER that our criterion is met by pure chance to a confidence level α=0.05.
This probability is: FWER = α×Nc/Ncrit. To make it satisfy FWER = 0.05, we need to correct α
such as αcorrected = α×Ncrit/Nc (αcorrected = α/2 in our case).

10
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Figure 8: False positive rates for same distributions, equal variances. Both samples are drawn from
the same distribution. (a): A bimodal distribution (µ = 0, σ = 1). (b): A skewed log-normal distribution
(µ = 0, σ = 1).

8 Supplementary Results

8.1 Comparing same distributions with equal standard deviations.

Table 2: Statistical power when comparing samples from two normal distribution with equal
standard deviation: (µ1 = 0, σ1 = 1), (µ2 = ε σpool, σ2 = 1). Each result represents the percentage
of true positive over 10.000 repetitions. In bold are results satisfying a true positive rate above 0.8.

Small relative effect size: ε = 0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.048 0.024 0.000 0.000 0.298 0.300
3 0.072 0.046 0.000 0.128 0.229 0.122
5 0.106 0.089 0.065 0.114 0.206 0.105

10 0.179 0.186 0.167 0.184 0.256 0.182
20 0.336 0.340 0.321 0.332 0.378 0.341
30 0.480 0.478 0.458 0.449 0.513 0.477
40 0.604 0.592 0.567 0.576 0.611 0.588
50 0.691 0.693 0.678 0.680 0.717 0.693
100 0.943 0.940 0.929 0.932 0.947 0.940
Medium relative effect size: ε = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.094 0.045 0.000 0.000 0.456 0.461
3 0.155 0.115 0.000 0.258 0.411 0.251
5 0.284 0.269 0.205 0.289 0.461 0.295

10 0.560 0.553 0.506 0.550 0.646 0.556
20 0.870 0.862 0.857 0.850 0.894 0.869
30 0.970 0.966 0.957 0.960 0.974 0.969

Large relative effect size: ε = 2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.217 0.108 0.000 0.000 0.773 0.787
3 0.473 0.370 0.000 0.626 0.801 0.593
5 0.788 0.771 0.675 0.780 0.914 0.788

10 0.987 0.988 0.979 0.984 0.993 0.990
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Table 3: Statistical power when comparing samples from two bimodal distribution with equal
standard deviation. The first is centered in 0 (µ1 = 0, mean or median depending on the test), the
other shifted by the relative effect size (µ2 = ε σpool). Both have same standard deviation σ1 = σ2 = 1.
Each result represents the percentage of true positive over 10.000 repetitions. In bold are results
satisfying a true positive rate above 0.8.

Small relative effect size: ε = 0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.064 0.035 0.000 0.000 0.291 0.291
3 0.061 0.041 0.000 0.122 0.202 0.119
5 0.091 0.084 0.075 0.119 0.193 0.092

10 0.168 0.168 0.179 0.198 0.243 0.174
20 0.325 0.326 0.362 0.363 0.367 0.317
30 0.460 0.469 0.505 0.509 0.503 0.456
40 0.592 0.582 0.632 0.639 0.604 0.591
50 0.694 0.685 0.739 0.733 0.710 0.683
100 0.939 0.937 0.954 0.957 0.939 0.938
Medium relative effect size: ε = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.102 0.052 0.000 0.000 0.431 0.430
3 0.140 0.086 0.000 0.220 0.373 0.196
5 0.258 0.232 0.178 0.267 0.434 0.242

10 0.539 0.539 0.467 0.510 0.633 0.532
20 0.868 0.870 0.807 0.804 0.887 0.869
30 0.969 0.970 0.928 0.937 0.973 0.971

Large relative effect size: ε = 2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.198 0.103 0.000 0.000 0.723 0.725
3 0.388 0.296 0.000 0.547 0.792 0.514
5 0.786 0.776 0.619 0.735 0.912 0.757

10 0.994 0.994 0.966 0.973 0.996 0.994
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Table 4: Statistical power when comparing samples from two log-normal distribution with
equal standard deviation. The first is centered in 0 (µ1 = 0, mean or median depending on the
test), the other shifted by the relative effect size (µ2 = ε σpool). Both have same standard deviation
σ1 = σ2 = 1. Each result represents the percentage of true positive over 10.000 repetitions. In bold
are results satisfying a true positive rate above 0.8.

Small relative effect size: ε = 0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.067 0.032 0.000 0.000 0.388 0.387
3 0.099 0.057 0.000 0.195 0.288 0.189
5 0.154 0.121 0.129 0.198 0.265 0.183

10 0.247 0.247 0.329 0.369 0.317 0.273
20 0.404 0.401 0.628 0.632 0.432 0.424
30 0.533 0.539 0.802 0.804 0.560 0.536
40 0.649 0.635 0.897 0.900 0.659 0.641
50 0.724 0.719 0.955 0.960 0.746 0.726
100 0.938 0.935 1.000 1.000 0.945 0.937
Medium relative effect size: ε = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.147 0.070 0.000 0.000 0.609 0.603
3 0.262 0.193 0.000 0.428 0.542 0.412
5 0.431 0.397 0.379 0.458 0.584 0.475

10 0.657 0.649 0.768 0.796 0.726 0.671
20 0.876 0.864 0.979 0.978 0.902 0.876
30 0.953 0.954 0.999 0.998 0.964 0.954

Large relative effect size: ε = 2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.357 0.191 0.000 0.000 0.858 0.860
3 0.642 0.534 0.000 0.769 0.858 0.744
5 0.838 0.812 0.738 0.801 0.916 0.843

10 0.960 0.959 0.985 0.988 0.979 0.964
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8.2 Comparing same distributions with different standard deviations.

Table 5: Statistical power when comparing samples from two log-normal distribution with
different standard deviation. The first is centered in 0 (µ1 = 0, σ1 = 1 mean or median depending
on the test), the other shifted by the relative effect size (µ2 = ε σpool, σ2 = 2). Both have same
standard deviation σ1 = σ2 = 1. Each result represents the percentage of true positive over 10.000
repetitions. In bold are results satisfying a true positive rate above 0.8.

Small relative effect size: ε = 0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.062 0.030 0.000 0.000 0.310 0.314
3 0.084 0.058 0.000 0.152 0.244 0.138
5 0.110 0.097 0.079 0.115 0.217 0.120

10 0.191 0.180 0.174 0.195 0.261 0.189
20 0.342 0.333 0.329 0.315 0.385 0.330
30 0.476 0.477 0.454 0.466 0.509 0.479
40 0.602 0.585 0.574 0.573 0.622 0.598
50 0.690 0.696 0.664 0.674 0.713 0.693
100 0.937 0.941 0.923 0.924 0.945 0.938
Medium relative effect size: ε = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.112 0.053 0.000 0.000 0.484 0.476
3 0.171 0.137 0.000 0.284 0.428 0.274
5 0.303 0.253 0.228 0.280 0.466 0.313

10 0.572 0.531 0.513 0.542 0.651 0.572
20 0.864 0.861 0.837 0.839 0.891 0.858
30 0.968 0.961 0.949 0.955 0.971 0.965

Large relative effect size: ε = 2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.248 0.130 0.000 0.000 0.783 0.787
3 0.479 0.371 0.000 0.655 0.808 0.621
5 0.785 0.734 0.676 0.756 0.915 0.800

10 0.988 0.983 0.973 0.979 0.994 0.987
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Table 6: Statistical power when comparing samples from two bimodal distribution with differ-
ent standard deviation. The first is centered in 0 (µ1 = 0, σ1 = 1 mean or median depending on
the test), the other shifted by the relative effect size (µ2 = ε σpool, σ2 = 2). Both have same standard
deviation σ1 = σ2 = 1. Each result represents the percentage of true positive over 10.000 repetitions.
In bold are results satisfying a true positive rate above 0.8.

Small relative effect size: ε = 0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.115 0.067 0.000 0.000 0.283 0.280
3 0.117 0.088 0.000 0.132 0.206 0.126
5 0.092 0.080 0.044 0.071 0.205 0.088

10 0.168 0.159 0.094 0.112 0.241 0.163
20 0.312 0.310 0.174 0.169 0.370 0.318
30 0.472 0.440 0.218 0.225 0.496 0.455
40 0.587 0.587 0.266 0.277 0.615 0.590
50 0.685 0.690 0.331 0.322 0.708 0.688
100 0.943 0.941 0.551 0.548 0.941 0.943
Medium relative effect size: ε = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.164 0.096 0.000 0.000 0.374 0.380
3 0.137 0.112 0.000 0.182 0.371 0.175
5 0.229 0.188 0.121 0.197 0.411 0.212

10 0.528 0.507 0.325 0.366 0.621 0.509
20 0.871 0.857 0.631 0.624 0.896 0.872
30 0.972 0.974 0.797 0.805 0.974 0.971
40 0.995 0.993 0.897 0.896 0.995 0.995
50 0.999 0.999 0.954 0.954 0.999 0.999

Large relative effect size: ε = 2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.267 0.162 0.000 0.000 0.768 0.764
3 0.319 0.189 0.000 0.600 0.770 0.571
5 0.787 0.722 0.690 0.800 0.923 0.816

10 0.997 0.997 0.981 0.987 0.999 0.998
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Table 7: Statistical power when comparing samples from two log-normal distribution with
different standard deviation. The first is centered in 0 (µ1 = 0, σ1 = 1 mean or median depending
on the test), the other shifted by the relative effect size (µ2 = ε σpool, σ2 = 2). Both have same
standard deviation σ1 = σ2 = 1. Each result represents the percentage of true positive over 10.000
repetitions. In bold are results satisfying a true positive rate above 0.8.

Small relative effect size: ε=0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.057 0.030 0.000 0.000 0.408 0.408
3 0.056 0.038 0.000 0.299 0.242 0.157
5 0.092 0.063 0.246 0.342 0.199 0.145

10 0.185 0.168 0.588 0.612 0.233 0.249
20 0.394 0.379 0.898 0.901 0.389 0.445
30 0.571 0.560 0.980 0.983 0.549 0.607
40 0.693 0.693 0.997 0.997 0.674 0.732
50 0.802 0.800 0.999 0.999 0.781 0.816
100 0.980 0.978 1.000 1.000 0.974 0.983

Small relative effect size: ε=1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.147 0.072 0.000 0.000 0.680 0.685
3 0.264 0.181 0.000 0.631 0.581 0.474
5 0.464 0.401 0.604 0.707 0.637 0.567

10 0.749 0.728 0.956 0.966 0.787 0.801
20 0.951 0.945 1.000 1.000 0.951 0.964

Small relative effect size: ε=2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.419 0.230 0.000 0.000 0.924 0.930
3 0.722 0.596 0.000 0.911 0.921 0.842
5 0.904 0.868 0.910 0.935 0.959 0.944

10 0.989 0.986 0.999 1.000 0.993 0.994
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8.3 Comparing different distributions with equal standard deviations.

Table 8: Statistical power when comparing samples from a normal distribution and a log-
normal distribution with equal standard deviation. The first is centered in 0 (µ1 = 0, σ1 = 1 mean
or median depending on the test), the other shifted by the relative effect size (µ2 = ε σpool, σ2 = 1).
Each result represents the percentage of true positive over 10.000 repetitions. In bold are results
satisfying a true positive rate above 0.8.

Small relative effect size: ε = 0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.040 0.016 0.000 0.000 0.270 0.267
3 0.047 0.032 0.000 0.181 0.187 0.099
5 0.076 0.062 0.125 0.189 0.164 0.088

10 0.155 0.145 0.330 0.357 0.211 0.169
20 0.315 0.320 0.628 0.621 0.352 0.335
30 0.483 0.484 0.797 0.792 0.505 0.494
40 0.611 0.615 0.894 0.903 0.620 0.619
50 0.729 0.725 0.951 0.953 0.731 0.725
100 0.958 0.959 0.999 0.999 0.959 0.960
Medium relative effect size: ε = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.078 0.042 0.000 0.000 0.477 0.472
3 0.137 0.098 0.000 0.390 0.411 0.263
5 0.277 0.251 0.368 0.480 0.457 0.307

10 0.600 0.584 0.785 0.805 0.666 0.613
20 0.912 0.910 0.981 0.979 0.924 0.919

Large relative effect size: ε = 2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.230 0.113 0.000 0.000 0.856 0.841
3 0.513 0.392 0.000 0.838 0.864 0.709
5 0.863 0.815 0.872 0.927 0.946 0.880

10 0.997 0.997 0.999 0.999 0.999 0.999

17



Table 9: Statistical power when comparing samples from a log-normal distribution and a bi-
modal distribution with equal standard deviation. The first is centered in 0 (µ1 = 0, σ1 = 1 mean
or median depending on the test), the other shifted by the relative effect size (µ2 = ε σpool, σ2 = 1).
Each result represents the percentage of true positive over 10.000 repetitions. In bold are results
satisfying a true positive rate above 0.8.

Small relative effect size: ε = 0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.100 0.055 0.000 0.000 0.337 0.330
3 0.101 0.078 0.000 0.102 0.276 0.143
5 0.149 0.121 0.045 0.063 0.262 0.137

10 0.239 0.228 0.074 0.084 0.318 0.238
20 0.390 0.395 0.125 0.128 0.447 0.381
30 0.502 0.510 0.167 0.172 0.561 0.509
40 0.611 0.603 0.201 0.213 0.641 0.604
50 0.691 0.686 0.250 0.242 0.725 0.693
100 0.920 0.917 0.427 0.429 0.929 0.922
Medium relative effect size: ε = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.161 0.085 0.000 0.000 0.513 0.507
3 0.202 0.136 0.000 0.221 0.484 0.294
5 0.358 0.316 0.161 0.225 0.534 0.351

10 0.601 0.606 0.374 0.413 0.694 0.600
20 0.839 0.843 0.699 0.707 0.881 0.846
30 0.939 0.940 0.865 0.869 0.954 0.940
40 0.978 0.980 0.947 0.950 0.983 0.980

Large relative effect size: ε = 2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.275 0.158 0.000 0.000 0.808 0.809
3 0.539 0.390 0.000 0.585 0.819 0.647
5 0.804 0.781 0.613 0.719 0.898 0.792

10 0.955 0.953 0.956 0.962 0.976 0.956
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Table 10: Statistical power when comparing samples from a normal distribution and a bimodal
distribution with equal standard deviation. The first is centered in 0 (µ1 = 0, σ1 = 1 mean or
median depending on the test), the other shifted by the relative effect size (µ2 = ε σpool, σ2 = 1).
Each result represents the percentage of true positive over 10.000 repetitions. In bold are results
satisfying a true positive rate above 0.8.

Small relative effect size: ε = 0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.061 0.031 0.000 0.000 0.287 0.282
3 0.070 0.051 0.000 0.112 0.217 0.102
5 0.104 0.089 0.061 0.101 0.200 0.093

10 0.175 0.173 0.141 0.160 0.246 0.173
20 0.334 0.339 0.281 0.283 0.384 0.326
30 0.466 0.472 0.410 0.411 0.515 0.474
40 0.596 0.590 0.513 0.519 0.607 0.582
50 0.695 0.683 0.614 0.611 0.709 0.693
100 0.938 0.938 0.887 0.887 0.940 0.937
Medium relative effect size: ε = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.107 0.051 0.000 0.000 0.430 0.425
3 0.145 0.099 0.000 0.230 0.406 0.212
5 0.261 0.244 0.180 0.266 0.451 0.256

10 0.550 0.545 0.463 0.502 0.647 0.545
20 0.866 0.867 0.811 0.808 0.889 0.869
30 0.968 0.971 0.937 0.934 0.975 0.967

Large relative effect size: ε = 2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.198 0.105 0.000 0.000 0.763 0.768
3 0.427 0.323 0.000 0.596 0.797 0.569
5 0.794 0.763 0.667 0.783 0.914 0.783

10 0.991 0.989 0.979 0.983 0.996 0.990
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8.4 Comparing different distributions with different standard deviations.

Table 11: Statistical power when comparing samples from a log-normal distribution
and a bimodal distribution with different standard deviation. The first is centered in 0
(µ1 = 0, σ1 = 1 mean or median depending on the test), the other shifted by the relative effect
size (µ2 = ε σpool, σ2 = 2). Each result represents the percentage of true positive over 10.000
repetitions. In bold are results satisfying a true positive rate above 0.8.

Small relative effect size: ε = 0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.162 0.111 0.000 0.000 0.257 0.248
3 0.105 0.097 0.000 0.115 0.256 0.109
5 0.111 0.085 0.030 0.036 0.205 0.113

10 0.182 0.167 0.044 0.048 0.265 0.179
20 0.339 0.324 0.045 0.047 0.389 0.331
30 0.470 0.475 0.051 0.051 0.512 0.477
40 0.588 0.592 0.059 0.056 0.620 0.595
50 0.698 0.691 0.057 0.064 0.712 0.686
100 0.939 0.936 0.089 0.092 0.938 0.934
Medium relative effect size: ε = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.200 0.129 0.000 0.000 0.387 0.388
3 0.126 0.110 0.000 0.155 0.408 0.189
5 0.240 0.182 0.076 0.113 0.439 0.227

10 0.541 0.521 0.160 0.181 0.636 0.536
20 0.870 0.852 0.301 0.304 0.886 0.857
30 0.964 0.962 0.424 0.417 0.969 0.960
40 0.992 0.989 0.520 0.526 0.992 0.991
50 0.998 0.998 0.613 0.618 0.998 0.998
100 1.000 1.000 0.883 0.885 1.000 1.000

Large relative effect size: ε = 2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.294 0.209 0.000 0.000 0.830 0.837
3 0.393 0.197 0.000 0.636 0.787 0.685
5 0.806 0.739 0.705 0.802 0.918 0.845

10 0.984 0.984 0.985 0.988 0.991 0.985
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Table 12: Statistical power when comparing samples from a normal distribution and a bimodal
distribution with different standard deviation. The first is centered in 0 (µ1 = 0, σ1 = 1 mean or
median depending on the test), the other shifted by the relative effect size (µ2 = ε σpool, σ2 = 2).
Each result represents the percentage of true positive over 10.000 repetitions. In bold are results
satisfying a true positive rate above 0.8.

Small relative effect size: ε = 0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.130 0.075 0.000 0.000 0.270 0.263
3 0.109 0.089 0.000 0.128 0.219 0.115
5 0.096 0.080 0.038 0.061 0.200 0.100

10 0.165 0.157 0.084 0.097 0.245 0.164
20 0.324 0.311 0.132 0.134 0.374 0.316
30 0.460 0.466 0.172 0.180 0.497 0.469
40 0.584 0.591 0.214 0.209 0.616 0.594
50 0.699 0.693 0.244 0.252 0.707 0.688
100 0.942 0.941 0.409 0.408 0.942 0.940
Medium relative effect size: ε = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.173 0.100 0.000 0.000 0.353 0.356
3 0.131 0.113 0.000 0.173 0.384 0.166
5 0.225 0.189 0.099 0.167 0.414 0.209

10 0.526 0.508 0.267 0.303 0.621 0.518
20 0.881 0.862 0.529 0.524 0.891 0.867
30 0.972 0.972 0.706 0.704 0.974 0.970
40 0.995 0.995 0.826 0.822 0.995 0.995
50 0.999 0.999 0.894 0.896 1.000 0.999
100 1.000 1.000 0.996 0.994 1.000 1.000

Large relative effect size: ε = 2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.265 0.160 0.000 0.000 0.789 0.798
3 0.341 0.200 0.000 0.648 0.771 0.624
5 0.795 0.728 0.740 0.836 0.927 0.836

10 0.997 0.997 0.991 0.993 0.999 0.997
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Table 13: Statistical power when comparing samples from a normal distribution and
a log-normal distribution with different standard deviation. The first is centered in 0
(µ1 = 0, σ1 = 1 mean or median depending on the test), the other shifted by the relative effect
size (µ2 = ε σpool, σ2 = 2). Each result represents the percentage of true positive over 10.000
repetitions. In bold are results satisfying a true positive rate above 0.8.

Small relative effect size: ε = 0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.034 0.012 0.000 0.000 0.263 0.261
3 0.033 0.023 0.000 0.277 0.163 0.090
5 0.053 0.043 0.233 0.325 0.139 0.081

10 0.135 0.128 0.581 0.618 0.180 0.173
20 0.337 0.314 0.899 0.901 0.349 0.394
30 0.532 0.537 0.980 0.975 0.508 0.586
40 0.699 0.690 0.996 0.996 0.666 0.725
50 0.804 0.805 0.999 0.999 0.772 0.823
100 0.986 0.986 1.000 1.000 0.982 0.989
Medium relative effect size: ε = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.088 0.039 0.000 0.000 0.554 0.558
3 0.151 0.108 0.000 0.637 0.474 0.340
5 0.345 0.301 0.671 0.781 0.560 0.447

10 0.748 0.722 0.977 0.981 0.794 0.817
20 0.977 0.973 1.000 1.000 0.966 0.989

Large relative effect size: ε = 2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.323 0.161 0.000 0.000 0.962 0.965
3 0.700 0.553 0.000 0.985 0.944 0.887
5 0.952 0.917 0.992 0.997 0.977 0.992
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Table 14: Statistical power when comparing samples from empirical RL distribution
(192samples) from the SAC algorithm and the TD3 algorithm, both run in the Half-Cheetah
environment for 2M steps. The first is centered in 0 (µ1 = 0, σ1=1313 mean or median depending
on the test), the other shifted by the relative effect size (µ2 = ε σpool, σ2=1508). Each result rep-
resents the percentage of true positive over 10.000 repetitions. In bold are results satisfying a true
positive rate above 0.8.

Small relative effect size: ε = 0.5

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.113 0.052 0.000 0.000 0.427 0.431
3 0.157 0.133 0.000 0.216 0.330 0.258
5 0.181 0.162 0.119 0.154 0.287 0.208

10 0.248 0.230 0.263 0.293 0.307 0.257
20 0.380 0.374 0.486 0.489 0.417 0.400
30 0.504 0.506 0.655 0.665 0.529 0.523
40 0.629 0.621 0.776 0.776 0.647 0.637
50 0.716 0.722 0.858 0.861 0.735 0.722
100 0.951 0.951 0.990 0.988 0.953 0.950
Medium relative effect size: ε = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.210 0.106 0.000 0.000 0.588 0.591
3 0.296 0.248 0.000 0.380 0.534 0.424
5 0.403 0.360 0.265 0.339 0.565 0.424

10 0.622 0.592 0.591 0.618 0.705 0.640
20 0.883 0.876 0.887 0.888 0.901 0.884
30 0.970 0.968 0.973 0.973 0.976 0.972

Large relative effect size: ε = 2.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.411 0.227 0.000 0.000 0.833 0.837
3 0.588 0.474 0.000 0.697 0.839 0.737
5 0.803 0.751 0.648 0.708 0.910 0.823

10 0.983 0.979 0.960 0.967 0.991 0.981

8.5 Comparison of two empirical distributions with unequal variance, SAC and TD3

Table 15: Statistical power when comparing SAC and TD3 with relative effect sizes ε = 0.80 for
median tests (Mann-Whitney, Ranked t-test), ε = 0.93 for other tests. The true relative effect sizes
are estimated using 192 samples of each distribution.

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 0.000 0.000 0.113 0.059 0.604 0.596
3 0.000 0.410 0.196 0.125 0.500 0.380
5 0.379 0.475 0.388 0.304 0.570 0.475
7 0.571 0.629 0.522 0.482 0.632 0.575

10 0.767 0.793 0.664 0.638 0.705 0.670
15 0.927 0.933 0.780 0.778 0.809 0.782
20 0.981 0.983 0.837 0.842 0.862 0.835
30 0.999 0.999 0.892 0.891 0.930 0.907
40 1.000 1.000 0.950 0.951 0.966 0.953
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