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Abstract

Consistently checking the statistical significance of experimental results is the
first mandatory step towards reproducible science. This paper presents a hitch-
hiker’s guide to rigorous comparisons of reinforcement learning algorithms. After
introducing the concepts of statistical testing, we review the relevant statistical
tests and compare them empirically in terms of false positive rate and statistical
power as a function of the sample size (number of seeds) and effect size. We
further investigate the robustness of these tests to violations of the most common
hypotheses (normal distributions, same distributions, equal variances). Beside
simulations, we compare empirical distributions obtained by running Soft-Actor
Critic and Twin-Delayed Deep Deterministic Policy Gradient on Half-Cheetah. We
conclude by providing guidelines and code to perform rigorous comparisons of RL
algorithm performances.

1 Introduction

Reproducibility in Machine Learning and Reinforcement Learning in particular (RL) has become
a serious issue in the recent years. As pointed out in Islam et al. [[1] and Henderson et al. [2],
reproducing the results of an RL paper can turn out to be much more complicated than expected. In
a thorough investigation, Henderson et al. [2] showed it can be caused by differences in codebases,
hyperparameters (e.g. size of the network, activation functions) or the number of random seeds used
by the original study. Henderson et al. [2] states the obvious: the claim that an algorithm performs
better than another should be supported by evidence, which requires the use of statistical tests.
Building on these observations, this paper presents a hitchhiker’s guide for statistical comparisons of
RL algorithms. The performances of RL algorithm have specific characteristics (they are independent
of each other, they are not paired between algorithms etc.). This paper reviews some statistical tests
relevant in that context and compares them in terms of false positive rate and statistical power. Beside
simulations, it compares empirical distributions obtained by running Soft-Actor Critic (SAC) [3]]
and Twin-Delayed DDPG (TD3) [4] on Half-Cheetah [3]]. We finally provide guidelines to perform
robust difference testing in the context of RL. A repository containing the raw results and the code to
reproduce all experiments is available at https://github.com/ccolas/rl_stats!|

2 Comparing RL Algorithms: Problem Definition

2.1 Model

In this paper, we consider the problem of conducting meaningful comparisons of Algorithm 1 and
Algorithm 2. Because the seed of the random generator is different for each rurE], two runs of a
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same algorithm yield different measures of performance. An algorithm performance can therefore be
modeled as a random variable X, characterized by a distribution. Measuring the performance x at
the end of a particular run is equivalent to measuring a realization of that random variable. Repeating
this N times, we obtain a sample v = (z', ..., V) of size N.

To compare RL algorithms on the basis of their perfor-
mances, we focus on the comparisons of the central ten- | — Aigo 1
dencies (11, po): the means or the medians of the associ- | — Algo 2
ated random variables X7, X QEI Unfortunately, we cannot

know g3, po exactly. Given a sample x; of X;, we can \
estimate p; by the empirical mean: T; = 1/N Z;\f:le = PET—
(resp. the empirical median). However, comparing central
performances does not simply boil down to the compari-
son of their estimates. As an illustration, Figure|l|shows
two normal distributions describing the distributions of
two algorithm performances X; and X5. Two samples of rical £ th )
sample size N = 3 are collected. In this example, we have eﬁpirlca means of the two samples
w1 < o but T > To. The rest of this text uses central (N =3).

performance to refer to either the mean or the median of the performance distribution ¢. It is noted p;
while its empirical estimate is noted ;. The distinction is made where necessary.

Figure 1: Two normal distributions
representing the performances of two
algorithms. Dashed lines: performance
measures (realizations). Plain lines:

2.2 A Few Definitions

Statistical difference testing. Statistical difference testing offers a principled way to compare
the central performances of two algorithms. It defines two hypothesis: 1) the null hypothesis
Ho : Ap = pr—pe = 0 and 2) the alternative hypothesis H,: |Au| > 0. When performing a
test, one initially assumes the null hypothesis to be true. After having observed (z1, x2), statistical
tests usually estimate the probability to observe two samples whose empirical central difference
is at least as extreme as the observed one (|AZ| = |T1—T2|) under Hy (e.g. given Ay = 0). This
probability is called the p-value. If the p-value is very low, the test rejects Hy and concludes that a
true underlying difference (#,) is likely. When the p-value is high, the test does not have enough
evidence to conclude. This could be due to the lack of true difference, or to the lack of statistical
power (too few measurements given how noisy they are). The significance level o (usually < 0.05)
draws the line between rejection and conservation of Hg: if p-value < «, H, is rejected.

Statistical errors. Note that having a p-value Table 1: Hypothesis testing
of 0.05 still results in 1 chance out of 20 to claim
a difference that does not exist. This is called a True Hog True H,

type-I error or false positive. The false positive
rate is usually noted «, just like the significance
level. Indeed, statistical tests with significance
level «v are supposed to enforce a false positive
rate of . Further experiments demonstrate it is not always the case, which is why we prefer to note
the false positive rate a*. False negatives occur when the statistical test fails to recognize a true
difference in the central performances. This depends on the size of the underlying difference: the
larger the difference, the lower the risk of false negative. The false negative rate is noted /3*.

Pred. Hy True neg. 1—a®  False neg. 8*
Pred. H, False pos. a* True pos. 1-3*

Trade-off between false positive and statistical power. Ideally, we would like to set « = 0 to
ensure the lowest possible false positive rate o*. However, decreasing the confidence level makes the
statistical test more conservative. The test requires even bigger empirical differences AZ to reject
‘Ho, which decreases the probability of true positive. This probability of true positive 1—/3* is called
the statistical power of a test. It is the probability to reject Hy when H, holds. It is directly impacted
by the effect size: the larger the effect size, the easier it is to detect (larger statistical power). It is also
a direct function of the sample size: larger samples bring more evidence to support the rejection of
‘Ho. Generally, the sample size is chosen so as to obtain a theoretical statistical power of 1—5* = 0.8.
Different tests have different statistical powers depending on the assumptions they make, whether
they are met, how the p-value is derived etc.

3 Because of space constraints, we do not investigate other possible criteria for comparing RL algorithms
(e.g. lower variance, high minimal performance, area under the learning curve, etc.)



Parametric vs. non-parametric. Parametric tests usually compare the means of two distributions
by making assumptions on the distributions of the two algorithms’ performances. Non-parametric
tests on the other hand usually compare the medians and do not require assumptions on the type
of distributions. Non-parametric tests are often recommended when one wants to compare median
rather than means, when the data is skewed or when the sample size is small. Section[#.2] shows that
these recommendations are not always justified.

Test statistic. Statistical tests usually use a test statistic. It is a numerical quantity computed from
the samples that summarizes the data. In the t-test for instance, the statistic ¢, is computed as

to = |AT| /0 poot, Where opo is the pooled standard deviation (0o = v/ (0% + 3)/2). Under the
t-test assumptions, this statistic follows the analytic Student’s distribution with density function fs(¢).
The probability to obtain a difference more important than the sample difference AZ (p-value) can be
rewritten p-value = P(|t| > t,,) and can be computed as the area under fs(t) such that |¢| > .

Relative effect size. The relative effect size e is the absolute effect size |Ap|, scaled by the pooled
standard deviation o0, such that € = |Ap|/0,001. The relative effect size is independent of the
spread of the considered distributions.

3 Statistical Tests for RL

3.1 Assumptions in the Context of RL

Each test makes some assumptions (e.g. about the nature of the performance distributions, their
variances, the sample sizes etc.). In the context of RL, some assumptions are reasonable while others
are not. It is reasonable to assume that RL performances are measured at random and independently
from one another. The samples are not paired, and here we assume they have the same sizeﬂ Other
common assumptions might be discussed:

e Normal distributions of performances: this might not be the case (skewed distributions,
bimodal distributions, truncated distributions).

e Continuous performances: the support of the performance distribution might be bounded:
e.g. in the Fetch environments of Gym [3]], the performance is a success rate in [0, 1].

e Known standard deviations: this is not the case in RL.

e Equal standard deviations: this is often not the case (see [2]).

3.2 Relevant Statistical Tests

This section briefly presents various statistical tests relevant to the comparison of RL performances. It
focuses on the underlying assumptions [6] and provides the corresponding implementation from the
Python Scipy library when available. Further details can be found in any statistical textbook. Contrary
to Henderson et al. [2], we do not recommend using the Kolmogorov-Smirnov test as it tests for the
equality of the two distributions and does not test for a difference in their central tendencies [7]].

T-test. This parametric test compares the means of two distributions and assumes the two distribu-
tions have equal variances [8]. If this variance is known, a more powerful test is available: the Z-test
for two population means. The test is accurate when the two distributions are normal, it gives an
approximate guide otherwise. Implementation: scipy.stats.ttest_ind(x1, x2, equal_var=True).

Welch’s t-test. It is a t-test where the assumption of equal variances is relaxed [9]]. Implementation:
scipy.stats.ttest_ind(x1, x2, equal_var=False).

Wilcoxon Mann-Whitney rank sum test. This non-parametric test compares the median of two
distributions. It does not make assumptions about the type of distributions but assumes they are
continuous and have the same shape and spread [10]. Implementation: scipy.stats.mannwhitneyu(xI,
x2, alternative= ‘two-sided’).

# This assumption could be relaxed as none of the test requires it.



Ranked t-test. In this non-parametric test that compares the medians, all realizations are ranked
together before being fed to a traditional t-test. Conover and Iman [11] shows that the computed
statistic is a monotonically increasing function of the statistic computed by the Wilcoxon Mann-
Whitney test, making them really close. Implemented in our code.

Bootstrap confidence interval test. In the bootstrap test, the sample is considered to be an approx-
imation of the original distribution [12]. Given two observed samples (z1, x2) of size [N, we obtain
two bootstrap samples (21, Z2) of size N by sampling with replacement in (x1, x2) respectively
and compute the difference in empirical means AZ. This procedure is repeated a large number of
times (e.g. 10%). The distance between percentiles %100 and 100(1—%) is considered to be the
100(1—a)% confidence interval around the true mean difference Ayp. If it does not include 0, the
test rejects the null hypothesis with confidence level a. This test does not require any assumptions
on the performance distributions, but we will see it requires large sample sizes. Implementation:
https://github.com/facebookincubator/bootstrapped.

Permutation test. Under the null hypothesis, the realizations of both samples would come from
distributions with the same mean. The empirical mean difference (A7) should not be affected by the
relabelling of the different realization (in average). The permutation test performs permutations of
the realization labels and computes AZ = &1 — 5. This procedure is repeated many times (e.g. 10?).
Hy is rejected if the proportion of |AZ| that falls below the original difference |AT| is higher than
1—a. Implemented in our code.

4 Empirical Comparisons of Statistical Tests

This section compares the above statistical tests in terms of their false positive rates and statistical
powers. A false positive rate estimates the probability to claim that two algorithms perform differently
when H, holds. It impacts directly the reproducibility of a piece of research and should be as low
as possible. Statistical power is the true positive rate and refers to the probability to find evidence
for an existing effect. The following study is an extension of the one performed in [13]. We
conduct experiments using models of RL distributions (analytic distributions) and true empirical RL
distributions collected by running 192 trials of both SAC [3] and TD3 [4] on Half-Cheetah-v2 [5] for
2M timestepsE]

4.1 Methods

Investigating the case of non-normal distri-
butions. Several candidate distributions are
selected to model RL performance distributions
(Figure2): a standard normal distribution, a log- I\
normal distribution and a bimodal distribution P
that is an even mixture of two normal distribu-
tions. All these distributions are tuned so that ‘ o
1 =0, 0 = 1. In addition we use two empirical -2 0 2 7 3
distributions of size 192 collected from SAC and
TD3.

= normal o=1
= bimod. o=1
log-norm. o=1
(= = normal 0=2
—\\— bimod. 0=2
log-norm. 0=2

Figure 2: Candidate distributions to represent algo-
rithm performances.

Investigating the case of unequal standard deviations. To investigate the effect of unequal stan-
dard deviations, we tune the distribution parameters to double the standard deviation of Algorithm 2
as compared to Algorithm 1. We also compare SAC and TD3 which have different standard deviations
(crp3s = 1.15 0540)-

Measuring false positive rates. To test for false positive rates a*, we simply enforce Hy by
aligning the central performances of the two distributions: p; = po = 0 (the median for the Mann-
Whitney test and the ranked t-test, the mean for others). Given one test, two distributions and a
sample size, we sample z; and z2 from distributions X, X5 and compare them using the test with
a = 0.05. We repeat this procedure N, = 102 times and estimate a* as the proportion of H, rejection.

> Using the spinning up implementation of OpenAl: https://github.com/openai/spinningup
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The standard error of this estimate is: se(a*) = /(a*(1—a*)/N,. It is smaller than the widths of
the lines on the reported figures. This procedure is repeated for every test, every combination of
distributions and for several sample sizes (see pseudo-code in the supplementary material).

Measuring true positive rates (statistical power). Here, we enforce the alternative hypothesis
‘H, by sampling x; from a given distribution centered in 0 (mean or median depending on the test),
and x5 from a distribution whose mean (resp. median) is shifted by an effect size Apu. Given one test,
two distributions (the second being shifted) and the sample size, we repeat the procedure above and
obtain an estimate of the true positive rate. Tables reporting the statistical powers for various effect
sizes, sample sizes, tests and assumptions are made available in the supplementary results.

4.2 Results: Comparison of False Positive Rates

Same distributions, equal standard deviations. Figure [3(a)]and [3(b)|represent the false positive
rates o as a function of the sample size (number of seeds), for various tests when the samples are
drawn from (a): the same standard normal distribution (ideal situation, all assumptions are met), and
(b): the same bimodal distribution. Given the sample sizes used estimate o* (N, = 103), we can
directly compare the mean estimates (the lines) to the significance level a = 0.05, the standard errors
being smaller than the widths of these linesE] a* is very large when using bootstrap tests, unless large
sample sizes are used (>40). Using small sample sizes (<5), the permutation and the ranked t-test
also show large a*. Results using two log-normal distributions show similar behaviors and can be
found in the supplementary results.
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Figure 3: False positive rates for same distributions, equal standard deviations. Both samples are drawn
from the same distribution (x = 0, ¢ = 1). (a): A standard normal distribution. (b): A bimodal distribution.

Same distributions, unequal standard deviations. Here, we sample z; from a distribution, and
zo from the same type of distribution with doubled standard deviation. Comparing two normal
distributions with different standard deviation does not differ much from the case with equal standard
deviations. Figure (bimodal distributions) shows that Mann-Whitney and ranked t-test (median
tests) constantly overestimate o, no matter the sample size (o™ > 0.1). For log-normal distributions
on the other hand (Figure (b)), the false positive rate using these tests respects the confidence level
(a* < ) with sample sizes higher than N = 10. However, other tests tend to show large o, even
for large sample sizes (a* ~ 0.07 up to N > 50).

Different distributions, equal standard deviations. Now we compare samples coming from
different distributions with equal standard deviations. Comparing normal and bimodal distributions of
equal standard deviation does not impact much the false positive rates curves (similar to Figure [3(a)).
However, Figure[5(a)land [5(b)| show that when one of the two distributions is skewed (log-normal),
the Mann-Whitney and the ranked t-test demonstrate very important false positive rate, a phenomenon
that gets worse with larger sample sizes. Section[4.5]discusses why it might be the case.

Different distributions, unequal standard deviations. We now combine different distributions
and different standard deviations. As before, comparing a skewed distribution (log-normal) and a
symmetric one leads to high false positive rates for the Mann-Whitney test and the ranked t-test

SWe reproduced all the results twice, hardly seeing any difference in the figures.
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Figure 4: False positive rates for same distributions, different standard deviations. 1 and x2 are drawn
from the same type of distribution, centered in 0 (mean or median), with o1 =1 and o2 = 2. (a): Two bimodal
distributions. (b): Two log-normal distributions.
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Figure 5: False positive rates for different distributions, equal standard deviations. z; and x> are drawn
from two different distributions, centered in 0 (mean or median), with 01 = o2 = 1. (a): normal and log-normal
distributions. (b): bimodal and log-normal distributions.

(Figure [6(2)] and [6(b)). Comparing a normal distribution and a skewed log-normal with higher
standard deviation leads to high positive rates for all other tests as well (a* ~ 0.1), even using large
sample sizes (Figure[6(a)).
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Figure 6: False positive rates for different distributions, different standard deviations. z, and x are
drawn from two different distributions, centered in O (mean or median), with o1 =1 and o2 = 2. (a): normal
and log-normal distributions. (b): bimodal and log-normal distributions.

4.3 Results: Comparison of Statistical Powers

All tests show similar estimations of statistical power. More than 50 samples are needed to detect a
relative effect size e = 0.5 with 80% probability, close to 20 with e = 1 and a bit more than 10 with
€ = 2. Tables reporting statistical power for all conditions, tests, sample sizes and relative effect sizes
are provided in the supplementary results.



4.4 Results: Comparison of Real RL Distributions: SAC and TD3

Finally, we compare two empirical distributions obtained - S o
from running two RL algorithms (SAC, TD3) 192 times go0.3 —— Welch t-test permutation
each, on Half-Cheetah. We observe a small increase in 5 T pannwniney T am00s
false positive rates when using the ranked t-test (Figure[7). %0'2 ereaTe

The relative effect size estimated from the empirical distri- 8o.2}

butions is € = 0.80 (median), or ¢ = 0.93 (mean), in favor %O ---%—\ et

of SAC. For such relative effect sizes, the sample sizes R R B T0 20 30 50 100
required to achieve a statistical power of 0.8 are between Sample size N (log scale)

10 and 15 for tests comparing the mean and between 15 Figure 7: False positive rates when com-
and 20 for tests comparing the median (see full table in paring SAC and TD3. z; is drawn from SAC
supplementary results). Using a sample size N = 5 with  performances, 2 from TD3 performances.
the Welch'’s t-test, the effect size would need to be 3 to 4 Bf)th are centered in 0 (mean or median),
times larger to be detected with 0.8 probability. with o3 = 1.313 and o2 = 1.508.

4.5 Discussion of Empirical Results

No matter the distributions. From the above results, it seems clear that the bootstrap test should
never be used for sample sizes below N = 50 and the permutation test should never be used for
sample sizes below N = 10. The bootstrap test in particular, uses the sample as an estimate of the
true performance distribution. A small sample is a very noisy estimate, which leads to very high
false positive rates. The ranked t-test shows a false positive rate of 0 and a statistical power of 0
when N = 2 in all conditions. As noted in [13], comparing two samples of size N = 2 can result
in only four possible p-values (only 4 possible orders when ranked), none of which falls below
o = 0.05. Such quantization issues make this test unreliable for small sample sizes, see [[13] for
further comments and references on this issue.

When distributions do not meet assumptions. In addition to the behaviors reported above, Sec-
tion [4.2] shows that non-parametric tests (Mann-Whitney and ranked t-test) can demonstrate very
high false positive rates when comparing a symmetric distribution with a skewed one (log-normal).
This effect gets worse linearly with the sample size. When the sample size increases, the number of
samples drawn in the skewed tail of the log-normal increases. All these realizations will be ranked
above any realizations from the other distribution. Therefore, the larger the sample size, the more
realization are ranked first in favor of the log-normal, which leads to a bias in the statistical test. This
problem does not occur when two log-normal are compared to one another. Comparing a skewed
distribution to a symmetric one violates the Mann-Whitney assumptions stating that distributions
must have the same shape and spread. The false positive rates of Mann-Whitney and ranked t-test are
also above the confidence level whenever a bimodal distribution is compared to another distribution.
The traditional recommendation to use non-parametric tests when the distributions are not normal
seems to be failing when the two distributions are different.

Most robust tests. The t-test and the Welch’s t-test were found to be more robust than others to
violations of their assumptions. However, a* was found to be slightly above the required level
(a* > ) when at least one of the two distributions is skewed (a* = 0.1) no matter the sample size,
and when one of the two distributions is bimodal, for small sample sizes N < 10. Welch’s a* is
always a bit lower than the t-test’s o*.

Statistical power. Except for the anomalies in small sample size mentioned above due to over-
confident tests like the bootstrap or the permutation tests, statistical powers stay qualitatively stable
no matter the distributions compared, or the test used: € = 0.5: N =~ 100; e =1: N = 20 and € = 2:
N =5, 10.

5 Guidelines for Comparison of RL Algorithm Performances

Measuring the performance of RL Algorithms. Before using any statistical test, one must obtain
measures of performance. RL algorithms should ideally be evaluated offline. The algorithm perfor-
mance after ¢ steps is measured as the average of the returns over E evaluation episodes conducted



independently from training, usually using a deterministic version of the current policy (e.g. E = 20).
Evaluating agents by averaging performances over several training episodes results in a much less
interpretable performance measure and should be stated clearly. The collection of performance
measures forms a learning curve.

Representing learning curves. After obtaining a learning curve for each of the N runs, it can
be rendered on a plot. At each evaluation, one can represent either the empirical mean or median.
Whereas the empirical median directly represents the center of the collected sample, the empirical
mean tries to model the sample as coming from a Gaussian distribution, and under this assumptions
represents the maximum likelihood estimate of that center. Error bars should also be added to this plot.
The standard deviation (SD) represents the variability of the performances, but is only representative
when the values are approximately normally distributed. When it is not normal, one should prefer
to represent interpercentile ranges (e.g. 10% — 90%). If the sample size is small (e.g. <10), the
most informative solution is to represent all learning curves in addition to the mean or median. When
performances are normally distributed, the standard error of the mean (SE) or confidence intervals
can be used to represent estimates of the uncertainty on the mean estimate.

Robust comparisons. Which test, which sample sizes? The results in Section 4.2 advocate for
the use of the Welch’s t-test, which shows lower false positive rate and similar statistical powers than
other tests. However, the false positive rate often remains superior to the confidence level a* > «
when the distributions are not normal. When in doubt, we recommend using lower confidence levels
a < 0.05 (e.g. @ = 0.01) to ensure that ™ < 0.05. The number of random seeds to be used to
achieve a statistical power of 0.8 depends on the expected relative effect size: ¢ = 0.5: N = 100;
e=1: N~20and e =2: N = 5,10. The analysis of a real case comparing SAC and TD3 algorithms,
required a sample size between N = 10 and N = 15 for a relatively strong effect ¢ = 0.93 when
comparing the means, and about 5 more seeds when comparing the medians (e = 0.80). Small sample
sizes like N = 5 would require 3 to 4 times larger effects.

A word on multiple comparisons. When performing multiple comparisons (e.g. between different
pairs of algorithms evaluated in the same setting), the probability to have at least one false positive
increases linearly with the number of comparisons n.. This probability is called the Family-Wise
Error Rate (FWER). To correct for this effect, one must apply corrections. The Bonferroni correction
for instance adapts the confidence level aponr. = a/n. [14]. This ensures that the FWER stays
below the initial . Using this corrections makes each test more conservative and decreases its
statistical power.

Comparing full learning curves. Instead of only comparing the final performances of the two
algorithms after 7" timesteps in the environment, we can compare performances along learning. This
consists in performing a statistical comparison for every evaluation step. This might reveal differences
in speed of convergence and can provide more robust comparisons. Further discussions on how this
relates to the problem of multiple comparison is given in the supplementary materials.

6 Conclusion

In conclusion, this paper advocates for the use of Welch’s t-test with low confidence level (o < 0.05)
to ensure a false positive rate below a* < 0.05. The sample size must be selected carefully depending
on the expected relative effect size. It also warns against the use of other unreliable tests, such as
the bootstrap test (for N < 50), the Mann-Whitney and the ranked t-test (unless assumptions are
carefully checked), or the permutation test (for N < 10). Using the t-test or the Welch’s t-test with
small sample sizes (<5) usually leads to high false positive rate and would require very large relative
effect sizes (over € = 2) to show good statistical power. Sample sizes above N = 20 generally meet
the requirement of a 0.8 statistical power for a relative effect size e = 1.
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7 Supplementary Methods

7.1 Pseudo-code

Algorithm [T|represents the pseudo-code of the experiment. The whole code can be found at https
//github.com/ccolas/rl_stats. distributions refers to a list of pairs of distributions. When
comparing tests for an equal distribution setting, the pairs represent twice the same type of distribution.
When comparing for an unequal variance setting, the standard deviation of the second distribution is
doubled. The number of repetitions is set to 10.000. The rejection variable refers to the rejection
of the null hypothesis. The false positive error rates can be found in results_array[:, :, 0, :] when
there is no shift between the distributions (null effect size), while the statistical powers are found in
results_array[:, :, 13, :].

Algorithm 1 Comparisons of statistical tests

1: Input: distributions, tests, nb_repets, effect_sizes, sample_sizes,
2: Initialize: results_array > of size (nb_distrib, nb_tests, nb_effects, nb_sample_sizes)
3: for i_d, distrib in distributions do

4: for i_t, test in tests do

5: for i_e, effect_size in effect_sizes do

6: for i_ss, N in sample_sizes do

7: rejection_list = []

8: for i_r = 1: nb_repets do

9: distrib[1].shift(effect)
10: samplel = distrib[0].sample(N)
11: sample2 = distrib[1].sample(N)
12: rejection_list.append(test.test(samplel, sample2, o))
13: results_array[i_d, i_t, i_e, i_ss] = mean(rejection_list)

7.2 Correcting for Multiple Comparison when Comparing Learning Curves

The correction to apply when comparing two learning curves depends 1) on the number of compar-
isons, 2) on the criteria that is used to conclude whether an algorithm is better than the other. The
criteria used to draw a conclusion must be decided before running any test. An example can be: if
when comparing the last 100 performance measures of the two algorithms, more than 50 comparisons
show a significant difference, then Algorithm 1 is better than Algorithm 2. In that case, the number
of comparisons performed is N, = 100, and the criterion is Ny¢jection > Nerie = 50. We want to
constrain the probability FWER that our criterion is met by pure chance to a confidence level a=0.05.
This probability is: FWER = ax N../N.;+. To make it satisfy FWER = 0.05, we need to correct o
such as Qeorrected = aXNcrit/Nc (Qcorrected = OL/Z in our case).
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Figure 8: False positive rates for same distributions, equal variances. Both samples are drawn from
the same distribution. (a): A bimodal distribution (u = 0, ¢ = 1). (b): A skewed log-normal distribution
(M =0,0=1).

8 Supplementary Results

8.1 Comparing same distributions with equal standard deviations.

Table 2: Statistical power when comparing samples from two normal distribution with equal

standard deviation: (u; =0, 01 =1), (2 = € 0poot, 02 = 1). Each result represents the percentage
of true positive over 10.000 repetitions. In bold are results satisfying a true positive rate above 0.8.

Small relative effect size: € = 0.5

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.048 10.024 0.000 0.000 10.298 10.300
3 10.072 10.046 0.000 0.128 10.229 10.122
5 10.106 10.089 0.065 0.114  10.206  10.105
10 10.179 10.186 0.167 0.184 10.256 10.182
20 10336 10:340 0.321 0332 10378 10.341
30 10480 10.478 0.458 0449 10513 10477
40 10.604 10.592 0.567 0576 10.611 10.588
50 10.691 10.693 0.678 0.680 [0.717 10.693
100 10.943 10.940 0.929 0.932 0947 0.940

Medium relative effect size: € = 1.0

N  ttest Welch Mann-Whit. r. t-test boot. permut.

2 10.094 10.045 0.000 0.000 [0:456 10.461
3 10.155 10.115 0.000 0258 10411 10.251
5 10284 10.269 0.205 0289 10461 10.295
10 10.560 10.553 0.506 0550 [0.646  10.556
20 10.870 10.862 0.857 0.850 0.894 0.869
30 10.970 10.966 0.957 0.960 0.974 0.969

Large relative effect size: € = 2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.217 10.108 0.000 0.000 [0.773 10.787
3 10473 10370 0.000 0.626 10.801 10.593
5 10788 10.771 0.675 0.780 10.914 10.788
10 10.987 10.988 0.979 0.984 0.993 0.990
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Table 3: Statistical power when comparing samples from two bimodal distribution with equal
standard deviation. The first is centered in 0 (41 = 0, mean or median depending on the test), the
other shifted by the relative effect size (112 = € 0po01). Both have same standard deviation oy = o9 = 1.
Each result represents the percentage of true positive over 10.000 repetitions. In bold are results
satisfying a true positive rate above 0.8.

Small relative effect size: € = 0.5

N  ttest Welch Mann-Whit. r. t-test boot. permut.

2 10.064 10.035 0.000 0.000 10.291 10.291
3 10.061 10.041 0.000 0.122  10.202  10.119
5 10.091 10.084 0.075 0.119 10.193  10.092
10 10.168 10.168 0.179 0.198 10.243  10.174
20 10.325 10.326 0.362 0363 10367  10.317
30 10460 10.469 0.505 0.509 10.503 10456
40 10592 10.582 0.632 0.639 10.604 10.591
50 10.694 10.685 0.739 0.733  10.710  10.683
100 10.939 10.937 0.954 0.957 0.939 0.938

Medium relative effect size: ¢ = 1.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.102 10.052 0.000 0.000 10431 10430
3 10.140 10.086 0.000 0.220 10:373  10.196
5 10.258 10.232 0.178 0.267 10434 10.242
10 10.539 10.539 0.467 0.510 10633 10.532
20 10.868 0.870 0.807 0.804 0.887 0.869
30 10.969 10.970 0.928 0937 0973 0971

Large relative effect size: € = 2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.198 10.103 0.000 0.000 [0.723  10.725
3 10388 10.296 0.000 0547 10792 10514
5 10786 10.776 0.619 0.735 10912 10.757
10 10.994 10.994 0.966 0.973 0996 0.994
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Table 4: Statistical power when comparing samples from two log-normal distribution with
equal standard deviation. The first is centered in 0 (u; = 0, mean or median depending on the
test), the other shifted by the relative effect size (U2 = € 0po01). Both have same standard deviation
01 = 09 = 1. Each result represents the percentage of true positive over 10.000 repetitions. In bold
are results satisfying a true positive rate above 0.8.

Small relative effect size: € = 0.5

N  ttest Welch Mann-Whit. r. t-test boot. permut.

2 10.067 10.032 0.000 0.000 10.388  10.387
3 10.099 10.057 0.000 0.195 10.288 10.189
5 10.154 10.121 0.129 0.198 10.265 10.183
10 10.247 10.247 0.329 0369 10.317 10273
20 10404 10401 0.628 0.632 10432 10424
30 10.533  10.539 0.802 0.804 [0.560 10536
40 10.649 10.635 0.897 0.900 0.659 10.641
50 10.724 10.719 0.955 0.960 [0.746 10.726
100 10.938 10.935 1.000 1.000 0945 0.937

Medium relative effect size: ¢ = 1.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.147 10.070 0.000 0.000 10.609 10.603
3 10262 10.193 0.000 0428 10.542 10412
5 10431 10397 0.379 0458 10.584 10475
10 10.657 10.649 0.768 0796 10.726 10.671
20 10.876 0.864 0.979 0.978 0.902 0.876
30 10953 10.954 0.999 0.998 0.964 0.954

Large relative effect size: € = 2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10:357 10.191 0.000 0.000 [0.858 10.860
3 10642 10.534 0.000 0.769 0.858 0.744
5 10.838 [0.812 0.738 0.801 0916 0.843
10 10.960 [0.959 0.985 0.988 0979 0.964
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8.2 Comparing same distributions with different standard deviations.

Table 5: Statistical power when comparing samples from two log-normal distribution with
different standard deviation. The first is centered in 0 (111 = 0, o1 = 1 mean or median depending
on the test), the other shifted by the relative effect size (f12 = € 0poot, 02 = 2). Both have same
standard deviation ; = o9 = 1. Each result represents the percentage of true positive over 10.000
repetitions. In bold are results satisfying a true positive rate above 0.8.

Small relative effect size: € = 0.5

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.062 10.030 0.000 0.000 10.310 10314
3 10.084 10.058 0.000 0.152  10.244  10.138
5 [10.110 10.097 0.079 0.115 10.217 10.120
10 10.191 10.180 0.174 0.195 10.261 10.189
20 10342 10.333 0.329 0315 10385  10.330
30 10476 10477 0.454 0466 10.509 10479
40 10.602 10.585 0.574 0573 10.622  10.598
50 10.690 10.696 0.664 0.674 10.713  10.693
100 10.937 10.941 0.923 0.924 0945 0.938

Medium relative effect size: € = 1.0

N  ttest Welch Mann-Whit. r. t-test boot. permut.

2 10.112 10.053 0.000 0.000 [0:484 10476
3 10171 10.137 0.000 0284 10428 10.274
5 10303 10.253 0.228 0280 0466 10313
10 10.572 10.531 0513 0542  10.651 10.572
20 10.864 10.861 0.837 0.839 0.891 0.858
30 10.968 10.961 0.949 0955 0971 0.965

Large relative effect size: € = 2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.248 10.130 0.000 0.000 [0.783  10.787
3 10479 10371 0.000 0.655 10.808 10.621
5 10785 10.734 0.676 0.756 10915 10.800
10 10.988 10.983 0.973 0.979 0.994 0.987
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Table 6: Statistical power when comparing samples from two bimodal distribution with differ-
ent standard deviation. The first is centered in 0 (41 = 0, 7 = 1 mean or median depending on
the test), the other shifted by the relative effect size (112 = € opoor, 02 = 2). Both have same standard
deviation 01 = g9 = 1. Each result represents the percentage of true positive over 10.000 repetitions.
In bold are results satisfying a true positive rate above 0.8.

Small relative effect size: € = 0.5

N  ttest Welch Mann-Whit. r. t-test boot. permut.

2 10.115 10.067 0.000 0.000 10.283  10.280
3 10.117 10.088 0.000 0.132  10.206 10.126
5 10.092 10.080 0.044 0.071 10.205  10.088
10 10.168 10.159 0.094 0.112  10.241  10.163
20 10.312 10310 0.174 0.169 10370 10.318
30 10472 10.440 0.218 0225 10496 10455
40 10.587 10.587 0.266 0277 10.615 10.590
50 10.685 10.690 0.331 0.322  10.708  10.688
100 10.943 10.941 0.551 0548 10941 10.943

Medium relative effect size: ¢ = 1.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.164 10.096 0.000 0.000 10374  10.380
3 10.137 0.112 0.000 0.182  10:371  10.175
5 10229 10.188 0.121 0.197 10411 10.212
10 10.528 10.507 0.325 0.366 10.621 10.509
20 10.871 10.857 0.631 0.624 10.896 0.872
30 10972 10.974 0.797 0.805 0974 0971
40 10995 10.993 0.897 0.896 0.995 0.995
50 10.999 10.999 0.954 0954 0.999 0.999

Large relative effect size: € = 2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10267 10.162 0.000 0.000 [0.768 10.764
3 10,319 10.189 0.000 0.600 [0.770 10.571
5 10787 10.722 0.690 0.800 10.923 0.816
10 10.997 10.997 0.981 0.987 0.999 0.998
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Table 7: Statistical power when comparing samples from two log-normal distribution with
different standard deviation. The first is centered in 0 (11 = 0, o7 = 1 mean or median depending
on the test), the other shifted by the relative effect size (12 = € opoor, 02 = 2). Both have same
standard deviation 01 = o5 = 1. Each result represents the percentage of true positive over 10.000
repetitions. In bold are results satisfying a true positive rate above 0.8.

Small relative effect size: e=0.5

N  ttest Welch Mann-Whit. r. t-test boot. permut.
2 10.057 10.030 0.000 0.000 10408 10408
3 10.056 10.038 0.000 0.299 10.242 10.157
5 10.092 10.063 0.246 0342 10.199 10.145
10 10.185 10.168 0.588 0.612 10.233 10.249
20 10394 10.379 0.898 0.901 0:389 10445
30 10571 10.560 0.980 0983 10.549 10.607
40 10.693 10.693 0.997 0.997 0.674 0.732
50 10.802 0.800 0.999 0.999 0.781 0.816
100 10.980 10.978 1.000 1.000 0974 0.983

Small relative effect size: e=1.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.
2 10.147 10.072 0.000 0.000 [0.680 10.685
3 10264 10.181 0.000 0.631 [0.581 10474
5 10464 10401 0.604 0.707 10.637 10.567
10 10.749 10.728 0.956 0.966 0.787 0.801
20 10.951 10.945 1.000 1.000 0951 0.964

Small relative effect size: e=2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.
2 10419 10.230 0.000 0.000 [0.924 10.930
3 10722 10.596 0.000 0911 0.921 0.842
5 0904 0.868 0.910 0935 0959 0.944
10 10.989 10.986 0.999 1.000 0993 0.994
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8.3 Comparing different distributions with equal standard deviations.

Table 8: Statistical power when comparing samples from a normal distribution and a log-
normal distribution with equal standard deviation. The firstis centered in O (17 =0, 07 = 1 mean
or median depending on the test), the other shifted by the relative effect size (2 = € opoor, 02 = 1).
Each result represents the percentage of true positive over 10.000 repetitions. In bold are results
satisfying a true positive rate above 0.8.

Small relative effect size: ¢ = 0.5

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.040 10.016 0.000 0.000 10.270 10.267
3 10.047 10.032 0.000 0.181 10.187  10.099
5 10.076 10.062 0.125 0.189 10.164  10.088
10 10.155 10.145 0.330 0:357 10.211  10.169
20 10315 10.320 0.628 0.621 [0:352  10.335
30 10483 10.484 0.797 0.792 10.505  10.494
40 10.611 10.615 0.894 0.903 [0.620 10.619
50 10729 10.725 0.951 0953 0.731 0.725
100 10.958 10.959 0.999 0.999 0959 0.960

Medium relative effect size: € = 1.0

N  ttest Welch Mann-Whit. r. t-test boot. permut.

2 10.078 10.042 0.000 0.000 [0:477 10472
3 10.137 10.098 0.000 0.390 0411 10.263
5 10277 10.251 0.368 0.480 10457 10.307
10 10.600 10.584 0.785 0.805 [0.666 10.613
20 10912 10.910 0.981 0979 0924 0919

Large relative effect size: € = 2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.230 [0.113 0.000 0.000 0.856 10.841
3 10513 10392 0.000 0.838 0.864 10.709
5 10.863 10.815 0.872 0.927 0.946 0.880
10 10.997 10.997 0.999 0.999 0.999 0.999
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Table 9: Statistical power when comparing samples from a log-normal distribution and a bi-
modal distribution with equal standard deviation. The first is centered in 0 (u1 = 0, o1 = 1 mean
or median depending on the test), the other shifted by the relative effect size (uz = € opoor, 02 = 1).
Each result represents the percentage of true positive over 10.000 repetitions. In bold are results
satisfying a true positive rate above 0.8.

Small relative effect size: € = 0.5

N  ttest Welch Mann-Whit. r. t-test boot. permut.

2 10.100 10.055 0.000 0.000 01337  10.330
3 10.101 10.078 0.000 0.102  10.276 10.143
5 10.149 [0.121 0.045 0.063 10.262  10.137
10 10.239 10.228 0.074 0.084 10.318  10.238
20 10:390 104395 0.125 0.128 10447 10.381
30 10502 10.510 0.167 0.172  10.561  10.509
40 10.611 10.603 0.201 0213  10.641 10.604
50 10.691 10.686 0.250 0242 10.725 10.693
100 10.920 10.917 0.427 0429 10929 10.922

Medium relative effect size: ¢ = 1.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.161 10.085 0.000 0.000 0513  10.507
3 10.202 10.136 0.000 0221 10484 10.294
5 10:358 10316 0.161 0.225 10.534 10.351
10 10.601 10.606 0.374 0413  10.694 10.600
20 10.839 10.843 0.699 0.707 0.881  0.846
30 10.939 10.940 0.865 0.869 0.954 0.940
40 10.978 10.980 0.947 0.950 0.983  0.980

Large relative effect size: € = 2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10275 10.158 0.000 0.000 [0.808 0.809
3 10:539 10390 0.000 0.585 [0.819 10.647
5 10.804 0.781 0.613 0.719 10.898 10.792
10 10.955 10.953 0.956 0.962 0976 0.956
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Table 10: Statistical power when comparing samples from a normal distribution and a bimodal
distribution with equal standard deviation. The first is centered in 0 (47 = 0, o1 = 1 mean or
median depending on the test), the other shifted by the relative effect size (112 = € Opoor, 02 = 1).
Each result represents the percentage of true positive over 10.000 repetitions. In bold are results
satisfying a true positive rate above 0.8.

Small relative effect size: € = 0.5

N  ttest Welch Mann-Whit. r. t-test boot. permut.

2 10.061 10.031 0.000 0.000 10.287 10.282
3 10.070 10.051 0.000 0.112  10.217  10.102
5 10.104 10.089 0.061 0.101  10.200  10.093
10 10.175 10.173 0.141 0.160 10.246  10.173
20 101334 10.339 0.281 0283 10384 10.326
30 10466 10.472 0410 0411 0515 10474
40 10.596 10.590 0513 0519 10.607  10.582
50 10.695 10.683 0.614 0.611 [0.709 10.693
100 10.938 10.938 0.887 0.887 0.940 0.937

Medium relative effect size: ¢ = 1.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.107 10.051 0.000 0.000 10430 10425
3 10.145 10.099 0.000 0.230 10406 10.212
5 10261 10.244 0.180 0.266 10451 10.256
10 10.550 [0.545 0.463 0.502 10647 10.545
20 10.866 0.867 0.811 0.808 0.889 0.869
30 10.968 10.971 0.937 0934 0975 0.967

Large relative effect size: € = 2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.198 10.105 0.000 0.000 [0.763 10.768
3 10427 10323 0.000 0.596 10.797 10.569
5 10794 10.763 0.667 0.783 0914 0.783
10 10991 10.989 0.979 0.983 0.996 0.990
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8.4 Comparing different distributions with different standard deviations.

Table 11: Statistical power when comparing samples from a log-normal distribution
and a bimodal distribution with different standard deviation. The first is centered in 0
(u1 = 0, 01 = 1 mean or median depending on the test), the other shifted by the relative effect
size (fi2 = € Opool; 02 = 2). Each result represents the percentage of true positive over 10.000
repetitions. In bold are results satisfying a true positive rate above 0.8.

Small relative effect size: ¢ = 0.5

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.162 [0.111 0.000 0.000 10.257 10.248
3 10.105 10.097 0.000 0.115 10.256  10.109
5 [0.111 10.085 0.030 0.036  10.205 10.113
10 10.182 10.167 0.044 0.048 10.265 10.179
20 10339 10.324 0.045 0.047 10389  10.331
30 10470 10.475 0.051 0.051 [0.512 10477
40 10.588 10.592 0.059 0.056 10.620 10.595
50 10.698 10.691 0.057 0.064 [0.712 10.686
100 10.939 10.936 0.089 0.092 10.938 10.934

Medium relative effect size: € = 1.0

N t-test Welch Mann-Whit. r. t-test boot. permut.

2 10200 10.129 0.000 0.000 [0:387  10.388
3 10.126 10.110 0.000 0.155 10408  10.189
5 10.240 10.182 0.076 0.113 10439  10.227
10 10.541 10.521 0.160 0.181 [0.636  10.536
20 10.870 10.852 0.301 0.304 [0.886 0.857
30 10.964 10.962 0.424 0417 0969 0.960
40 10992 10.989 0.520 0526 10992 10.991
50 10.998 10.998 0.613 0.618 10.998 10.998
100 1.000 [1.000 0.883 0.885 1.000 1.000

Large relative effect size: € = 2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.294 10.209 0.000 0.000 10.830 0.837
3 103393 10.197 0.000 0.636 10.787  10.685
5 10.806 [0.739 0.705 0.802 0.918 0.845
10 10.984 10.984 0.985 0.988 0.991 0.985
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Table 12: Statistical power when comparing samples from a normal distribution and a bimodal
distribution with different standard deviation. The first is centered in 0 (41 = 0, 01 = 1 mean or
median depending on the test), the other shifted by the relative effect size (112 = € Opoor, 02 = 2).
Each result represents the percentage of true positive over 10.000 repetitions. In bold are results
satisfying a true positive rate above 0.8.

Small relative effect size: € = 0.5

N  ttest Welch Mann-Whit. r. t-test boot. permut.

2 10.130 10.075 0.000 0.000 10.270 10.263
3 10.109 10.089 0.000 0.128 10.219 10.115
5 10.096 10.080 0.038 0.061 10.200  10.100
10 10.165 10.157 0.084 0.097 10.245 10.164
20 10.324 10311 0.132 0.134 10374 10316
30 10460 10.466 0.172 0.180 10497 10.469
40 10.584 10.591 0.214 0209 0.616 10.594
50 10.699 10.693 0.244 0252 10.707 10.688
100 10.942 0.941 0.409 0408 10.942 10.940

Medium relative effect size: ¢ = 1.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.173 10.100 0.000 0.000 10:353 10356
3 10.131 [0.113 0.000 0.173 10384  10.166
5 10225 10.189 0.099 0.167 10414 10.209
10 10.526 10.508 0.267 0303 10.621 10518
20 10.881 0.862 0.529 0.524  0.891 0.867
30 10972 10.972 0.706 0.704 0974 0.970
40 10995 10.995 0.826 0.822 0.995 0.995
50 10.999 10.999 0.894 0.896 1.000 0.999
100 [1.000 1.000 0.996 0.994 1.000 1.000

Large relative effect size: € = 2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.265 10.160 0.000 0.000 [0.789  10.798
3 101341 10.200 0.000 0.648 10.771 10.624
5 10795 10.728 0.740 0.836 0.927 0.836
10 10.997 10.997 0.991 0.993 0999 0.997
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Table 13: Statistical power when comparing samples from a normal distribution and
a log-normal distribution with different standard deviation. The first is centered in 0
(#1 = 0, 01 = 1 mean or median depending on the test), the other shifted by the relative effect
size ((ia = € Opool, 02 = 2). Each result represents the percentage of true positive over 10.000
repetitions. In bold are results satisfying a true positive rate above 0.8.

Small relative effect size: € = 0.5

N  ttest Welch Mann-Whit. r. t-test boot. permut.

2 10.034 10.012 0.000 0.000 10.263  10.261
3 10.033 10.023 0.000 0277 10.163  10.090
5 10.053 10.043 0.233 0.325 10.139  10.081
10 10.135 10.128 0.581 0.618 [0.180 10.173
20 10:337 10314 0.899 0.901 01349 10394
30 10,532 10.537 0.980 0.975 10.508 10.586
40 10.699 10.690 0.996 0.996 [0.666 10.725
50 10.804 10.805 0.999 0999 0.772  0.823
100 10.986 0.986 1.000 1.000 0982 0.989

Medium relative effect size: ¢ = 1.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.088 10.039 0.000 0.000 [0.554 10558
3 10.151 [0.108 0.000 0.637 10474 10340
5 10:345 10301 0.671 0.781 10.560 10.447
10 10.748 10.722 0.977 0981 0.794 0.817
20 10977 10.973 1.000 1.000 0.966 0.989

Large relative effect size: € = 2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10323 10.161 0.000 0.000 [0.962 0.965
3 10700 [0.553 0.000 0985 0.944  0.887
5 0952 0917 0.992 0997 0977 0.992
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Table 14: Statistical power when comparing samples from empirical RL distribution
(192samples) from the SAC algorithm and the TD3 algorithm, both run in the Half-Cheetah
environment for 2M steps. The first is centered in 0 (3 = 0, 01=1313 mean or median depending
on the test), the other shifted by the relative effect size (12 = € opoor, 02=1508). Each result rep-
resents the percentage of true positive over 10.000 repetitions. In bold are results satisfying a true
positive rate above 0.8.

Small relative effect size: € = 0.5

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10.113 10.052 0.000 0.000 10427 10431
3 10.157 10.133 0.000 0216 10330 10.258
5 10.181 10.162 0.119 0.154 10.287 10.208
10 10.248 10.230 0.263 0.293 10.307 10.257
20 10.380 10.374 0.486 0489 10417  10.400
30 10.504 10.506 0.655 0.665 10.529 10.523
40 10.629 10.621 0.776 0.776  10.647 10.637
50 0716 10.722 0.858 0.861 0.735 0.722
100 [0.951 10.951 0.990 0.988 0.953 0.950

Medium relative effect size: € = 1.0

N t-test Welch Mann-Whit. 1. t-test boot. permut.

2 10210 10.106 0.000 0.000 [0.588 10.591
3 10296 10.248 0.000 0.380 10.534  10.424
5 10403 10360 0.265 0339 10.565 10.424
10 10.622 10.592 0.591 0.618 [0.705 10.640
20 10.883 10.876 0.887 0.888 0.901 0.884
30 10.970 10.968 0.973 0973 0976 0.972

Large relative effect size: € = 2.0

N  ttest Welch Mann-Whit. 1. t-test boot. permut.

2 10411 10.227 0.000 0.000 [0.833 10.837
3 10.588 10.474 0.000 0.697 10.839 10.737
5 10803 0.751 0.648 0.708 10.910 10.823
10 10.983 10.979 0.960 0.967 0.991 0.981

8.5 Comparison of two empirical distributions with unequal variance, SAC and TD3

Table 15: Statistical power when comparing SAC and TD3 with relative effect sizes ¢ = 0.80 for
median tests (Mann-Whitney, Ranked t-test), e = 0.93 for other tests. The true relative effect sizes
are estimated using 192 samples of each distribution.

N ttest Welch Mann-Whit. r. t-test boot. permut.
2 0.000 0.000 0.113 0.059 10.604 10.596
3 0.000 0410 0.196 0.125 10.500 10380
5 103379 10475 0.388 0.304 10.570 10475
7 10571 10.629 0.522 0482 10.632 10575
10 10.767 10.793 0.664 0.638 10.705 10.670
15 0927 0.933 0.780 0.778 10.809 10.782
20 10.981 10.983 0.837 0.842 0.862 10.835
30 10.999 10.999 0.892 0.891 0.930 0.907
40 1.000 1.000 0.950 0.951 0.966 0.953
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