
Under review as a conference paper at ICLR 2020

IMPROVING BATCH NORMALIZATION WITH SKEW-
NESS REDUCTION FOR DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Batch Normalization (BN) is a well-known technique used in training deep neural
networks. The main idea behind batch normalization is to normalize the features
of the layers (i.e., transforming them to have a mean equal to zero and a variance
equal to one). Such a procedure encourages the optimization landscape of the
loss function to be smoother, and improve the learning of the networks for both
speed and performance. In this paper, we demonstrate that the performance of
the network can be improved, if the distributions of the features of the output in
the same layer are similar. As normalizing based on mean and variance does not
necessarily make the features to have the same distribution, we propose a new
normalization scheme: Batch Normalization with Skewness Reduction (BNSR).
Comparing with other normalization approaches, BNSR transforms not just only
the mean and variance, but also the skewness of the data. By tackling this property
of a distribution, we are able to make the output distributions of the layers to be
further similar. The nonlinearity of BNSR may further improve the expressiveness
of the underlying network. Comparisons with other normalization schemes are
tested on the CIFAR-100 and ImageNet datasets. Experimental results show that
the proposed approach can outperform other state-of-the-arts that are not equipped
with BNSR.

1 INTRODUCTION

In recent years, deep neural networks have been applied to many visual computing tasks, such as
image recognition (Krizhevsky et al., 2012; Huang et al., 2017), image super-resolution (Tong et al.,
2017), video-based activity recognition (Feichtenhofer et al., 2016), etc.(Ronneberger et al., 2015;
Feichtenhofer et al., 2018), achieving promising results. These models are usually trained with
stochastic gradient descent or its variants. State-of-the-art neural networks often have many layers,
which means they have a lot of parameters to learn, leading to practical issues including long training
time and high risk of overfitting. To facilitate learning with gradient descent, Batch Normalization
(BN) was proposed in (Ioffe & Szegedy, 2015), which has been found very effective in deep learning.
A BN layer normalizes the batch input to zero mean and unit variance. (In practice, a BN layer
learns a mapping that does not necessarily maintain the “zero mean, unit variance” property for the
outputs. But that level of detail will not affect the validity of the discussion here.) This has been
shown to improve the speed of convergence in training deep neural networks as well as improving
the performance (He et al., 2016), and hence BN has become one common component of many
popular deep networks.

We have discovered that, making the distributions of the features in the same layer more similar
would make the network performs better. However, the standard BN procedure only normalizes
the features to ensure that they have the same mean and variance. This does not necessarily make
the distributions of the features in the same layer to become similar. For example, an exponential
distribution can also have zero mean and unit variance. In other words, the standard BN, while
performing normalization with respect to the mean and the variance, will not ensure the features
of different layers to have similar distributions. Note that, the mean and the variance are only
the first-order and second-order moments, respectively, for a distribution. To further encourage
the distributions to become closer, we propose to introduce an extra dimension of normalization by
mapping the data to ensure they have similar skewness. Skewness is a measure of the asymmetry of a

1

Under review as a conference paper at ICLR 2020

Figure 1: (Left) The figure shows two probability distributions, both with zero means and unit
variances. Although they have the same mean and variance, it is obvious that they are not similar;
(Right) An illustration of how ϕp reduce the skewness. The original data X (blue) is mapped to the
new data Y (orange), and the skewness is reduced.

distribution, and we hypothesize that including this measure will provide a much stronger constraint
towards making these distributions become similar.

From another point of view, modifying skewness requires nonlinear operations. Recent research
(Pascanu et al., 2013b; Montufar et al., 2014) has shown that deep neural networks are more ex-
pressive while stacking up the nonlinear activation with more layers. The nonlinearity introduced
for modifying skewness may further contribute to improving the network’s capacity in approaching
any desired input-output mapping (which is typically highly nonlinear), and thus making network
learning more flexible.

In this paper, we present a novel approach for improving BN with skewness reduction (BNSR) for
training deep neural networks. We notice that, during training, our approach can make the feature
distributions to be similar with fewer epochs. Also, we demonstrate that, it is more effective while
applying BNSR on the layer with more dissimilar distributions of the features. We further com-
pare our proposed method with other normalization schemes, including Batch Normlization (BN),
Layer Normlization (LN) and Instance Normlization (IN) on CIFAR-100 and ImageNet datasets.
Experimental results show that BNSR outperforms all of them. Our contributions are summarized
as follows:

• We propose a new batch normalization scheme. To our best knowledge, this is the first
work to consider skewness for normalization.

• The scheme introduces a nonlinear function, which not only decreases the skewness of the
feature distributions, but also increases the flexibility of the network.

• We demonstrate that our approach outperforms other normalization approach on visual
recognition tasks.

2 RELATED WORK

In this section, we first give a review for the related works on normalization, followed by a brief
description of the recent understanding to BN.

2.1 NORMALIZATION

To shorten the training stage, researchers normalize the input data (LeCun et al., 2012). Alterna-
tively, some initialization methods (LeCun et al., 2012; Glorot & Bengio, 2010; Wiesler & Ney,
2011) are proposed. However, such methods have their limitations as they were proposed based on
strong assumptions of the feature distributions.

2

Under review as a conference paper at ICLR 2020

Algorithm 1: Training stage of BNSR, applied to features x over a mini-batch
Input : Values of x over a mini-batch: B = {x1...m };
Parameters: Parameters to be learned: γ, β
Output : yi = BNγ,β(xi)

1 µB ← 1
m

∑m
i=1 xi

2 σB
2 ← 1

m

∑m
i=1(xi − µB)2

3 x̂i ← ϕp(x̂i)
4 yi ← γx̂i + β ≡ BNSRγ,β(xi)

Algorithm 2: Testing stage of BNSR, applied to features x over a mini-batch
Input : Values of x over a mini-batch: B = {x1...m };
Output : yi = BNγ,β(xi)

1 Calculate the population µ, σ by unbias estimation or exponential moving average
2 for i = 1 . . .m do
3 x̂i ← xi−µ√

σ2+ε

4 x̂i ← ϕp(x̂i)
5 end
6 yi = γx̂i + β

Before the proposal of BN, normalization layers like Local Response Normalization (LRN) (Lyu
& Simoncelli, 2008; Jarrett et al., 2009; Krizhevsky et al., 2012), which computes the statistics of
the local neighborhood for each pixel, was usually used in deep neural networks (Krizhevsky et al.,
2012). Unlike LRN, Batch Normalization (Ioffe & Szegedy, 2015) normalizes the features along
the batch axis, which makes the normalization more global. Besides, BN also allows higher learning
rates. While large learning rates increase the scale of the weights of the network, back propagation
with BN is unaffected by the scale of its weights. Also, for a given training sample, a neural network
with BN does not always provide a fixed value, making BN serve as a regularization of the network.
Another modification that BN made is the introduction of a pair of parameters β and γ, which shift
and scale the normalized features. These processes allow the BN layer to represent identity mapping,
and increase the flexibility of the network. Since placing a ReLU layer after the BN is common, to
avoid half of the neurons to be mapped to zero, it is also beneficial to do this transformation between
the normalization and activation.

Meanwhile, it is worth mentioning that, in the inference stage, BN does not exactly normalize the
input: the mean and variance it used are pre-computed from the training set, such that if only one
sample is sent to the network (the mini-batch contains only one sample, and thus the mean is the
feature itself and variance equals to zero), the BN layers can still functioning correctly.

Many normalization methods (Ba et al., 2016; Ulyanov et al., 2016; Salimans & Kingma, 2016; Luo
et al., 2018; Wu & He, 2018) were proposed after BN. Layer Normalization (LN) (Ba et al., 2016)
performs the normalization over all the hidden units in the same layer; Instance Normalization (IN)
(Ulyanov et al., 2016) proposes to normalize each sample; Weight Normalization (WN) (Salimans
& Kingma, 2016), instead of normalizing the input of the layers, operates the normalization on the
filter weights; Group Normalization (GN) (Wu & He, 2018) divides channels into groups, and com-
putes the normalization statistics of the features within each group. Comparing to BN, although
these methods have their strength, they in general do not outperform BN in many visual classifica-
tion/recognition problems. In addition, ELU (Clevert et al., 2015), PoLU (Li et al., 2018) and SELU
(Klambauer et al., 2017) were proposed as new nonlinear activation functions, which have negative
saturation < 1, and use this property to push the mean of the output closer to zero. Computing
these activations are with lower computational complexity, and can be served as an alternative to the
feature normalization.

3

Under review as a conference paper at ICLR 2020

Table 1: Comparison of error rates (%) of BNSR, BN, BN with noisy mean and variance, BN with
noisy skewness on CIFAR-100. The training loss and error rate curves are in Fig. 2

BNSR BN Noise(µ, σ) Noise(ρ)
error 30.61 31.35 33.52 32.1

Figure 2: Comparison of performance among (1) BNSR; (2) BN; (3) BN with noisy mean and
variance; (3) BN with noisy skewness on CIFAR-100. We show (a) the training loss; (b) the testing
error v.s. numbers of training epochs. The model is VGG-19.

2.2 RECENT RESEARCH ON BN

It has been shown that (LeCun et al., 2012; Wiesler & Ney, 2011), in the training stage, if the features
are whitened (the inputs have zero means, unit variances, and decorrelated) the training process can
be speeded up. However, adding the whitening process for each layer is costly. To overcome this,
Batch Normalization, which linear-transforms the features to have zero means and unit variances,
was proposed to normalize the features.

It was believed that, the benefits of doing BN supposedly come from the reduction of the internal
covariate shift effect (Ioffe & Szegedy, 2015), which is defined as the change in the distribution of
the features of the layers (Ioffe & Szegedy, 2015), due to the variation of the network parameters
during learning. By reducing the internal covariate shift, training can be improved. However, a
recent paper (Santurkar et al., 2018) demonstrated that, the internal covariate shift effect has little
to do with the effectiveness of BN. They further point out that, by both experiments and theoretical
analysis, the success of BN comes from smoothness of the loss surface.

In this paper, we demonstrate that the distributions of the features in the same layer affect the per-
formance of the network. The network is improved while these distributions are more similar. Nev-
ertheless, as illustrated in Fig. 1a, we cannot conclude that two distributions are similar if they have
the same mean and variance. Therefore, we would like to develop a new normalization scheme such
that the distributions have a higher chance to become closer after normalization.

For our proposed approach, Batch Normalization with Skewness Reduction (BNSR), we adopt the
advantages of original BN mentioned above. First, the features are normalized to the same mean
and variance to make the loss surface smoother. Second, BNSR adopts the re-scaling parameter γ
and the re-centering parameter β such that the network has greater flexibility. We further impose a
novel step - Skewness Reduction into normalization, to encourage the distributions of the features
in the same layer to become further closer. More details are to be presented in the next section.

3 IMPROVING BATCH NORMALIZATION WITH SKEWNESS REDUCTION

In this section, we first review the core transformations of the original BN, and then introduce our
proposed approach. The basic formulation of feature normalization is based on the the following
computation:

x̂ =
x− µ
σ

(1)

4

Under review as a conference paper at ICLR 2020

Table 2: Comparison of error rates (%) of BNSR, BN, LN, IN on CIFAR-100. The training loss and
error rate curves are in Fig. 3

BNSR BN LN IN
error 23.49 25.51 39.78 28.72

Figure 3: Comparison of performance among (1) Batch Normalization with Skewness Reduction
(BNSR); (2) Batch Normalization (BN); (3) Layer Normalization (LN); (4) Instance Normalization
(IN); on CIFAR-100. We show (a) the training loss; (b) the testing error v.s. numbers of training
epochs. The model is ResNet-50.

where x is the feature. µ and σ in are the mean and standard deviation, which can be computed by:

µ =
1

m

∑
i

xi (2)

σ =

√
1

m

∑
i

(xi − µ)2 + ε (3)

where xi is the ith element of x, ε is a small constant. The second transformation involved in BN is
the scaling and shifting.

y = γx̂+ β (4)
where the γ and β are the re-scaling and re-centering parameters respectively, both being learnable.

To encourage the distributions of the features to be further similar, we propose BNSR, which adds a
nonlinear function between the two parts of original BN: the feature normalization in Eq.1 and the
scaling and shifting part Eq.4. We first start by giving the definitions.
Definition 1. The skewness of a random variable X can be defined as:

ρ =
3(mean−median)

std
(5)

The above definition is also known as the Pearson’s second skewness coefficient (median skewness).
In this paper, the skewness of a distribution means the skewness of the random variable that generates
this distribution. Also, the concept ”Skewness Reduction” points to the decrease of |ρ|, not ρ itself.
The target we want to achieve is to encourage all the ρ to have a small magnitude.

For a distribution with negative skewness, which is also said to be left-skewed, the left tail is longer,
and the mass of the distribution is more concentrated on the right. In contrast, a distribution with
positive skewness has its mass concentrated on its left. There is no linear transformation that can
reduce the skewness of a distribution. Therefore, we propose a nonlinear function to help reducing
the skewness. The function is defined as follows:
Definition 2. Let ϕp : R→ R be a function, the skewness correction function are defined as follows:

ϕp(x) =

{
xp if x ≥ 0

−(−x)p if x < 0
(6)

5

Under review as a conference paper at ICLR 2020

where p > 1.

For a skewed random variable X with zero mean and unit variance, there is a high probability that
the main portion of the data lies in the interval (-1, 1). Applying ϕp on X pushes the data in (-1, 1)
closer to zero, and make the distribution to be more symmetric, which leads to having less skewness.

As a result, after applying the step of feature normalization, we operate the step of skewness reduc-
tion, which can be described as:

x̂← ϕp(x̂) (7)

Although applying this function always leads to non-zero means and non-unit variances, these os-
cillations are still acceptably small if we choose a small p, and conceptually can be absorbed by the
linear transformation right after this step. Another advantage of using these functions is due to the
flexibility of the network. Since ϕp is nonlinear, the complexity of functions that are computable by
the neural network will be increased. Fig. ??b illustrates how ϕp reduce the skewness.

3.1 HYPERPARAMETERS

To implement BNSR, an extra hyperparameter p is required to be determined. In order to make
the distributions to become similar, we should choose a small p. Choosing a large p may make the
neural network suffer for two reasons. First, ϕp is a contraction mapping when the input is smaller
than 1. When p is large, ϕp is ”over-contracted”. For example, while p = 2, ϕp maps 0.1 and 0.2 to
0.01 and 0.04 respectively. This may make two different features harder to be distinguished by the
network, and leads to the degradation of performance. Second, large p also makes the means and
variances away from 0 and 1 respectively. Although the skewness reduction step always change the
means and the variances, we want these changes to be small and can be absorbed by the re-scaling
and re-centering parameters. Due to the above reasons, we want p to be small. The default value of
p is set to 1.01.

3.2 TRAINING AND TESTING WITH BNSR

In the training stage, we need to backpropagate the gradient of loss through the BNSR transforma-
tion. It has been proved in (Ioffe & Szegedy, 2015) that, every operation in the BN transformation
is differentiable. Since the step of skewness reduction is also differentiable, we can ensure that the
network can learn continuously during the training stage. As a result, any network employing BNSR
can be trained using stochastic gradient descent, or its variants. During inference, like the traditional
BN, the mean and variance can be obtained by using either unbiased estimation, or exponential
moving average. To be precise, we present the algorithm in Alg. 1 and 2.

4 EXPERIMENTS

In this section, we first analyze how the similarity of the feature distributions impact the perfor-
mance of the neural network, by using VGG-19 (Simonyan & Zisserman, 2014) network to evaluate
different settings of normalization on CIFAR-100 (Krizhevsky & Hinton, 2009). After that, we in-
vestigate the histogram for the features from different layers. We also use BNSR for only 33% of
the total number of normalization layers (that is, for all the normalization layers, we use BNSR for
33% of them, and original BN for 66% of them), and analyze where BNSR is more effective.

We then evaluate BNSR with BN, LN, IN on CIFAR-100 (Krizhevsky & Hinton, 2009), and with
BN on Tiny ImageNet (Russakovsky et al., 2015). All the plots and tables we present are based on
five trails, we choose the median of the final accuracy. Compared with other normalization schemes,
BNSR present the best performance on these two datasets. All experiments are implemented using
Pytorch 1.0.1 (Paszke et al., 2017) with Python 3.6, on a machine with Ubuntu 18.04, Intel CPU
E5-2603, and a single nVidia GTX 1080 GPU with cuda 9.0.

4.1 CIFAR-100 DATASET

The CIFAR-100 dataset contains 60,000 color images with size 32 × 32, which contains 50,000
training and 10,000 testing samples. We use ResNet-50 to evaluate our proposed approach on this

6

Under review as a conference paper at ICLR 2020

Table 3: Comparison of error rates (%) of BN and BNSR on ImageNet dataset. The training loss
and error rate curves are in Fig. 4

BNSR BN
error 38.32 39.54

Figure 4: Comparison of performance between BNSR and BN on Tiny ImageNet dataset. We show
(a) the training loss; (b) the testing error v.s. numbers of training epochs. The model is ResNet-50.

dataset. The network is trained for 100 epochs using stochastic gradient descent, with momentum
equals to 0.9, and batch size equals to 50. The initial learning rate is set to 0.1, and decayed by
a factor of 10 at the 41th and 71th epoch. During training, the images are first cropped with size
equals to 32×32 at random location with padding equals to 4, followed by a random horizontal flip.

Impact of the similarity of the feature distributions: We hypothesize that, the more similar the
distributions of the features in the same layer, the better the network. So, we analyze the importance
of the similarity of the distributions which are in the same layer. We insert different mappings into
the BN layers (right before the re-centering and re-scaling mapping), by using the following settings:

• x← x (identity mapping)
• x← ax+ b where a, b ∼ Nm(0, 0.5)

• x← ϕp(x) where p ∼ Unifm(1, 1.05)

• x← ϕp(x) where p = 1.01

The first and the forth setting represent the conventional BN and BNSR respectively, while for the
second and third setting add some noise to the features such that they follow dissimilar distributions.
To be precise, for a layer withm channels of output, a, b and p arem-dimensional vectors, following
the normal distribution and uniform distribution respectively.

We analyze the performance of VGG-19 (Simonyan & Zisserman, 2014) on CIFAR-100. Fig. 2 and
Tab. 1 show the training loss/error curves, and the final results respectively. The results suggest that,
the network performs better if their distributions of the features in the same layer are more similar.

Comparison of other normalization methods: We experiment BNSR with other feature normal-
ization methods, including BN, LN and IN, on a ResNet-50 model. Fig. 3 shows the training loss
and the error curves, and Tab. 2 shows the final results. We can see that BNSR outperforms original
BN by about 2%. This is an encouraging result, as for the recent research on activation function,
the improvement for using the same network with an improved activation function is still < 1%
(Ramachandran et al., 2018).

Features in the earlier layers: If our hypothesis of the impact of the similarity of the feature
distributions is true, applying BNSR may not be that useful to the layer which already has similar
feature distributions. For this reason, we investigate the distributions of the features (the output
of Eq. 1). Features from different layers are collected. We discovered that, after some epochs
of training using BN, the distributions from the later layers become similar with a faster speed,

7

Under review as a conference paper at ICLR 2020

comparing to these from the earlier layers. We conjecture that encouraging the features which
have more dissimilar distributions (the ones in earlier layers) to be similar may leads to greater
improvement of the quality of learning, and we experiment on ResNet-50 by using BNSR on only
1/3 of the normalization layers, by three different settings:

• BNSR is used for all layers uniformly;

• BNSR is used only for the earlier layers;

• BNSR is used only for the later layers;

The settings with BNSR located at the earlier layers has gained greater improvement, which sug-
gests our hypothesis is rational. We can also observe that after adding skewness reduction step,
the distribution become similar in a faster rate. The results of the experiments are provided in the
appendix.

4.2 TINY IMAGENET DATASET

We experiment our BNSR in the Tiny ImageNet dataset, which is a subset of ImageNet classification
dataset (Russakovsky et al., 2015). The original dataset contains more than 1.2 million training
samples belonging to 1000 classes, while the Tiny dataset has 200 classes, each class contains 500
training images, 50 validation images, and 50 test images. We test on the 50 × 200 = 10000
validation images, using the ResNet-50 model (He et al., 2016). The network is trained for 60
epochs using stochastic gradient descent, with momentum equals to 0.9, and batch size equals to 50.
The initial learning rate is 0.1, and decayed by a factor of 10 for 31th, 46th epoch. In the training
stage, the images are first normalized, and are cropped with size equals to 64 × 64 with padding
equals to 4, followed by a random horizontal flip with probability equals to 0.5. For the testing
images, only normalization are performed. Fig. 4 shows the learning situation of BN v.s. BNSR,
The testing error is can be found in Tab. 3.

5 TIME COMPLEXITY OF BNSR

Due to the computation for the Skewness Reduction steps, the time used for training a network
with BNSR is greater than the one with regular BN. In terms of wall clock time, BNSR requires
113s v.s. BN with 86s for 1 epoch on CIFAR-100 using ResNet-50. However, the difference is
still not significant for inference as the time complexity for the extra step is equals to O(n). Also,
in the previous section we have already discussed that, using fewer numbers of BNSR layers for
the normalization has already provided a great improvement for the accuracy. So we can use fewer
BNSR layers to shorten the training time.

6 CONCLUSION AND FUTURE WORKS

We proposed an normalization scheme - Batch Normalization with Skewness Reduction (BNSR) -
for faster and improved learning in deep neural networks. Besides adopting the advantages from
using regular BN, BNSR uses a nonlinear function to modify the skewness after the features are
normalized to have zero means and unit variances. Different from other normalization approaches,
like Layer Normalization (LN), Weight Normalization (WN), Instance Normalization (IN), in BNSR
attention is still on how to normalize the data in the batch dimension. Comparing to traditional BN,
BNSR considers not just the mean and variance, but also the skewness. This was motivated by the
observation that, two distributions having their mean and variance equal does not imply they are
similar. By reducing the skewness, the features are encouraged to have more similar distributions.
Also, as the function for reducing the skewness is nonlinear, applying it on the feature also make the
network to become more expressive. Experimental results also show that BNSR outperforms other
state-of-the-art normalization approaches,

We have not explored all the possibilities of BNSR. Our future work includes applying the Skew-
ness Reduction concept to the normalization in Recurrent Neural Networks (RNN) (Pascanu et al.,
2013a), as the internal covariate shift may serve differently from traditional CNN.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream network
fusion for video action recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1933–1941, 2016.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. arXiv preprint arXiv:1812.03982, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. What is the best multi-stage architecture
for object recognition? In Computer Vision, 2009 IEEE 12th International Conference on, pp.
2146–2153. IEEE, 2009.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in Neural Information Processing Systems, pp. 971–980, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–48. Springer, 2012.

Yikang Li, Pak Lun Kevin Ding, and Baoxin Li. Training neural networks by using power linear
units (polus). arXiv preprint arXiv:1802.00212, 2018.

Chunjie Luo, Jianfeng Zhan, Xiaohe Xue, Lei Wang, Rui Ren, and Qiang Yang. Cosine normaliza-
tion: Using cosine similarity instead of dot product in neural networks. In International Confer-
ence on Artificial Neural Networks, pp. 382–391. Springer, 2018.

Siwei Lyu and Eero P Simoncelli. Nonlinear image representation using divisive normalization.
In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1–8.
IEEE, 2008.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Advances in neural information processing systems, pp.
2924–2932, 2014.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning, pp. 1310–1318, 2013a.

9

Under review as a conference paper at ICLR 2020

Razvan Pascanu, Guido Montúfar, and Yoshua Bengio. On the number of inference regions of deep
feed forward networks with piece-wise linear activations. CoRR, abs/1312.6098, 2013b. URL
http://arxiv.org/abs/1312.6098.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. 2018.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accel-
erate training of deep neural networks. In Advances in Neural Information Processing Systems,
pp. 901–909, 2016.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch nor-
malization help optimization? In Advances in Neural Information Processing Systems, pp. 2488–
2498, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Tong Tong, Gen Li, Xiejie Liu, and Qinquan Gao. Image super-resolution using dense skip con-
nections. In Computer Vision (ICCV), 2017 IEEE International Conference on, pp. 4809–4817.
IEEE, 2017.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The missing
ingredient for fast stylization. CoRR, abs/1607.08022, 2016. URL http://arxiv.org/
abs/1607.08022.

Simon Wiesler and Hermann Ney. A convergence analysis of log-linear training. In Advances in
Neural Information Processing Systems, pp. 657–665, 2011.

Yuxin Wu and Kaiming He. Group normalization. arXiv preprint arXiv:1803.08494, 2018.

A APPENDIX

We provide the experimental result mentioned in Sec. 4: ”Features in the earlier layers” here. Fig.
6 shows the distributions of the features from both earlier and later layers. Fig. 5 shows the plots of
training loss and testing error, and Tab. 4 presents the final error. Fig. 7 shows the histogram where
BNSR is used.

Table 4: Comparison of error rates (%) of BNSR under different percentage of usage on CIFAR-100.
The training loss and testing error plots can be found in Fig. 5.

100% 33%(uni) 33%(early) 33%(late)
error 23.49 23.40 23.74 25.20

10

http://arxiv.org/abs/1312.6098
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022

Under review as a conference paper at ICLR 2020

Figure 5: Comparison of performance of BNSR under different percentage of usage on CIFAR-100.
(1) BNSR are used for all the normalization layers; (2) BNSR are used for 1/3 of the normalization
layers uniformly; (3) BNSR are used for 1/3 of the normalization layers (earlier layers); (4) BNSR
are used for 1/3 of the normalization layers (late layers). We show (a) the training loss; (b) the
testing error v.s. numbers of training epochs. The model is ResNet-50.

Figure 6: The histograms of the features in BN layers. (a)-(c) show the histograms of two features
in the same layer (earlier part) at epoch = 1, 5, 15; (d)-(f) show the histograms of two features in the
same layer (later part) at epoch = 1, 5, 15.

11

Under review as a conference paper at ICLR 2020

Figure 7: The histograms of the features in BNSR layers. (a)-(c) show the histograms of two
features in the same layer (earlier part) at epoch = 1, 5, 15; (d)-(f) show the histograms of two
features in the same layer (later part) at epoch = 1, 5, 15.

12

	Introduction
	Related work
	Normalization
	Recent Research on BN

	Improving Batch Normalization with Skewness Reduction
	Hyperparameters
	Training and Testing with BNSR

	Experiments
	CIFAR-100 dataset
	Tiny ImageNet dataset

	Time Complexity of BNSR
	Conclusion and Future Works
	Appendix

