
Published as a conference paper at ICLR 2020

IMPROVED MEMORY IN RECURRENT NEURAL NET-
WORKS WITH SEQUENTIAL NON-NORMAL DYNAMICS

A. Emin Orhan1 and Xaq Pitkow2,3

1New York University (eo41@nyu.edu), 2Rice University, 3Baylor College of Medicine

ABSTRACT

Training recurrent neural networks (RNNs) is a hard problem due to degeneracies in
the optimization landscape, a problem also known as vanishing/exploding gradients.
Short of designing new RNN architectures, previous methods for dealing with this
problem usually boil down to orthogonalization of the recurrent dynamics, either
at initialization or during the entire training period. The basic motivation behind
these methods is that orthogonal transformations are isometries of the Euclidean
space, hence they preserve (Euclidean) norms and effectively deal with vanish-
ing/exploding gradients. However, this ignores the crucial effects of non-linearity
and noise. In the presence of a non-linearity, orthogonal transformations no longer
preserve norms, suggesting that alternative transformations might be better suited
to non-linear networks. Moreover, in the presence of noise, norm preservation itself
ceases to be the ideal objective. A more sensible objective is maximizing the signal-
to-noise ratio (SNR) of the propagated signal instead. Previous work has shown
that in the linear case, recurrent networks that maximize the SNR display strongly
non-normal, sequential dynamics and orthogonal networks are highly suboptimal
by this measure. Motivated by this finding, here we investigate the potential of
non-normal RNNs, i.e. RNNs with a non-normal recurrent connectivity matrix, in
sequential processing tasks. Our experimental results show that non-normal RNNs
outperform their orthogonal counterparts in a diverse range of benchmarks. We
also find evidence for increased non-normality and hidden chain-like feedforward
motifs in trained RNNs initialized with orthogonal recurrent connectivity matrices.

1 INTRODUCTION

Modeling long-term dependencies with recurrent neural networks (RNNs) is a hard problem due
to degeneracies inherent in the optimization landscapes of these models, a problem also known as
the vanishing/exploding gradients problem (Hochreiter, 1991; Bengio et al., 1994). One approach
to addressing this problem has been designing new RNN architectures that are less prone to such
difficulties, hence are better able to capture long-term dependencies in sequential data (Hochreiter &
Schmidhuber, 1997; Cho et al., 2014; Chang et al., 2017; Bai et al., 2018). An alternative approach is
to stick with the basic vanilla RNN architecture instead, but to constrain its dynamics in some way so
as to eliminate or reduce the degeneracies that otherwise afflict the optimization landscape. Previous
proposals belonging to this second category generally boil down to orthogonalization of the recurrent
dynamics, either at initialization or during the entire training period (Le et al., 2015; Arjovsky et al.,
2016; Wisdom et al., 2016). The basic idea behind these methods is that orthogonal transformations
are isometries of the Euclidean space, hence they preserve distances and norms, which enables them
to deal effectively with the vanishing/exploding gradients problem.

However, this idea ignores the crucial effects of non-linearity and noise. Orthogonal transformations
no longer preserve distances and norms in the presence of a non-linearity, suggesting that alternative
transformations might be better suited to non-linear networks (this point was noted by Pennington et al.
(2017) and Chen et al. (2018) before, where isometric initializations that take the non-linearity into
account were proposed). Similarly, in the presence of noise, norm preservation itself ceases to be the
ideal objective. One must instead maximize the signal-to-noise ratio (SNR) of the propagated signal. In
neural networks, noise comes in both through the stochasticity of the stochastic gradient descent
(SGD) algorithm and sometimes also through direct noise injection for regularization purposes, as

1

Published as a conference paper at ICLR 2020

in dropout (Srivastava et al., 2014). Previous work has shown that even in a simple linear setting,
recurrent networks that maximize the SNR display strongly non-normal, sequential dynamics and
orthogonal networks are highly suboptimal by this measure (Ganguli et al., 2008).

Motivated by these observations, in this paper, we investigate the potential of non-normal RNNs,
i.e. RNNs with a non-normal recurrent connectivity matrix, in sequential processing tasks. Recall
that a normal matrix is a matrix with an orthonormal set of eigenvectors, whereas a non-normal
matrix does not have an orthonormal set of eigenvectors. This property allows non-normal systems to
display interesting transient behaviors that are not available in normal systems. This kind of transient
behavior, specifically a particular kind of transient amplification of the signal in certain non-normal
systems, underlies their superior memory properties (Ganguli et al., 2008), as will be discussed
further below. Our empirical results show that non-normal vanilla RNNs significantly outperform
their orthogonal counterparts in a diverse range of benchmarks.1

2 BACKGROUND

2.1 MEMORY IN LINEAR RECURRENT NETWORKS WITH NOISE

Ganguli et al. (2008) studied memory properties of linear recurrent networks injected with a scalar
temporal signal st, and noise zt:

ht = Wht−1 + vst + zt (1)
The noise is assumed to be i.i.d. with zt ∼ N (0, I). Ganguli et al. (2008) then analyzed the Fisher
memory matrix (FMM) of this system, defined as:

Jkl(s≤t) =

〈
− ∂2

∂st−k∂st−l
log p(ht|s≤t)

〉
p(ht|s≤t)

(2)

For linear networks with Gaussian noise, it is easy to show that Jkl(s≤t) is, in fact, independent of
the past signal history s≤t. Ganguli et al. (2008) specifically analyzed the diagonal of the FMM:
J(k) ≡ Jkk, which can be written explicitly as:

J(k) = v>Wk>C−1Wkv (3)
where C =

∑∞
k=0 W

kWk> is the noise covariance matrix, and the norm of Wkv can be roughly
thought of as representing the signal strength. The total Fisher memory is the sum of J(k) over all
past time steps k:

Jtot =

∞∑
k=0

J(k) (4)

Intuitively, J(k) measures the information contained in the current state of the system, ht, about a
signal that entered the system k time steps ago, st−k. Jtot is then a measure of the total information
contained in the current state of the system about the entire past signal history, s≤t.

The main result in Ganguli et al. (2008) shows that Jtot = 1 for all normal matrices W (including all
orthogonal matrices), whereas in general Jtot ≤ N , where N is the network size. Remarkably, the
memory upper bound can be achieved by certain highly non-normal systems and several examples
are explicitly given in Ganguli et al. (2008). Two of those examples are illustrated in Figure 1a (right):
a uni-directional “chain” network and a chain network with feedback. In the chain network, the
recurrent connectivity is given by Wij = αδj,i−1 and in the chain with feedback network, it is given
by Wij = αδj,i−1 + βδj,i+1, where α and β are the feedforward and feedback connection weights,
respectively (here δ denotes the Kronecker delta function). In addition, in order to achieve optimal
memory, the signal must be fed at the source neuron in these networks, i.e. v = [1, 0, 0, . . . , 0]>.

Figure 1b compares the Fisher memory curves, J(k), of these non-normal networks with the Fisher
memory curves of two example normal networks, namely recurrent networks with identity or random
orthogonal connectivity matrices. The two non-normal networks have extensive memory capacity, i.e.
Jtot ∼ O(N), whereas for the normal examples, Jtot = 1. The crucial property that enables extensive
memory in non-normal networks is transient amplification: after the signal enters the network, it is
amplified supralinearly for a time of length O(N) before it eventually dies out (Figure 1c). This kind
of transient amplification is not possible in normal networks.

1Code available at: https://github.com/eminorhan/nonnormal-init

2

https://github.com/eminorhan/nonnormal-init

Published as a conference paper at ICLR 2020

Identity Orthogonal Chain Chain with feedback

a

b c

Normal Non-normal

Figure 1: a Schematic diagrams of different recurrent networks and the corresponding recurrent
connectivity matrices (upper panel). b Memory curves, J(k) (Equation 3), for the four recurrent
networks shown in a. The non-normal networks, chain and chain with feedback, have extensive
memory capacity: Jtot ∼ O(N), whereas the normal networks, identity and random orthogonal, have
Jtot = 1. c Extensive memory is made possible in non-normal networks by transient amplification:
the signal is amplified for a time of length O(N) before it dies out, abruptly in the case of the chain
network and more gradually in the case of the chain network with feedback. In b and c, the network
size is N = 100 for all four networks.

2.2 A TOY NON-LINEAR EXAMPLE: NON-LINEARITY AND NOISE INDUCE SIMILAR EFFECTS

The preceding analysis by Ganguli et al. (2008) is exact in linear networks. Analysis becomes
more difficult in the presence of a non-linearity. However, we now demonstrate that the non-normal
networks shown in Figure 1a have advantages that extend beyond the linear case. The advantages in
the non-linear case are due to reduced interference in these non-normal networks between signals
entering the network at different time points in the past.

To demonstrate this with a simple example, we will ignore the effect of noise for now and consider the
effect of non-linearity on the linear decodability of past signals from the current network activity. We
thus consider deterministic non-linear networks of the form (see Appendix A for additional details):

ht = f(Wht−1 + vst) (5)

and ask how well we can linearly decode a signal that entered the network k time steps ago, st−k,
from the current activity of the network, ht. Figure 2c compares the decoding performance in a
non-linear orthogonal network with the decoding performance in the non-linear chain network. Just
as in the linear case with noise (Figure 2b), the chain network outperforms the orthogonal network.

To understand intuitively why this is the case, consider a chain network with Wij = δj,i−1 and
v = [1, 0, 0, . . . , 0]>. In this model, the responses of the N neurons after N time steps (at t = N) are
given by f(sN), f(f(sN−1)), ..., f(f(. . . f(s1) . . .)), respectively, starting from the source neuron.
Although the non-linearity f(·) makes perfect linear decoding of the past signal st−k impossible, one
may still imagine being able to decode the past signal with reasonable accuracy as long as f(·) is not
“too non-linear”. A similar intuition holds for the chain network with feedback as well, as long as
the feedforward connection weight, α, is sufficiently stronger than the feedback connection strength,
β. A condition like this must already be satisfied if the network is to maintain its optimal memory
properties and also be dynamically stable at the same time (Ganguli et al., 2008).

In normal networks, however, linear decoding is further degraded by interference from signals
entering the network at different time points, in addition to the degradation caused by the non-
linearity. This is easiest to see in the identity network (a similar argument holds for the random
orthogonal example too), where the responses of the neurons after N time steps are identically given

3

Published as a conference paper at ICLR 2020

O
rt
ho
go
na
l

C
ha
in

a b c

Figure 2: Linear decoding experiments. a In a linear network with no noise, the past signal s1 can be
perfectly reconstructed from the current activity vector h100 using a linear decoder. b When noise
is added, the chain network outperforms the orthogonal network as predicted from the theory in
Ganguli et al. (2008). c In a completely deterministic system, introducing a non-linearity has a similar
effect to that of noise. The chain network again outperforms the orthogonal one when the signal
is reconstructed with a linear decoder. As discussed further in the text, this is because the signal is
subject to more interference in the orthogonal network than in the chain network. All simulations in
this figure used networks with N = 100 recurrent units. In c, we used the elu non-linearity for f(·)
(Clevert et al., 2016). For the chain network, we assume that the signal is fed at the source neuron.

by f(f(. . . f(f(s1)+s2) . . .)+sN), if one assumes v = [1, 1, 1, . . . , 1]>. Linear decoding is harder
in this case, because a signal st−k is both distorted by multiple steps of non-linearity and also mixed
with signals entering at other time points.

3 RESULTS

3.1 EXPERIMENTS

Because assuming an a priori fixed non-normal structure for an RNN runs the risk of being too
restrictive, in this paper, we instead explore the promise of non-normal networks as initializers
for RNNs. Throughout the paper, we will be primarily comparing the four RNN architectures
schematically depicted in Figure 1a as initializers: two of them normal networks (identity and random
orthogonal) and the other two non-normal networks (chain and chain with feedback), the last two
being motivated by their optimal memory properties in the linear case, as reviewed above.

3.1.1 COPY, ADDITION, PERMUTED SEQUENTIAL MNIST

Copy, addition, and permuted sequential MNIST tasks were commonly used as benchmarks in
previous RNN studies (Arjovsky et al., 2016; Bai et al., 2018; Chang et al., 2017; Hochreiter &
Schmidhuber, 1997; Le et al., 2015; Wisdom et al., 2016). We now briefly describe each of these
tasks.

Copy task: The input is a sequence of integers of length T . The first 10 integers in the sequence
define the target subsequence that is to be copied and consist of integers between 1 and 8 (inclusive).
The next T − 21 integers are set to 0. The integer after that is set to 9, which acts as the cue indicating
that the model should start copying the target subsequence. The final 10 integers are set to 0. The

4

Published as a conference paper at ICLR 2020

output sequence that the model is trained to reproduce consists of T − 10 0s followed by the target
subsequence from the input that is to be copied. To make sure that the task requires a sufficiently long
memory capacity, we used a large sequence length, T = 500, comparable to the largest sequence
length considered in Arjovsky et al. (2016) for the same task.

Addition task: The input consists of two sequences of length T . The first one is a sequence of
random numbers drawn uniformly from the interval [0, 1]. The second sequence is an indicator
sequence with 1s at exactly two positions and 0s everywhere else. The positions of the two 1s indicate
the positions of the numbers to be added in the first sequence. The target output is the sum of the
two corresponding numbers. The position of the first 1 is drawn uniformly from the first half of the
sequence and the position of the second 1 is drawn uniformly from the second half of the sequence.
Again, to ensure that the task requires a sufficiently long memory capacity, we chose T = 750, which
is the same as the largest sequence length considered in Arjovsky et al. (2016) for the same task.

Permuted sequential MNIST (psMNIST): This is a sequential version of the standard MNIST
benchmark where the pixels are fed to the model one pixel at a time. To make the task hard enough,
we used the permuted version of the sequential MNIST task where a fixed random permutation is
applied to the pixels to eliminate any spatial structure before they are fed into the model.

We used vanilla RNNs with N = 25 recurrent units in the psMNIST task and N = 100 recurrent
units in the copy and addition tasks. We used the elu nonlinearity for the copy and the psMNIST
tasks (Clevert et al., 2016), and the relu nonlinearity for the addition problem (because relu
proved to be more natural for remembering positive numbers). Batch size was 16 in all tasks.

As mentioned above, the scaled identity and the scaled random orthogonal networks constituted the
normal initializers. In the scaled identity initializer, the recurrent connectivity matrix was initialized as
W = λI and the input matrix V was initialized as Vij ∼ N (0, 0.9/

√
N). In the random orthogonal

initializer, the recurrent connectivity matrix was initialized as W = λQ, where Q is a random dense
orthogonal matrix, and the input matrix V was initialized in the same way as in the identity initializer.

The feedforward chain and the chain with feedback networks constituted our non-normal initializers.
In the chain initializer, the recurrent connectivity matrix was initialized as Wij = αδj,i−1 and the
input matrix V was initialized as V ∼ 0.9IN×d, where IN×d denotes the N ×d-dimensional identity
matrix. Note that this choice of V is a natural generalization of the the source injecting input vector
that was found to be optimal in the linear case with scalar signals to multi-dimensional inputs (as long
as N � d). In the chain with feedback initializer, the recurrent connectivity matrix was initialized as
Wij = 0.99δj,i−1 + βδj,i+1 and the input matrix V was initialized in the same way as in the chain
initializer.

We used the rmsprop optimizer for all models, which we found to be the best method for this set of
tasks. The learning rate of the optimizer was a hyperparameter which we tuned separately for each
model and each task. The following learning rates were considered in the hyper-parameter search:
8×10−4, 5×10−4, 3×10−4, 10−4, 8×10−5, 5×10−5, 3×10−5, 10−5, 8×10−6, 5×10−6, 3×10−6.
We ran each model on each task 6 times using the integers from 1 to 6 as random seeds.

In addition, the following model-specific hyperparameters were searched over for each task:

Chain: feedforward connection weight, α ∈ {0.99, 1.00, 1.01, 1.02, 1.03, 1.04, 1.05}.
Chain with feedback: feedback connection weight, β ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}.
Scaled identity: scale, λ ∈ {0.01, 0.96, 0.99, 1.0, 1.01, 1.02, 1.03, 1.04, 1.05}.

Random orthogonal: scale, λ ∈ {0.01, 0.96, 0.99, 1.0, 1.01, 1.02, 1.03, 1.04, 1.05}.
This yields a total of 7× 11× 6 = 462 different runs for each experiment in the non-normal models
and a total of 9× 11× 6 = 594 different runs in the normal models. Note that we ran more extensive
hyper-parameter searches for the normal models than for the non-normal models in this set of tasks.

Figure 3a-c shows the validation losses for each model with the best hyper-parameter settings. The
non-normal initializers generally outperform the normal initializers. Figure 3d-f shows for each
model the number of “successful” runs that converged to a validation loss below a criterion level
(which we set to be 50% of the loss for a baseline random model). The chain model outperformed all
other models by this measure (despite having a smaller total number of runs than the normal models).

5

Published as a conference paper at ICLR 2020

In the copy task, for example, none of the runs for the normal models was able to achieve the criterion
level, whereas 46 out of 462 runs for the chain model and 11 out of 462 runs for the feedback chain
model reached the criterion loss (see Appendices B & C for further results and discussion).

3.1.2 LANGUAGE MODELING EXPERIMENTS

d e f

Figure 3: Results on copy, addition, and psMNIST bench-
marks. a-c Validation losses with the best hyper-parameter
settings. Solid lines are the means and shaded regions are
standard errors over different runs using different random
seeeds. For the copy and addition tasks, we also show the
loss values for random baseline models (dashed lines). For
the psMNIST task, the mean cross-entropy loss for a random
classifier is log(10) ≈ 2.3, thus all four models comfortably
outperform this random baseline right from the end of the
first training epoch. d-f Number of “successful” runs (or hy-
perparameter configurations) that converged to a validation
loss below 50% of the loss for the random baseline model.
Note that the total number of runs was higher for the normal
models vs. the non-normal models (594 vs. 462 runs per
experiment). Despite this, the non-normal models generally
outperformed the normal models even by this measure.

To investigate if the benefits of non-
normal initializers extend to more re-
alistic problems, we conducted exper-
iments with three standard language
modeling tasks: word-level Penn Tree-
bank (PTB), character-level PTB, and
character-level enwik8 benchmarks.

For the language modeling experi-
ments in this subsection, we used the
code base provided by Salesforce Re-
search (Merity et al., 2018a;b):
https://github.com/
salesforce/awd-lstm-lm.
We refer the reader to Merity et al.
(2018a;b) for a more detailed de-
scription of the benchmarks. For the
experiments in this subsection, we
generally preserved the model setup
used in Merity et al. (2018a;b), except
for the following differences: 1) We
replaced the gated RNN architectures
(LSTMs and QRNNs) used in Merity
et al. (2018a;b) with vanilla RNNs;
2) We observed that vanilla RNNs
require weaker regularization than
gated RNN architectures. Therefore,
in the word-level PTB task, we
set all dropout rates to 0.1. In the
character-level PTB task, all dropout
rates except dropoute were set
to 0.1, which was set to 0. In the
enwik8 benchmark, all dropout
rates were set to 0; 3) We trained the
word-level PTB models for 60 epochs,
the character-level PTB models for
500 epochs and the enwik8 models
for 35 epochs.

We compared the same four models described in the previous subsection. As in Merity et al. (2018a),
we used the Adam optimizer and thus only optimized the α, β, λ hyper-parameters for the experiments
in this subsection. For the hyper-parameter α in the chain model and the hyper-parameter λ in the
scaled identity and random orthogonal models, we searched over 21 values uniformly spaced between
0.05 and 1.05 (inclusive); whereas for the chain with feedback model, we set the feedforward
connection weight, α, to the optimal value it had in the chain model and searched over 21 β values
uniformly spaced between 0.01 and 0.21 (inclusive). In addition, we repeated each experiment 3
times using different random seeds, yielding a total of 63 runs for each model and each benchmark.

The results are shown in Figure 4 and in Table 1. Figure 4 shows the validation loss over the course
of training in units of bits per character (bpc). Table 1 reports the test losses at the end of training.
The non-normal models outperform the normal models on the word-level and character-level PTB
benchmarks. The differences between the models are less clear on the enwik8 benchmark. However,
in terms of the test loss, the non-normal feedback chain model outperforms the other models on all
three benchmarks (Table 1).

6

https://github.com/salesforce/awd-lstm-lm
https://github.com/salesforce/awd-lstm-lm

Published as a conference paper at ICLR 2020

1 60
Epoch

6.5

7

7.5

Va
lid

ati
on

 lo
ss

 (b
pc

) Identity
Orthogonal
Chain
Fb. chain

a PTB word

1 500
Epoch

1.34

1.4

1.46

Va
lid

ati
on

 lo
ss

 (b
pc

)

b PTB char

1 35
Epoch

1.76

1.9

2.04

Va
lid

ati
on

 lo
ss

 (b
pc

)

c enwik8 char

Figure 4: Results on language modeling benchmarks. Solid lines are the means and shaded regions
are standard errors over 3 different runs using different random seeeds.

Table 1: Test losses (bpc) on language modeling benchmarks. The numbers represent mean ± s.e.m.
over 3 independent runs. LSTM results are from Merity et al. (2018a;b).

MODEL PTB WORD PTB CHAR. ENWIK8

IDENTITY 6.550 ± 0.002 1.312 ± 0.000 1.783 ± 0.003
ORTHO. 6.557 ± 0.002 1.312 ± 0.001 1.843 ± 0.046
CHAIN 6.514 ± 0.001 1.308 ± 0.000 1.803 ± 0.017
FB. CHAIN 6.510 ± 0.001 1.307 ± 0.000 1.774 ± 0.002
3-LAYER LSTM 5.878 1.175 1.232

We note that the vanilla RNN models perform significantly worse than the gated RNN architectures
considered in Merity et al. (2018a;b). We conjecture that this is because gated architectures are
generally better at modeling contextual dependencies, hence they have inductive biases better suited
to language modeling tasks. The primary benefit of non-normal dynamics, on the other hand, is
enabling a longer memory capacity. Below, we will discuss whether non-normal dynamics can be
used in gated RNN architectures to improve performance as well.

3.2 HIDDEN FEEDFORWARD STRUCTURES IN TRAINED RNNS

We observed that training made vanilla RNNs initialized with orthogonal recurrent connectivity
matrices non-normal. We quantified the non-normality of the trained recurrent connectivity matrices
using a measure introduced by Henrici (1962): d(W) ≡

√
‖W‖2F −

∑
i |λi|2, where ‖ · ‖F denotes

the Frobenius norm and λi is the i-th eigenvalue of W. This measure equals 0 for all normal
matrices and is positive for non-normal matrices. We found that d(W) became positive for all
successfully trained RNNs initialized with orthogonal recurrent connectivity matrices. Table 2 reports
the aggregate statistics of d(W) for orthogonally initialized RNNs trained on the toy benchmarks.

Although increased non-normality in trained RNNs is an interesting observation, the Henrici index,
by itself, does not tell us what structural features in trained RNNs contribute to this increased
non-normality. Given the benefits of chain-like feedforward non-normal structures in RNNs for
improved memory, we hypothesized that training might have installed hidden chain-like feedforward
structures in trained RNNs and that these feedforward structures were responsible for their increased
non-normality.

To uncover these hidden feedforward structures, we performed an analysis suggested by Rajan et al.
(2016). In this analysis, we first injected a unit pulse of input to the network at the beginning of the
trial and let the network evolve for 100 time steps afterwards according to its recurrent dynamics
with no direct input. We then ordered the recurrent units by the time of their peak activity (using a
small amount of jitter to break potential ties between units) and plotted the mean recurrent connection

7

Published as a conference paper at ICLR 2020

Table 2: Henrici indices, d(W), of trained RNNs initialized with orthogonal recurrent connectivity
matrices. The numbers represent mean ± s.e.m. over all successfully trained networks. We define
training success as having a validation loss below 50% of a random baseline model. Note that by this
measure, none of the orthogonally initialized RNNs was successful on the copy task (Figure 3d).

TASK IDENTITY ORTHOGONAL

ADDITION-750 2.33 ± 1.02 2.74 ± 0.07
PSMNIST 1.01 ± 0.12 2.72 ± 0.08

weights, Wij , as a function of the order difference between two units, i− j. Positive i− j values
correspond to connections from earlier peaking units to later peaking units, and vice versa for
negative i− j values. In trained RNNs, the mean recurrent weight profile as a function of i− j had
an asymmetric peak, with connections in the “forward” direction being, on average, stronger than
those in the opposite direction. Figure 5 shows examples with orthogonally initialized RNNs trained
on the addition and the permuted sequential MNIST tasks. Note that for a purely feedforward chain,
the weight profile would have a single peak at i− j = 1 and would be zero elsewhere. Although the
weight profiles for trained RNNs are not this extreme, the prominent asymmetric bump with a peak at
a positive i− j value indicates a hidden chain-like feedforward structure in these networks.

-99 0 99
i− j

-0.025

0

0.025

M
ea

n r
ec

. w
eig

ht
(W

ij
)

Trained
Untrained

a
Identity (Addition-750)

-99 0 99
i− j

-0.025

0

0.025
Orthogonal (Addition-750)

-24 0 24
i− j

-0.025

0

0.025

M
ea

n r
ec

. w
eig

ht
(W

ij
)

Trained
Untrained

b
Identity (psMNIST)

-24 0 24
i− j

-0.1

0

0.1
Orthogonal (psMNIST)

Figure 5: Training induces hidden chain-like feedforward structures in vanilla RNNs. The units
are first ordered by the time of their peak activity. Then, the mean recurrent connection weight is
plotted as a function of the order difference between two units, i− j. Results are shown for RNNs
trained on the addition (a) and the permuted sequential MNIST (b) tasks. The left column shows
the results for RNNs initialized with a scaled identity matrix, the right column shows the results for
RNNs initialized with random orthogonal matrices. In each case, training induces hidden chain-like
feedforward structures in the networks, as indicated by an asymmetric bump peaked at a positive
i − j value in the weight profile. This kind of structure is either non-existent (identity) or much
less prominent (orthogonal) in the initial untrained networks. For the results shown here, we only
considered sufficiently well-trained networks that achieved a validation loss below 50% of the loss
for a baseline random model at the end of training. The solid lines and shaded regions represent
means and standard errors of the mean weight profiles over these networks.

8

Published as a conference paper at ICLR 2020

Table 3: Test losses (bpc) on language modeling benchmarks using 3-layer LSTMs (adapted from
Merity et al. (2018a;b)) with different initialization schemes. Other experimental details were identical
to those described in 3.1.2 above. The numbers represent mean ± s.e.m. over 3 independent runs.

MODEL PTB WORD PTB CHAR. ENWIK8

ORTHO. 5.937 ± 0.002 1.230 ± 0.001 1.583 ± 0.001
CHAIN 5.935 ± 0.001 1.230 ± 0.001 1.586 ± 0.000
PLAIN 5.949 ± 0.007 1.245 ± 0.001 1.584 ± 0.002
MIXED 5.944 ± 0.004 1.227 ± 0.000 1.577 ± 0.001

3.3 DO BENEFITS OF NON-NORMAL DYNAMICS EXTEND TO GATED RNN ARCHITECTURES?

So far, we have only considered vanilla RNNs. An important question is whether the benefits of
non-normal dynamics demonstrated above for vanilla RNNs also extend to gated RNN architectures
like LSTMs or GRUs (Hochreiter & Schmidhuber, 1997; Cho et al., 2014). Gated RNN architectures
have better inductive biases than vanilla RNNs in many practical tasks of interest such as language
modeling (e.g. see Table 1 for a comparison of vanilla RNN architectures with an LSTM architecture
of similar size in the language modeling benchmarks), thus it would be practically very useful if their
performance could be improved through an inductive bias for non-normal dynamics.

To address this question, we treated the input, forget, output, and update gates of the LSTM archi-
tecture as analogous to vanilla RNNs and initialized the recurrent and input matrices inside these
gates in the same way as in the chain or the orthogonal initialization of vanilla RNNs above. We
also compared these with a more standard initialization scheme where all the weights were drawn
from a uniform distribution U(−

√
k,
√
k) where k is the reciprocal of the hidden layer size (la-

beled plain in Table 3). This is the default initializer for the LSTM weight matrices in PyTorch:
https://pytorch.org/docs/stable/nn.html#lstm. We compared these initializers
in the language modeling benchmarks. The chain initializer did not perform better than the orthogonal
initializer (Table 3), suggesting that non-normal dynamics in gated RNN architectures may not be as
helpful as it is in vanilla RNNs. In hindsight, this is not too surprising, because our initial motivation
for introducing non-normal dynamics heavily relied on the vanilla RNN architecture and gated RNNs
can be dynamically very different from vanilla RNNs.

When we looked at the trained LSTM weight matrices more closely, we found that, although still
non-normal, the recurrent weight matrices inside the input, forget, and output gates (i.e. the sigmoid
gates) did not have the same signatures of hidden chain-like feedforward structures observed in
vanilla RNNs. Specifically, the weight profiles in the LSTM recurrent weight matrices inside these
three gates did not display the asymmetric bump characteristic of a prominent chain-like feedforward
structure, but were instead approximately monotonic functions of i − j (Figure 6a-c), suggesting
a qualitatively different kind of dynamics where the individual units are more persistent over time.
The recurrent weight matrix inside the update gate (the tanh gate), on the other hand, did display
the signature of a hidden chain-like feedforward structure (Figure 6d). When we incorporated these
two structures in different gates of the LSTMs, by using a chain initializer for the update gate and a
monotonically increasing recurrent weight profile for the other gates (labeled mixed in Table 3), the
resulting initializer outperformed the other initializers on character-level PTB and enwik8 tasks.

4 DISCUSSION

Motivated by their optimal memory properties in a simplified linear setting (Ganguli et al., 2008),
in this paper, we investigated the potential benefits of certain highly non-normal chain-like RNN
architectures in capturing long-term dependencies in sequential tasks. Our results demonstrate
an advantage for such non-normal architectures as initializers for vanilla RNNs, compared to the
commonly used orthogonal initializers. We further found evidence for the induction of such chain-
like feedforward structures in trained vanilla RNNs even when these RNNs were initialized with
orthogonal recurrent connectivity matrices.

9

https://pytorch.org/docs/stable/nn.html#lstm

Published as a conference paper at ICLR 2020

-1149 0 1149
i− j

-0.025

0

0.025

M
ea

n r
ec

. w
eig

ht
(W

I ij
) Trained

Untrained

a Input gate

-1149 0 1149
i− j

-0.025

0

0.025

M
ea

n r
ec

. w
eig

ht
(W

F ij
)

b Forget gate

-1149 0 1149
i− j

-0.025

0

0.025

M
ea

n r
ec

. w
eig

ht
(W

U ij
)

d Update gate

-1149 0 1149
i− j

-0.025

0

0.025

M
ea

n r
ec

. w
eig

ht
(W

O ij
)

c Output gate

Figure 6: The recurrent weight matrices inside the input, forget, and output LSTM gates do not
display the characteristic signature of a prominent chain-like feedforward structure. The weight
profiles are instead an approximately monotonic function of i− j. The recurrent weight matrix inside
the update (tanh) gate, however, does display an asymmetric chain-like structure similar to that
observed in vanilla RNNs. The examples shown in this figure are from the input (a), forget (b), output
(c), and update gates (d) of the second layer LSTM in a 3-layer LSTM architecture trained on the
word-level PTB task. The weight matrices shown here were initialized with orthogonal initializers.
Other layers and models trained on other tasks display qualitatively similar properties.

The benefits of these chain-like non-normal initializers do not directly carry over to more complex,
gated RNN architectures such as LSTMs and GRUs. In some important practical problems such as
language modeling, the gains from using these kinds of gated architectures seem to far outweigh
the gains obtained from the non-normal initializers in vanilla RNNs (see Table 1). However, we
also uncovered important regularities in trained LSTM weight matrices, namely that the recurrent
weight profiles of the input, forget, and output gates (the sigmoid gates) in trained LSTMs display
a monotonically increasing pattern, whereas the recurrent matrix inside the update gate (the tanh
gate) displays a chain-like feedforward structure similar to that observed in vanilla RNNs (Figure 6).
We showed that these regularities can be exploited to improve the training and/or generalization
performance of gated RNN architectures by introducing them as useful inductive biases.

A concurrent work to ours also emphasized the importance of non-normal dynamics in RNNs (Kerg
et al., 2019). The main difference between Kerg et al. (2019) and our work is that we explicitly
introduce sequential motifs in RNNs at initialization as a useful inductive bias for improved long-term
memory (motivated by the optimal memory properties of these motifs in simpler cases), whereas their
approach does not constrain the shape of the non-normal part of the recurrent connectivity matrix,
hence does not utilize sequential non-normal dynamics as an inductive bias. In some of their tasks,
Kerg et al. (2019) also uncovered a feedforward, chain-like motif in trained vanilla RNNs similar to
the one reported in this paper (Figure 5).

There is a close connection between the identity initialization of RNNs (Le et al., 2015) and the
widely used identity skip connections (or residual connections) in deep feedforward networks (He
et al., 2016). Given the superior performance of chain-like non-normal initializers over the identity
initialization demonstrated in the context of vanilla RNNs in this paper, it could be interesting to
look for similar chain-like non-normal architectural motifs that could be used in deep feedforward
networks in place of the identity skip connections.

10

Published as a conference paper at ICLR 2020

REFERENCES

M. Arjovsky, A. Shah, and Y. Bengio. Unitary evolution recurrent neural networks. In Proceedings
of the 33rd International Conference on Machine Learning, 2016.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv:1803.01271, 2018.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Trans. Neural. Netw., 5:157–66, 1994.

S. Chang, Y. Zhang, W. Han, M. Yu, X. Guo, W. Tan, X. Cui, M. Witbrock, M.A. Hasegawa-Johnson,
and T.S. Huang. Dilated recurrent neural networks. In Advances in Neural Information Processing
Systems 30, 2017.

Minmin Chen, Jeffrey Pennington, and Samuel Schoenholz. Dynamical isometry and a mean field
theory of rnns: Gating enables signal propagation in recurrent neural networks. In International
Conference on Machine Learning, pp. 872–881, 2018.

K. Cho, B. van Merriënboer, Ç Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using rnn encoder–decoder for statistical machine translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1724–1734, 2014.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). In International Conference on Learning Representations (ICLR),
2016.

S. Ganguli, D. Huh, and H. Sompolinsky. Memory traces in dynamical systems. PNAS, 105(48):
18970–18975, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Mikael Henaff, Arthur Szlam, and Yann LeCun. Recurrent orthogonal networks and long-memory
tasks. In 33rd International Conference on Machine Learning, pp. 2978–2986, 2016.

Peter Henrici. Bounds for iterates, inverses, spectral variation and fields of values of non-normal
matrices. Numerische Mathematik, 4:24–40, 1962.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. PhD thesis, Institut f. Informatik,
Technische Univ. Munich, 1991.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

Giancarlo Kerg, Kyle Goyette, Maximilian Puelma Touzel, Gauthier Gidel, Eugene Vorontsov,
Yoshua Bengio, and Guillaume Lajoie. Non-normal recurrent neural network (nnRNN): learning
long time dependencies while improving expressivity with transient dynamics. arXiv preprint
arXiv:1905.12080, 2019.

Q.V. Le, N. Jaitly, and G.E. Hinton. A simple way to initialize recurrent networks of rectified linear
units. 2015. URL https://arxiv.org/abs/1504.00941.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural language modeling
at multiple scales. arXiv:1803.08240, 2018a.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm
language models. In International Conference on Learning Representations (ICLR), 2018b.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In Advances in Neural Information
Processing Systems (NIPS), pp. 4785–4795, 2017.

11

https://arxiv.org/abs/1504.00941

Published as a conference paper at ICLR 2020

Kanaka Rajan, Christopher D Harvey, and David W Tank. Recurrent network models of sequence
generation and memory. Neuron, 90(1):128–142, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

S. Wisdom, T. Powers, J.R. Hershey, J. Le Roux, and L. Atlas. Full-capacity unitary recurrent neural
networks. In Advances in Neural Information Processing Systems 29, 2016.

A DETAILS AND EXTENSIONS OF THE LINEAR DECODING EXPERIMENTS

This appendix contains the details of the linear decoding experiments in section 2.2 and reports the
results of additional linear decoding experiments. The experiments in section 2.2 compare the signal
propagation properties of vanilla RNNs with either random orthogonal or chain connectivity matrices.
In both cases, the overall scale of the recurrent connectivity matrices is set to 1.01. The input weight
vector is v = [1, 0, 0, . . . , 0]> for the chain model and vi ∼ N (0, 1/

√
n) for the random orthogonal

model (thus the overall scales of both the feedforward and the recurrent inputs are identical in the
two models). The RNNs themselves are not trained in these experiments. At each time point, an
i.i.d. random scalar signal st ∼ N (0, 1) is fed into the network as input (Equation 5). We simulate
250 trials for each model and ask how well we can linearly decode the signal at the first time step,
s1, from the recurrent activities at time step 100, h100. We do this by linearly regressing s1 on h100

(using the 250 simulated samples) and report the R2 value for the linear regression in Figure 2.

In simulations with noise (Figure 2b), an additional i.i.d. random noise term, zit ∼ N (0, σ), is added
to each recurrent neuron i at each time step t. The standard deviation of the noise, σ, is set to 0.1
in the experiments shown in Figure 2b. To show that the results are not sensitive to the noise scale,
we ran additional experiments with lower (σ = 0.01) and higher (σ = 1) levels of noise (Figure 7).
In both cases, the chain network still outperforms the orthogonal network. Note that these “linear +
noise” experiments satisfy the conditions of the analytical theory in Ganguli et al. (2008), so these
results are as expected from the theory.

As mentioned in the main text, the “non-linear + no noise” experiments reported in Figure 2c used
the elu non-linearity. To show that the results are not sensitive to the choice of the non-linearity,
we also ran additional experiments with tanh and relu non-linearities (Figure 8). As with the
elu non-linearity, the chain network outperforms the orthogonal network with the tanh and relu
non-linearities as well, suggesting that the results are not sensitive to the choice of the non-linearity.

B THE EFFECT OF THE FEEDBACK STRENGTH PARAMETER (β) IN THE CHAIN
WITH FEEDBACK MODEL

In this appendix, we consider the effect of the feedback strength parameter, β, for the chain with
feedback model in the context of the experiments reported in section 3.1.1. We focus on the psMNIST
task specifically, because this is the only task where the feedback chain model converges to a low loss
solution for a sufficiently large number of hyper-parameter configurations. For the addition and copy
tasks, there are not enough successful hyper-parameter configurations to draw reliable inferences
about the effect of β (see Figure 3d-f). Figure 9 shows the validation loss at the end of training as
a function of β in the psMNIST task. In this figure, we considered all networks that achieved a
validation loss lower than the random baseline model (i.e. < log(10) ≈ 2.3) at the end of training
(an overwhelming majority of the networks satisfied this criterion). Figure 9 shows that the final
validation loss is a monotonically increasing function of β in this task, suggesting that large feedback
strengths are harmful for the model performance.

C COMPARISON WITH PREVIOUS MODELS

In this appendix, we compare our results with those obtained by previous models, focusing specifically
on the experiments in section 3.1.1 (because the tasks in this section are commonly used as RNN
benchmarks).

12

Published as a conference paper at ICLR 2020

a b

O
rt
ho
go
na
l

C
ha
in

Figure 7: Additional linear decoding experiments: a linear networks with low noise (σ = 0.01) and b
linear networks with high noise (σ = 1). In both cases, the chain network outperforms the orthogonal
network suggesting that the results are not sensitive to the noise scale.

uRNN: We first note that our copy and addition tasks use the largest sequence lengths considered in
Arjovsky et al. (2016) for the same tasks (T = 500 for the copy task and T = 750 for the addition
task). Hence our results are directly comparable to those reported in Arjovsky et al. (2016) (the
random baselines shown by the dashed lines in Figure 3a-b are identical to those in Arjovsky et al.
(2016) for the same conditions). The unitary evolution RNN (uRNN) model proposed in Arjovsky
et al. (2016) comfortably learns the copy-500 task (with 128 recurrent units), quickly reaching a
near-zero loss (see their Figure 1, bottom right); however, it struggles with the addition task, barely
reaching the half-baseline criterion even with 512 recurrent units (see their Figure 2, bottom right).
This difference in the behavior of the uRNN model in the copy and addition tasks is predicted by
Henaff et al. (2016), where it is shown that random orthogonal and near-identity recurrent connectivity
matrices have much better inductive biases in the copy and addition tasks, respectively. Because of
its parametrization, uRNN behaves more similarly to a random orthogonal RNN than a near-identity
RNN.

In contrast, our non-normal RNNs, especially the chain model, comfortably clear the half-baseline
criterion both in copy-500 and addition-750 tasks (with 100 recurrent units), quickly achieving very
small loss values in both tasks with the optimal hyper-parameter configurations (Figure 3a-b). Note
that this is despite the fact that our models use fewer recurrent units than the uRNN model in Arjovsky
et al. (2016) (100 vs. 128 or 512 recurrent units).

nnRNN: Kerg et al. (2019) report results for the copy (T = 200) and psMNIST tasks only. They have
not reported training success for longer variants of the copy task (specifically for T = 500). Kerg
et al. (2019) also have not reported successful training in the addition task, whereas our non-normal
RNNs showed training success both in copy-500 and addition-750 tasks (Figure 3a-b).

We conclude that our non-normal initializers for vanilla RNNs perform comparably to, or better
than, the uRNN and nnRNN models in standard long-term memory benchmarks. One of the biggest
strengths of our proposal compared to these previous models is its much greater simplicity. Both
uRNN and nnRNN require a complete re-parametrization of the vanilla RNN model (nnRNN even

13

Published as a conference paper at ICLR 2020

O
rt
ho
go
na
l

C
ha
in

a b

Figure 8: Additional linear decoding experiments: a tanh networks with no noise and b relu
networks with no noise. In both cases, the chain network outperforms the orthogonal network
suggesting that the results are not sensitive to the choice of the non-linearity.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
β

0.8

0.9

1

Va
lid

ati
on

 lo
ss

Fb. chain
psMNIST

Figure 9: Validation loss at the end of training as a function of the feedback parameter β in the
psMNIST task. All networks with a better-than-random loss at the end of training are included in this
figure. The solid line shows the mean and the shaded region represents the standard errors.

requires a novel optimization method). Our method, on the other hand, proposes much simpler,
easy-to-implement, plug-and-play type sequential initializers that keep the standard parametrization
of RNNs intact.

critical RNN: Chen et al. (2018) note that the conditions for dynamical isometry in vanilla RNNs
are identical to those in fully-connected feed-forward networks studied in Pennington et al. (2017).
Pennington et al. (2017), in turn, note that dynamical isometry is not achievable exactly in networks

14

Published as a conference paper at ICLR 2020

with relu activation, but it is achievable in networks with tanh activation, where it essentially boils
down to initializing the weights to small values. Pennington et al. (2017) give a specific example of a
dynamically isometric tanh network (with n = 400, σw = 1.05, and σb = 2.01× 10−5). We set
up a similar tanh RNN model, but were not able to train it successfully in the copy or addition tasks.
Again, as with the nnRNN results, this shows the challenging nature of these two tasks and suggests
that dynamical isometry may not be enough for successful training in these tasks. A possible reason
for this is that although critical initialization takes the non-linearity into account, it still does not take
the noise into account (i.e. it is not guaranteed to maximize the SNR).

LSTM, tanh RNN: Consistent with the results in Arjovsky et al. (2016), we were not able to
successfully train LSTMs or vanilla RNNs with tanh non-linearity in the challenging copy-500 and
addition-750 tasks. Therefore, these models were not included as baselines in section 3.1.1.

1 64
Epoch

0

25

50

75

100

Va
lid

ati
on

 ac
cu

ra
cy

 (%
)

Identity
Orthogonal
Chain
Fb. chain

psMNIST

Figure 10: Validation accuracy in the psMNIST task. The corresponding validation losses are
shown in Figure 3c in the main text. Note that we used RNNs with n = 25 recurrent units in these
simulations, so these numbers are not directly comparable to those reported in some previous works
(e.g. Arjovsky et al. (2016); Kerg et al. (2019)).

15

	Introduction
	Background
	Memory in linear recurrent networks with noise
	A toy non-linear example: Non-linearity and noise induce similar effects

	Results
	Experiments
	Copy, addition, permuted sequential MNIST
	Language modeling experiments

	Hidden feedforward structures in trained RNNs
	Do benefits of non-normal dynamics extend to gated RNN architectures?

	Discussion
	Details and extensions of the linear decoding experiments
	The effect of the feedback strength parameter () in the chain with feedback model
	Comparison with previous models

