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ABSTRACT

Word inputs tend to be represented as single continuous vectors in deep neural
networks. It is left to the subsequent layers of the network to extract relevant
aspects of a word’s meaning based on the context in which it appears. In this
paper, we investigate whether word representations can be improved by explic-
itly incorporating the idea of latent roles. That is, we propose a role interaction
layer (RIL) that consists of context-dependent (latent) role assignments and role-
specific transformations. We evaluate the RIL on machine translation using two
language pairs (En-De and En-Fi) and three datasets of varying size. We find
that the proposed mechanism improves translation quality over strong baselines
with limited amounts of data, but that the improvement diminishes as the size of
data grows, indicating that powerful neural MT systems are capable of implicitly
modeling role-word interaction by themselves. Our qualitative analysis reveals
that the RIL extracts meaningful context-dependent roles and that it allows us to
inspect more deeply the internal mechanisms of state-of-the-art neural machine
translation systems.

1 INTRODUCTION

Existing deep learning approaches to natural language processing and machine translation (MT)
are usually constructed as a two-stage process. In the first stage, each discrete token in an input
sentence is converted into a continuous vector via a table lookup, resulting in a sequence of token
representations. This sequence is then processed by the main part of the network for solving the
problem at hand. In this paper, we focus on the first stage, the token representation.

The standard table lookup, or word embedding layer, embeds each token into a high-dimensional,
continuous vector space independently from the other tokens in the input. It was noticed earlier,
for instance by Bengio et al. (2003) and Choi et al. (2017), that this high-dimensional token vector
encodes multiple aspects of the token’s meaning. It is then left for the subsequent layers of a neural
network to accurately extract one of these aspects based on the context. This approach has been
successful in applications such as machine translation (Bahdanau et al., 2015; Gehring et al., 2017;
Vaswani et al., 2017), where a lot of data is available and powerful architectures, such as recurrent
networks, convolutional networks and self-attention, are used for the subsequent layers.

In this paper, we examine whether we can enhance token representations by augmenting networks
with a novel layer that captures and resolves the latent roles of each token based on the context. This
layer, which we call a “role interaction layer” (RIL), works on top of any sequence of vectors, by first
extracting the role assignment of each token based on the entire context and then transforming each
token vector representation based on its assigned role(s). More specifically, we introduce a small
recurrent neural network that succinctly represents the context and subsequently determines the role
assignment of each token using one of three strategies: dense, additive and sparse assignment. Each
role has a trainable transformation matrix that rotates and scales the corresponding token’s vector
representation. These transformed role-specific vectors are then combined by a weighted sum based
on the role assignment and fed into the subsequent layers.

We extensively evaluate the proposed RIL on machine translation using two language pairs (En-De
and En-Fi) and three datasets with varying sizes (IWSLT’14 De-En–160k sentence pairs, WMT’14
En-De–4.5M sentence pairs, and WMT’17 En-Fi–2.3M sentence pairs). We test variants of the
proposed approach against the baselines trained with the same setup. We observe that the proposed
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Figure 1: Illustration of proposed
role interaction layer. A role encoder
function g (in our work, a CNN or
LSTM) computes a contextual role
representation rt which is used to
modulate representation et resulting
in ẽt. The additive, residual connec-
tion (dotted line) is optional.

RIL, which explicitly models latent roles, indeed improves translation quality over a strong baseline
when there is only limited amount of training data. The improvement, however, diminishes as
the amount of data grows. On the large scale WMT’14 En-De dataset, improvements are small
compared to our carefully tuned baseline, indicating that role interaction can indeed be captured
implicitly by powerful models with enough training data. However, qualitative analysis reveals that
the proposed RIL does still extract meaningful roles that are highly context-dependent, giving us an
insight into the internal mechanism of state-of-the-art neural machine translation systems.

2 BACKGROUND: NEURAL MACHINE TRANSLATION

Most existing neural machine translation systems, i.e., recurrent (Bahdanau et al., 2015), convo-
lutional (Gehring et al., 2017) and self-attention-based systems (Vaswani et al., 2017), are special
cases of a conditional neural language models that consist of an encoder and a decoder. The encoder
takes as input a sequence of source-side tokens X = (x1, . . . , xT ), and first turns it into a sequence
of token vectors:

EX = (eX1 , . . . , e
X
T ), (1)

where eXt = fXemb(xt). It then processes this sequence into a set of vector representations H to be
used by the decoder. The decoder on the other hand takes as input a partial prefix of the target side
tokens at each time step along with the encoded representation H: Yt = (y1, . . . , yt−1). Similarly
to the encoder, the prefix Yt is first transformed into a sequence of (target) token vectors:

EY = (eY1 , . . . , e
Y
t−1), (2)

where eYt = fYemb(yt), similarly to the encoder. Given Yt and H , the decoder computes the distribu-
tion over all possible target tokens, log p(yt|Yt, H).

By summing these log-probabilities over the target sentence, we get the log-probability over the
entier sentence Y given a source sentence X:

log p(Y |X) =

T ′∑
t=1

log p(yt|y<t, X). (3)

We train this neural machine translation system by maximizing the log-likelihood over a training set
consisting of source-target pairs: max

∑n
n=1

∑T ′
n

t=1 log p(y
n
t |yn<t, X

n).

3 MODULATING TOKEN REPRESENTATION WITH CONTEXTUAL ROLES

We focus on token embedding in Eqs. (1)–(2). A usual approach to embedding a discrete token into
a continuous space is to use a so-called table lookup or embedding layer (Bengio et al., 2003), which
is equivalent to multiplying an embedding matrix with a one-hot vector of a token:

fXemb(xt) =WX
emb1xt

,

where WX
emb ∈ Rh×|VX | is an embedding matrix and 1xt

is a one-hot vector which is has value
1 only in dimension xt and is 0 otherwise. This effectively assigns one trainable h-dimensional
continuous vector to each token, regardless of the context in which the token appears.1

1 The same applies to the target side by replacing X with Y .
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This high-dimensional, distributed representation encodes multiple aspects of the token’s underlying
meaning. Choi et al. (2017) demonstrated this property by applying PCA to the continuous vectors
of a set of neighbouring tokens given a target token and inspecting the neighbouring tokens lying
along each principal axis. In their analysis, for instance, along the first principal axis of “notebook”
lied “notebooks”, “sketchbooks”, “diary” and “jottings”, while “laptop”, “ipaq” and “palmtop” lied
along the second principal axis. In other words, various aspects/meanings of a single token are
entangled into a single continuous vector in this conventional approach to token embedding, and it
is up to follow-up layers in the network to disentangle and select a relevant subset of these aspects.

Instead, we propose to augment this embedding layer with a specialized mechanism for separately
modelling different aspects of tokens based on the context. We first define a role assignment of
each token as a low-dimensional vector rt ∈ Rhr , where hr � h.2 The role assignment vector is
computed based on the context, in our case a small recurrent neural network with long short-term
memory (LSTM) units (Hochreiter & Schmidhuber, 1997) followed by a single nonlinear layer:

(r1, r2, . . . , rT ) = frole(LSTM(e1, e2, . . . , eT )). (4)

Each dimension i ∈ {1, . . . , hr} of the role assignment vector corresponds to the degree to which
the corresponding token is assigned to the i-th role. Each role i is associated with a distinct train-
able transformation matrix Ui ∈ Rh×h. This transformation matrix rotates and scales the token
representation et in its own way, and the transformed token representations are combined by

ẽt =

hr∑
i=1

rt,i [Uiet] . (5)

We call this layer the role interaction layer (RIL). The role assignment vector rt = [rt,1, . . . , rt,hr
]
>

indicates the role(s) i ∈ [1, . . . , hr] to which the token xt is assigned. Each role corresponds to
a subset of aspects encoded in the token embedding, and is extracted by linearly transforming the
token embedding, i.e., Uiet. These extracted role-specific token vectors are then weighted-summed
using the role assignment vectors in Eq. (5). See Fig. 1 for a graphical illustration of the RIL.

3.1 ROLE ASSIGNMENT

The proposed RIL leaves the design of the role assignment computation in Eq. (4) open. In this
paper we consider three different approaches to role assignment.

Dense assignment We affine-transform the output r̂t from the LSTM layer at each time step in
Eq. (4) and apply a hyperbolic tangent element-wise:

rdense
t = tanh(Wr̂t + b).

We call this a dense role assignment, as it corresponds to assigning the token to all the roles (hence,
dense) with varying degrees of assignment.

Additive assignment: Softmax assignment Instead, we can constrain the role assignment to be
additive with varying strengths. We use softmax normalization (Bridle, 1990):

rsoftmax
t,i =

exp(u>i r
dense
t )∑hr

j=1 exp(u
>
j r

dense
t )

> 0.

Unlike the dense assignment, the additive assignment, or softmax assignment, only allows “positive”
assignment of a token to each role.

Discrete assignment: One-hot assignment The softmax assignment above can be thought of as
computing the categorical distribution over the hr roles. In other words, rsoftmax

t,i is the probability
of the token being assigned to the role i:

p(ronehot
t,i = 1|X) = rsoftmax

t,i . (6)

2 We omit the superscript, X or Y , whenever it is unnecessary.
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From this distribution, we can sample a single role during training, or choose the most likely role
during test, to which the corresponding token is assigned. One difficulty arising from this discrete
assignment is that we cannot use backpropagation due to the non-differentiability. In the experiments
later, we use Gumbel-Softmax relaxation (Maddison et al., 2017; Jang et al., 2017) to address this
issue during training.

Role Assignment in the Target Side On the source side, the role assignment vector for each token
can be computed using the entire context, that is, considering both the previous and future tokens. It
is, however, not possible to do so on the target side, due to the autoregressive nature of conditional
language modelling in Eq. (3). The role assignment of target tokens must be done only based on
the previous tokens. To accommodate this restriction on the target side and the lack thereof on the
source side, we use the unidirection LSTM on the target side and the bidirectional LSTM on the
source side:

rXt = fXrole(Bi-LSTM(eX1 , e
X
2 , . . . , e

X
T )t) rYt = fYrole(LSTM(eY1 , e

Y
2 , . . . , e

Y
t−1)t).

3.2 ROLE COMBINATION

We further consider two variants of the combination of role-specific token representations, Uiet,
from Eq. (5). These variants are introduced in order to address the high computational cost as well
as to facilitate learning.

Identity Role: Residual RIL In the original formulation, each role has its own fully-trainable
transformation matrix Ui. This effectively increases the depth of the entire network by one and
adds multiplicative interaction, both of which are known to make learning more difficult (Glorot &
Bengio, 2010; Sutskever et al., 2011). We avoid this issue by introducing a fixed role with an identity
transformation applied to every token. That is, rThr+1 = 1, and Uhr+1 = I . This is equivalent to
introducing a residual connection (He et al., 2016) that bypasses the proposed residual RIL:

ẽt =

hr∑
i=1

rt,i [Uiet] + 1 · [Iet] =
hr∑
i=1

rt,i [Uiet] + et. (7)

Rank-1 Tensor Approximation Although the number of roles hr is small, we introduce hr×h×h
new parameters, which can be prohibitive or more easily leads to overfitting. We address this by
approximating the third-order tensor U = [U1|U2| · · · |Uhr

] ∈ Rhr×h×h with three matrices, Ur ∈
Rhr×h, UeRh×h and Uo ∈ Rh×h. This leads to

ẽt = Uo [(Urrt)� (Ueet)] + et, (8)
where � is an element-wise multiplication. We present it with the residual layer to show that the
identity role is not considered a part of the third-order tensor in the rank-1 approximation.

4 EXPERIMENTAL SETUP

We test the proposed role interaction layer (RIL) on the problem of machine translation. As it is
reasonable to assume that existing state-of-the-art neural translation systems are able to capture and
disambiguate various roles/meanings of tokens implicitly, our goals are two-fold; first, to identify
under which settings the explicit handling of contextual roles helps, and second, to understand what
kinds of roles the proposed layer captures. In order to satisfy both of these goals, we evaluate the
proposed approach on two language pairs–En-Fi and En-De– with two corpora of varying sizes–
IWSLT (De-En) and WMT (En-De, En-Fi), while using state-of-the-art translation systems based
on the recently proposed transformer (Vaswani et al., 2017).

Data In the case of De-En, we use IWSLT’14, which contains approximately 160k sentence pairs,
as a low-resource language pair (Cettolo et al., 2014). To test the effect of the proposed layer when
there are abundant resources, we also test En-De on WMT’14 which contains approximately 4.5M
sentence pairs. To contrast the effect of the proposed layer between different languages, we choose
WMT’17 En-Fi which contains approximately 2.3M sentence pairs. Following (Ott et al., 2018), we
tokenize and segment all sentences using byte pair encoding (BPE, Sennrich et al., 2016). We use
vocabularies of 10k and 40k subwords for IWSLT and WMT, respectively.
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Baseline We use the transformer (Vaswani et al., 2017) as a baseline system. In particular, we
train a small model for IWSLT’14 De-En, a medium model for WMT’17 En-Fi and a big model
for WMT’14 En-De. The small model has three layers on each of the encoder and decoder, and
each transformer block has four attention heads and is 256 (512 for feedforward) dimensional. The
medium model has six layers for both encoder and decoder with eight attention heads and is of 512
(2048) dimensional. The large model has 16 attention heads and is 1024 (4096) dimensional. We
refer readers to (Vaswani et al., 2017) for more details.

The proposed RIL introduces contextualization of token representations (Peters et al., 2018) based
on a small LSTM layer. In order to verify the contribution of this contextualization without multi-
plicative role interaction, we build a contextualized baseline which replaces the proposed RIL with
ẽt = Urt + et, where U ∈ Rh×hr .

Matched Baseline The proposed RIL introduces additional parameters, which makes it difficult
to gauge the contribution of the RIL from the increased model capacity. Hence, we also train a
matched version of each of the aforementioned baseline systems by increasing the dimensionality
to (approximately) match the number of parameters of our model with the RIL.

Proposed Models Our proposal is generic in that we can incorporate the proposed RIL layer into
any existing neural network operating on a discrete sequence by simply inserting it between the
embedding layer and the main part of a neural network. This is precisely the strategy we take here.
For each baseline model, we insert the proposed layer and compare it against the baseline and its
matched variant. We test each of the three role assignment strategies (dense, softmax and one-hot)
from Sec. 3.1. We evaluate the following variants of the proposed RIL:

• +Residual: the fixed role with the identity transformation in Eq. (7)
• +Approx: rank-1 tensor approximation in Eq. (8)
• +CNN: replace the LSTM with CNN in the RIL

Training We closely follow the training strategy of Ott et al. (2018).3 We use Adam (Kingma &
Ba, 2015) with a linearly growing learning rate for the first 4,000 updates up to 10−3 for IWSLT’14
and 5×10−4 for both WMT’14 and WMT’17. The learning rate is then decayed by the inerse square
root of the number of updates. We use minibatches of up to 4k, 20k and 400k tokens for IWSLT’14,
WMT’17 and WMT’14, respectively. We smooth the label with ε = 0.1 (LeCun et al., 2012) and
use dropout (Srivastava et al., 2014) of 0.3 after each transformer block as well as on the token
embedding and the role assignment vector across all the models. For each setting, we report the
mean and standard deviation of the BLEU scores obtained from five training runs for IWSLT’14 and
WMT’17, and three runs for WMT’14. We use beam search with beam width set to 4 for inference.

Discrete Role Assignment For the discrete assignment we initially train the model with the soft-
max assignment. We then finetune it using the Gumbel-softmax relaxation (Maddison et al., 2017;
Jang et al., 2017). We decay the softmax temperature starting from 5 by 0.9995 after each update
down to the minimum of 0.5. We use a constant learning rate of 2× 10−4 for IWSLT and 10−4 for
both WMT’14 and WMT’17 during fine-tuning.

5 RESULTS AND ANALYSIS

5.1 IWSLT’14 DE-EN

We conduct the most extensive set of experiments on the low-resource setting with WMT’14
De→En. Results are presented in Table 1. We make a number of interesting and important ob-
servations. First, our baseline (Transformer (Small)) and matched baseline (Transformer (Small,
Matched)) are as good as or better than the existing state of the art reported by Edunov et al. (2017)
and Elbayad et al. (2018). This gives us a strong confidence in reporting our experiments and re-
sults. Although we observe small improvement from contextualization (+contextualization), this
improvement is as pronounced as that from simply increasing the number of parameters (matched).

3 We use FairSeq (Gehring et al., 2017) for implementation and experimentation.
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Role Assignment dense softmax onehot
# of Roles hr 16 32 16 32 16 32

Transformer (Small) 33.62 ±0.09
+ contextualized 34.08±0.14 34.31±0.15
Tranformer (Matched) 34.29±0.05

+RIL+Approx 34.38±0.17 34.38±0.15 - - - -
+RIL 34.54±0.16 34.67±0.06 34.59±0.06 34.61±0.08 34.67±0.10 34.56±0.07
+RIL+Residual 34.65±0.14 34.68±0.08 34.69±0.03 34.74±0.12 34.70±0.19 34.67±0.12
+RIL+CNN+Residual 34.44±0.14 34.60±0.12 34.58±0.07 34.66±0.11 34.57±0.07 34.51±0.12

Edunov et al. (2017) 32.23±0.10
Elbayad et al. (2018) 33.81±0.03

Table 1: Test results on IWSLT’14 De-En. We observe that the proposed RIL with the fixed role
(+Residual) improves the translation quality up to 1 BLEU point over the baseline and 0.5 BLEU
over the matched baseline. Both our baselines as well as the model with the proposed RIL clearly
beat the previous state-of-the-art results obtained using comparable setups.

WMT’17 En-Fi WMT’14 En-De
Transformer 21.82±0.19 29.82±0.07
Transformer (Matched) 21.69±0.05 29.88 ±0.12

+RIL (dense) 21.89±0.17 29.78±0.08
+RIL (softmax) 22.08±0.12 29.47±0.18
+RIL (dense) +Residual 21.90±0.10 29.92±0.13
+RIL (softmax) +Residual 21.87±0.09 29.71±0.04

Vaswani et al. (2017) - 28.0
Dehghani et al. (2018) - 28.9
Ott et al. (2018) - 29.3

Table 2: Test results on WMT’17
En-Fi and WMT’14 En-De.
Based on the previous experi-
ments on IWSLT’14 De-En, we
use 32 roles and LSTM for the
proposed RIL. The RIL improves
the translation quality by a small
margin over our own baselines
which are up to 1.8 BLEU higher
than the reported baselines from
the literature in the case of En-De.

Most importantly, we observe that the proposed RIL improves upon these strong baselines. The
improvement was most significant when the residual connection, via a fixed role with an identity
transformation, was used in conjunction. The improvement was observed across all three types of
role assignments with slight advantages when using the softmax (additive) assignment with 32 roles.
The models, where the role encoding LSTM was replaced with the convolutional network (+CNN)
of width 7, always underperformed their counterparts with the LSTM for the role assignment. This
suggests that roles are best assigned when the entire context was taken into account.

5.2 WMT’14 EN-DE AND WMT’17 EN-FI

Based on the observations for IWSLT’14, we test dense and softmax role assignment strategies with
32 roles. As the CNN and rank-1 tensor approximation were not effective, we do not evaluate them
in these larger-resource settings. We also do not consider the contextualized baseline. We present
the results in Table 2. First, we again observe that our own baseline is stronger than any reported
results on WMT’14 En-De. The improvement is up to 1.8 BLEU points.4 This assures us of the
fairness of the comparison. In this larger-resource regime, we observe that the improvement from
the proposed RIL is substantially smaller than the previous experiment. We generally observe as
before it is a good choice to use the residual variant of the RIL, and there is almost no difference
between the dense and softmax role assignment strategies when the residual connection is used.

The diminished improvement may be explained by two possibilities. One possibility is that the RIL
does not work as designed and does not have any effective contribution to modelling. The other is
that the large transformer, when trained with a large amount data, already captures the various roles
of tokens and does not benefit from explicit role interaction. In the latter case, the RIL may still
capture various roles, as designed, and it may still give us a window through which we can take a
peak at the internal mechanism behind the transformer, which we explore in the next section.
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R Freq Interpretation Examples
1 1251 adjective modifier or verb prefix ‘have a negative impact’, ‘if it prohibits’
3 1219 noun at end of sentence ‘above sea level .’, ‘photo ID card .’
5 301 (ad)verb or conjunction at sentence/clause start ‘Over the past’, ‘care before it is’
6 1263 infix of proper noun ‘the Jedlicka’, ‘at Quantico’
7 648 noun suffix (typically of proper noun) ‘The Korean is’, ‘said Reyes’

13 10087 stop word ‘the’, ‘is’, ‘in’, ‘to’, ‘a’
14 1108 suffix ‘telescope’, ’boredom’, ‘palliative’
16 915 prefix ‘telescope’, ‘palliative’
19 608 infix ’constellation’, ‘irritated’
22 4385 highly overloaded: verb, prep. object, etc. ‘I think this’, ‘of military weapons ’
28 2736 punctuation, conjunction and start of sentence ‘It is a’, ‘”It was’, ‘military weapons .’
29 1399 similar to role 3 and 22
30 2023 word, typically noun, preceded by ‘the’ ‘at the same time’, ‘of the time’

Table 3: Source-side (English) roles discovered by the RIL trained on WMT’14 En-De. The discov-
ered roles generally correspond to meaningful, context-dependent of tokens. Frequency is computed
over the development set. We omit roles that are rarely used or hard to interpret.

Roles Function Examples Translation
0, 23 pronoun in inner clause , vor der wir uns , in front of which we

, der neben ihr , the one next to her
1 article indicating possession ende der welt end of the world

(genitive) Gefühl der Verwirrung feeling of confusion
5, 9, 28 article for indirect object in der Wüste in the desert

(dative) zu der Erkenntnis kommen reaching the insight
6 pronoun Teufel der spricht devil who talks

der Gedanke der zählt the thought that counts
8,11 article in nominative der Präsident muss the president must

der Markt ist the market is
30 suffix as participle indicator nachlassender Sehfähigkeit decreasing eyesight

treibender kultur driving culture

Table 4: The case study of the German BPE token ‘der’ using the IWSLT’14 model. Based on the
context, different roles are assigned to the single token ‘der’.

5.3 QUALITATIVE ANALYSIS: ROLE DISCOVERY

Individual Roles: WMT’14 En-De We finetune RIL (softmax) + Residual models to train dis-
crete role assignments and run the resulting system over the development sets from WMT’14 En-De
to extract roles assigned to the source-side tokens. We manually inspect these role assignments to
interpret each of the 32 roles. In Table 3, we list most of the 32 roles for which we could find suitable
interpretation and which were assigned frequently enough. Although the context dependency makes
it difficult to understand each role on its own, we nevertheless make some interesting observations.

First, many of the roles are used to capture multi-token structures, such as phrase-level structures
or prefix-infix-suffix structures. For instance, the roles 14, 19 and 14 respectively correspond to the
prefix, infix and suffix of long words that are often broken into multiple subwords by the BPE seg-
mentation. Larger structures are also present: we observe many roles indicating the beginning and
end of sentences or clauses, such as roles 3 and 28. Second, many of these roles could be interpreted
as reflecting the tokens’ syntactic roles. For instance, role 1 is active for adjective modifiers and role
5 for adverbs or conjunctions at the start of a clause. Interestingly, due to BPE encoding we find
that entire words are categorized the same way as subwords. For example, the noun ‘States’ when
preceded by ‘United’ is typically assigned role 7 which is typically used for noun suffixes. For the
interested reader we provide a similar analysis for WMT’17 En-Fi in Table 5 of the appendix.

Individual Tokens: IWSLT’14 De-En In order to investigate the effect of context on the role
assignment, we turn to the model trained on IWSLT’14 De-En and inspect the German token ‘der’,
which we know to have multiple translations based on its contextual function. In Table 4, we list

4The improvement over Ott et al. (2018) is largely due to the updated preprocessing routine in FairSeq.
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some of the assigned roles and their functions. Inspecting these roles together with how ‘der’ was
translated into English, the importance of the latent role discovered and captured by the RIL is
apparent. It facilitates disambiguating various usages of ‘der’ by considering the context which is
particularly important for a proper English translation. Again, these roles are highly syntactic.

6 RELATED WORK

Variable Binding The role combination in Eq. (5) can be rewritten as

ẽt =

hr∑
i=1

rt,i [Uiet] = (rt ⊗ et)U,

where rt ⊗ et ∈ Rhr···h is a vectorized tensor product, and U = [U1;U2; · · · ;Uhr ] ∈ R(hr·h)×h is
the concatenation of our role-specific transformation matrices. This use of tensor product between
the token representation and the role assignment reminds us of earlier work addressing the variable
binding problem via tensor products (Smolensky, 1990; Clark & Pulman, 2007; Huang et al., 2018).

Modulated Transformation in Neural Networks The (latent) role assignment in the RIL can
be thought of as modulating linear transformations of the input token. This idea of using hidden
variables to modulate linear transformation of one variable to another has a long tradition in deep
learning. Memisevic & Hinton (2010) used such modulated connection to capture image transfor-
mation between a pair of input and output images, which was followed by Taylor & Hinton (2009)
who applied this idea to temporal modelling of motion, where the latent variables captured motion
style. This approach was used by Mnih & Hinton (2007) and Sutskever et al. (2011) for language
modelling, both of which are the closest works to ours in this paper. The former only focused on the
rank-1 approximation, and the latter assigned each input token to a separate role without having an
mechanism to cluster multiple tokens based on their context into a small number of groups, as done
in this paper. This idea was more recently applied to modelling compositionality of language (Socher
et al., 2013b) and relational reasoning (Socher et al., 2013a).

The Quality of Baselines One noticeable observation from our experiments is that our baseline
outperforms the previously published results by some margin. The matched baseline outperforms the
latest state-of-the-art translation quality achieved by the 2-D convolutional network on IWSLT’14
De-En, outperforms all the state-of-the-art results using transformers on WMT’14 En-De, and out-
performs the best entry from WMT’17 on WMT’17 En-Fi (Östling et al., 2017).5 This is due to our
careful tuning of the baselines, and agrees well with recent observations on how poorly baselines are
often treated (Melis et al., 2018; Merity et al., 2018).6 Even with these well-tuned, strong baselines,
the proposed RILs were found to generally further improve translation quality.

7 DISCUSSION AND CONCLUSION

In this paper, we proposed to explicitly incorporate context-dependent latent role interaction as a way
to enrich the conventional embedding layer for token representation. We introduced the role interac-
tion layer (RIL) which consists of two stages; role assignment and role combination. We evaluated
the effect of the proposed RIL on machine translation using the state-of-the-art transformer-based
system on two language pairs and two parallel corpora.

We make three notes about the proposed RIL when used for enriching the token representation in
neural machine translation. First, we observed that this explicit way of incorporating role interaction
through dedicated linear transformations improved the translation quality when the amount of data
was limited, as in IWSLT’14 De-En and WMT’17 En-Fi. This implies that such role binding cannot
be easily captured from a limited amount of data, but that we can encourage the model to do so by
explicitly giving it the capability of role interaction via the proposed RIL. Second, a large state-of-
the-art neural translation system, such as the one used in our experiments, does not benefit from the

5 http://matrix.statmt.org/matrix/output/1871?score_id=26781
6 See also https://goo.gl/oqU1kJ which illustrates a strong correlation between the reported base-

line and claimed improvement in each published paper using the same dataset from the same conference.
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proposed RIL when trained with a large amount of data, as in WMT’14 En-De. This was somewhat
expected due to the capability of a main part of the network in capturing long-term dependencies
across the entire context. This gives strong evidence that role interaction already happens implicitly
in existing state-of-the-art translation systems. Even in this case, the proposed RIL is useful due
to its inductive bias and resulting transparency. We can explicitly probe roles to which tokens on
both source and target sides were assigned, and easily group them according to the role assignment.
Lastly, we point out that the proposed RIL is not restricted to be used after the table lookup layer. Its
design was carefully done in order to allow it to be inserted in any part of an existing neural network.
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R Freq Interpretation Examples
0 844 adjective modifier or compound ‘at the same time’, ‘in the Middle East’
2 1411 noun at end of sentence or clause ‘the Middle East.’, ‘ten minutes, before’
3 921 infix of proper noun ‘said Wenger’, ‘from Kotka to’
4 271 infix of verb ‘are leveling off’, ‘are blasted with’
5 839 verb ‘Mugabe read out’, ‘be thanked for’
9 2762 (proper) noun prefixes or compound ‘Hewlett Packard’, ‘Robert Mugabe’

10 1689 word/enumeration after preposition ‘between Lamb and Schmidt’
14 3108 beginning (sometimes end) of sentence ‘There is no’, ‘Di Maria’
15 980 suffix ‘the 911 call’, ‘real estate’
16 972 words at beginning of clauses ‘but we will’, ‘, which would’
18 614 prefix Moody’, ‘the BBC’
21 1774 suffix ‘Square are’, ‘”Wenger’
24 7812 conjunctions, punctuations and prepositions ‘to’, ‘and’, ‘Lamb’s mind’
25 1994 articles ‘a’, ‘the’
29 1229 common nouns ‘your name’, ‘in a statement’
30 524 words after preposition, conjunction or punct. ‘food and grocery’, ‘in social media’
31 6365 stop word ‘the’, ‘be’, ‘not’, ‘just’

Table 5: Source-side (English) roles discovered by the RIL trained on WMT’17 En-Fi. We observe
that the discovered roles generally correspond to syntactic roles of tokens and that they are context-
dependent. Frequency is computed over the development set. Roles that are rarely used or hard to
interpret are omitted.
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