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ABSTRACT

Bayesian optimization (BO) is a popular methodology to tune the hyperparame-
ters of expensive black-box functions. Despite its success, standard BO focuses
on a single task at a time and is not designed to leverage information from related
functions, such as tuning performance objectives of the same algorithm across
multiple datasets. In this work, we introduce a novel approach to achieve trans-
fer learning across different datasets as well as different objectives. The main
idea is to regress the mapping from hyperparameter to objective quantiles with a
semi-parametric Gaussian Copula distribution, which provides robustness against
different scales or outliers that can occur in different tasks. We introduce two
methods to leverage this estimation: a Thompson sampling strategy as well as a
Gaussian Copula process using such quantile estimate as a prior. We show that
these strategies can combine the estimation of multiple objectives such as runtime
and accuracy, steering the optimization toward cheaper hyperparameters for the
same level of accuracy. Experiments on an extensive set of hyperparameter tuning
tasks demonstrate significant improvements over state-of-the-art methods.

1 INTRODUCTION

Tuning complex machine learning models such as deep neural networks can be a daunting task.
Object detection or language understanding models often rely on deep neural networks with many
tunable hyperparameters, and automatic hyperparameter optimization (HPO) techniques such as
Bayesian optimization (BO) are critical to find the good hyperparameters in short time. BO ad-
dresses the black-box optimization problem by placing a probabilistic model on the function to
minimize (e.g., the mapping of neural network hyperparameters to a validation loss), and determine
which hyperparameters to evaluate next by trading off exploration and exploitation through an ac-
quisition function. While traditional BO focuses on each problem in isolation, recent years have
seen a surge of interest in transfer learning for HPO. The key idea is to exploit evaluations from
previous, related tasks (e.g., the same neural network tuned on multiple datasets) to further speed up
the hyperparameter search.

A central challenge of hyperparameter transfer learning is that different tasks typically have different
scales, varying noise levels, and possibly contain outliers, making it hard to learn a joint model. In
this work, we show how a semi-parametric Gaussian Copula can be leveraged to learn a joint prior
across datasets in such a way that scale issues vanish. We then demonstrate how such prior estimate
can be used to transfer information across tasks and objectives. We propose two HPO strategies:
a Copula Thompson Sampling and a Gaussian Copula Process. We show that these approaches
can jointly model several objectives with potentially different scales, such as validation error and
compute time, without requiring processing. We demonstrate significant speed-ups over a number
of baselines in extensive experiments.

The paper is organized as follows. Section 2 reviews related work on transfer learning for HPO.
Section 3 introduces Copula regression, the building block for the HPO strategies we propose in
Section 4. Specifically, we show how Copula regression can be applied to design two HPO strategies,
one based on Thompson sampling and an alternative GP-based approach. Experimental results are
given in Section 5 where we evaluate both approaches against state-of-the-art methods on three
algorithms. Finally, Section 6 outlines conclusions and further developments.
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2 RELATED WORK

A variety of methods have been developed to induce transfer learning in HPO. The most com-
mon approach is to model tasks jointly or via a conditional independence structure, which has
been been explored through multi-output GPs (Swersky et al., 2013), weighted combination of
GPs (Schilling et al., 2016; Wistuba et al., 2018; Feurer et al., 2018), and neural networks, either
fully Bayesian (Springenberg et al., 2016) or hybrid (Snoek et al., 2015; Perrone et al., 2018; Law
et al., 2018). A different line of research has focused on the setting where tasks come over time
as a sequence and models need to be updated online as new problems accrue. A way to achieve
this is to fit a sequence of surrogate models to the residuals relative to predictions of the previously
fitted model (Golovin et al., 2017; Poloczek et al., 2016). Specifically, the GP over the new task is
centered on the predictive mean of the previously learned GP. Finally, rather than fitting a surrogate
model to all past data, some transfer can be achieved by warm-starting BO with the solutions to the
previous BO problems (Feurer et al., 2015; Wistuba et al., 2015b).

A key challenge for joint models is that different black-boxes can exhibit heterogeneous scale and
noise levels (Bardenet et al., 2013; Feurer et al., 2018). To address this, some methods have instead
focused on search-space level, aiming to prune it to focus on regions of the hyperparameter space
where good configurations are likely to lie. An example is Wistuba et al. (2015a), where related
tasks are used to learn a promising search space during HPO, defining task similarity in terms of
the distance of the respective data set meta-features. A more recent alternative that does not require
meta-features was introduced in Perrone et al. (2019), where a restricted search space in the form
of a low-volume hyper-rectangle or hyper-ellipsoid is learned from the optimal hyperparameters of
related tasks. Rank estimation can be used to alleviate scales issues however the difficulty of feeding
back rank information to GP leads to restricting assumptions, for instance (Bardenet et al., 2013)
does not model the rank estimation uncertainty while (Feurer et al., 2018) uses independent GPs
removing the adaptivity of the GP to the current task. Gaussian Copula Process (GCP) (Wilson &
Ghahramani, 2010) can also be used to alleviate scale issues on a single task at the extra cost of
estimating the CDF of the data. Using GCP for HPO was proposed in Anderson et al. (2017) to
handle potentially non-Gaussian data, albeit only considering non-parametric homoskedastic priors
for the single-task and single objective case.

3 GAUSSIAN COPULA REGRESSION

For each task denote with f j : Rp → R the error function one wishes to minimize, and with
D = {xi, yi}Ni=1 the evaluations available for an arbitrary task. Given the evaluations on M tasks
DM =

⋃
1≤j≤M{x

j
i , y

j
i }
Nj
i=1, we are interested in speeding up the optimization of an arbitrary

new task f , namely in finding arg minx∈Rp f(x) in the least number of evaluations. One possible
approach to speed-up the optimization of f is to build a surrogate model f̂(x). While using a
Gaussian process is possible, scaling such an approach to the large number of evaluations available
in a transfer learning setting is challenging. Instead, we propose fitting a parametric estimate of
f̂θ(x) distribution which can be later used in HPO strategies as a prior of a Gaussian Copula Process.
A key requirement here is to learn a joint model, e.g., we would like to find θ which fits well on
all observed tasks f j . We show how this can be achieved with a semi-parametric Gaussian Copula
in two steps: first we map all evaluations to quantiles with the empirical CDF, and then we fit a
parametric Gaussian distribution on quantiles mapped through the Gaussian inverse CDF.

First, observe that as every yi comes from the same distribution for a given task, the probability
integral transform results in ui = F (yi), where F is the cumulative distribution function of y. We
then model the CDF of (u1, . . . , uN ) with a Gaussian Copula:

C(u1, . . . , uN ) = φµ,Σ(Φ−1(F (y1)), . . . ,Φ−1(F (yN ))),

where Φ is the standard normal CDF and φµ,Σ is the CDF of a normal distribution parametrized by
µ and Σ. Assuming F to be invertible, we define the change of variable z = Φ−1 ◦ F (y) = ψ(y)
and g = ψ ◦ f .1 We regress the marginal distribution of P (z|x) with a Gaussian distribution whose

1Note that if z is regressed perfectly, then finding the minimum of f is solved as a parameter x minimizing
ψ(f(x)) also minimizes f(x) since ψ is monotonically increasing.

2



Under review as a conference paper at ICLR 2020

mean and variance are two deterministic parametric functions given by

P (z|x) ∼ N (µθ(x), σθ(x)) = N (wTµhwh(x) + bµ,Ψ(wTσ hwh(x) + bσ)),

where hwh(x) ∈ Rd is the output of a multi-layer perceptron (MLP) where wh, wµ ∈ Rd, bµ ∈
R, wσ ∈ Rd, bσ ∈ R are projection parameters and Ψ(t) = log(1 + exp t) is an activation mapping
to positive numbers. The parameters θ = {wh, wµ, bµ, wσ, bσ} together with the parameters in
MLP are learned by minimizing the Gaussian negative log-likelihood on the available evaluations
DM =

⋃
1≤j≤M{x

j
i , z

j
i }
Nj
i=1, e.g., by minimizing

∑
(x,z)∈DM

1

2
log 2πσ(x)2 +

1

2

(
z − µ(x)

σ(x)

)2

+ ψ′(ψ−1(z)), (1)

with SGD. Here, the term ψ′(ψ−1(z)) accounts for the change of variable z = ψ(y). Due to the
term ψ′(ψ−1(z)), errors committed where the quantile function changes rapidly have larger gradient
than when the quantile function is flat. Note that while we weight evaluations of each tasks equally,
one may alternatively normalize gradient contributions per number of task evaluations.

The transformation ψ requires F , which needs to be estimated. Rather than using a parametric
or density estimation approach, we use the empirical CDF F̃ (t) = 1

N

∑N
i=1 1yi≤t. While this

estimator has the advantage of being non-parametric, it leads to infinite value when evaluating ψ at
the minimum of maximum of y. To avoid this issue, we use the Winsorized cut-off estimator

F (t) ≈


δN if F̃ (t) < δN
F̃ (t) if δN ≤ F̃ (t) ≤ 1− δN
1− δN if F̃ (t) > 1− δN

whereN is the number of observations of y and choosing δN = 1
4N1/4

√
π logN

strikes a bias-variance
trade-off (Liu et al., 2009). This approach is semi-parametric in that the CDF is estimated with a
non-parametric estimator and the Gaussian Copula is estimated with a parametric approach.

The benefit of using a non-parametric estimator for the CDF is that it allows us to map the obser-
vations of each task to comparable distributions as zj ∼ N (0, 1) for all tasks j. This is critical to
allow the joint learning of the parametric estimates µθ and σθ, which share their parameter θ across
all tasks. As our experiments will show, one can regress a parametric estimate that has a standard
error lower than 1. This means that information can be leveraged from the evaluations obtained on
related tasks, whereas a trivial predictor for z would predict 0 and yield a standard error of 1. In the
next section we show how this estimator can be leveraged to design two novel HPO strategies.

4 COPULA BASED HPO

4.1 COPULA THOMPSON SAMPLING

Given the predictive distribution P (z|x) ∼ N (µθ(x), σθ(x)), it is straightforward to derive a
Thompson sampling strategy (Thompson, 1933) exploiting knowledge from previous tasks. Given
N candidate hyperparameter configurations x1, . . . , xN , we sample from each predictive distribu-
tion z̃i ∼ N (µθ(xi), σθ(xi)) and then evaluate f(xi) where i = arg mini z̃i. Pseudo-code is given
in the appendix.

While this approach can re-use information from previous tasks, it does not exploit the evaluations
from the current task as each draw is independent of the observed evaluations. This can become an
issue if the new black-box significantly differs from previous tasks. We now show that Gaussian
Copula regression can be combined with a GP to both learn from previous tasks while adapting to
the current task.

4.2 GAUSSIAN COPULA PROCESS

Instead of modeling observations with a GP, we model them as a Gaussian Copula Process (GCP)
(Wilson & Ghahramani, 2010). Observations are mapped through the bijection ψ = Φ−1 ◦ F , where
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we recall that Φ is the standard normal CDF and that F is the CDF of y. As ψ is monotonically
increasing and mapping into the line, we can alternatively view this modeling as a warped GP
(Snelson et al., 2004) with a non-parametric warping. One advantage of this transformation is that
z = ψ(y) follows a normal distribution, which may not be the case for y = f(x). In the specific
case of HPO, y may represent accuracy scores in [0, 1] of a classifier where a Gaussian cannot be
used. Furthermore, we can use the information gained on other tasks with µθ and σθ by using them
as prior mean and variance. To do so, the following residual is modeled with a GP:

r(x) =
g(x)− µθ(x)

σθ(x)

∼ GP(m(x), k(x, x′)),

where g = ψ ◦ f . We use a Matérn-5/2 covariance kernel and automatic relevance determination
hyperparameters, optimized by type II maximum likelihood to determine GP hyperparameters (Ras-
mussen & Williams, 2006). Fitting the GP gives the predictive distribution of the residual surrogate

r̂(x) ∼ N (µr(x), σr(x)).

Because µθ and σθ are deterministic functions, the predictive distribution of the surrogate ĝ is then
given by

ĝ(x) = r̂(x)σθ(x) + µθ(x)

∼ N (µg(x), σg(x))

∼ N (µr(x)σθ(x) + µθ(x), σr(x)σθ(x))

Using this predictive distribution, we can select the hyperparameter configuration maximizing the
Expected Improvement (EI) (Mockus et al., 1978) of g(x). The EI can then be defined in closed
form as

EI(x) = E[max(0, g(xmin)− ĝ(x))]

= σ2(x)(v(x)Φ(v(x)) + φ(v(x))), where v(x) :=
µg(x)− g(xmin)

σ2
g(x)

,

with Φ and φ being the CDF and PDF of the standard normal, respectively. When no observations
are available, the empirical CDF F̃ is not defined. Therefore, we warm-start the optimization on the
new task by sampling a set of N0 = 5 hyperparameter configurations via Thompson sampling, as
described above. Pseudo-code is given in Algorithm 1.

Algorithm 1 Gaussian Copula process (CGP)
Learn the parameters θ of µθ(x) and σθ(x) on hold-out evaluationsDM by minimizing equation 1.
Sample an initial set of evaluations D = {(xi, f(xi))}N0

i=1 via Thompson sampling 2.
while Has budget do

Fit the GP surrogate r̂ to the observations {(x, ψ(y)−µθ(x)
σθ(x) ) | (x, y) ∈ D}

Sample N candidate hyperparameters x1, . . . , xN from the search space
Compute the hyperparameter xi where i = arg maxi EI(xi)
Evaluate yi = f(xi) and update D = D ∪ {(xi, yi))}.

end while

4.3 OPTIMIZING MULTIPLE OBJECTIVES

In addition to optimizing the accuracy of a black-box function, it is often desirable to optimize
its runtime or memory consumption. For instance, given two hyperparameters with the same ex-
pected error, the one requiring fewer resources is preferable. For tasks where runtime is avail-
able, we use both runtime and error objectives by averaging in the transformed space, e.g., we set
z(x) = 1

2 (zerror(x) + ztime(x)), where zerror(x) = ψ(f error(x)) and ztime(x) = ψ(f time(x)) denote
the transformed error and time observations, respectively. This allows us to seamlessly optimize
for time and error when running HPO, so that the cheaper hyperparameter is favored when two hy-
perparameters lead to a similar expected error. Notice many existing multi-objective methods can
potentially be combined with our Copula transformation as an extension, which we believe is an
interesting venue for future work.
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tasks # datasets # hyperparameters # evaluations per dataset available objectives

DeepAR 11 6 ∼ 220 quantile loss, time
FCNET 4 9 62208 MSE, time
XGBoost 9 9 5000 1-AUC

Table 1: A summary of the three HPO problems we consider.

5 EXPERIMENTS

We considered the problem of tuning three algorithms on multiple datasets: XGBoost (Chen &
Guestrin, 2016), a 2-layer feed-forward neural network (FCNET) (Klein & Hutter, 2019), and the
RNN-based time series prediction model proposed in Salinas et al. (2017) (DeepAR). We tuned
XGBoost on 9 libsvm datasets (Chang & Lin, 2011) to minimize 1−AUC, and FCNET on 4
datasets from Klein & Hutter (2019) to minimize the test mean squared error. As for DeepAR, the
evaluations were collected on the data provided by GluonTS (Alexandrov et al., 2019), consisting of
6 datasets from the M4-competition (Makridakis et al., 2018) and 5 datasets used in Lai et al. (2017),
and the goal is to minimize the quantile loss. Additionally, for DeepAR and FCNET the runtime
to evaluate each hyperparameter configuration was available, and we ran additional experiments
exploiting this objective. More details on the HPO setup are in Table 1, and the search spaces of the
three problems is in Table 4 of the appendix. Lookup tables are used as advocated in Eggensperger
et al. (2012), more details and statistics can be found in the appendix.

We compare against a number of baselines. We consider random search and GP-based BO as two of
the most popular HPO methods. As a transfer learning baseline, we consider warm-start GP (Feurer
et al., 2015), using the best-performing evaluations from all the tasks to warm start the GP on the
target task (WS GP best). As an extension of WS GP best, we apply standardization on the
objectives of the evaluations for every task and then use all of them to warm start the GP on the target
task (WS GP all). We also compare against two recently published transfer learning methods for
HPO: ABLR (Perrone et al., 2018) and a search space-based transfer learning method (Perrone et al.,
2019). ABLR is a transfer learning approach consisting of a shared neural network across tasks on
top of which lies a Bayesian linear regression layer per task. Finally, Perrone et al. (2019) transfers
information by fitting a bounding box to contain the best hyperparameters from each previous task,
and applies random search (Box RS) or GP-based BO (Box GP) in the learned search space.

We assess the transfer learning capabilities of these methods in a leave-one-task-out setting: we
sequentially leave out one dataset and then aggregate the results for each algorithm. The perfor-
mance of each method is first averaged over 30 replicates for one dataset in a task, and the relative
improvements over random search are computed on every iteration for that dataset. The relative im-
provement for an optimizer (opt) is defined by (yrandom−yopt)/yrandom, which is upper bounded
by 100%. Notice that all the objectives y are in R+. By computing the relative improvements, we
can aggregate results across all datasets for each algorithm. Finally, for all copula-based methods,
we learn the mapping to copulas via a 3-layer MLP with 50 units per layer, optimized by ADAM
with early-stopping.

5.1 ABLATION STUDY

To give more insight into the components of our method, we perform a detailed ablation study to
investigate the choice of the MLP and compare the copula estimation to simple standardization.

Choice of copula estimators For copula-based methods, we use an MLP to estimate the output.
We first compare to other possible options, including a linear model and a k-nearest neighbor esti-
mator in a leave-one-out setting: we sequentially take the hyperparameter evaluations of one dataset
as test set and use all evaluations from the other datasets as a training set. We report the RMSE in
Table 5 of the appendix when predicting the error of the blackbox. From this table, it is clear that
MLP tends to be the best performing estimator among the three. In addition, a low RMSE indicates
that the task is close to the prior that we learned on all the other tasks, and we should thus expect
transfer learning methods to perform well. As shown later by the BO experiments, FCNET has the
lowest RMSE among the three algorithms, and all transfer learning methods indeed perform much
better than single-task approaches.
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Homoskedastic and Heteroskedastic noise The proposed Copula estimator (MLP) uses het-
eroskedastic noise for the prior. We now compare it to a homoskedastic version where we only
estimate the mean. The results are summarized in Table 2 where average relative improvements
over random search across all the iterations and replicates are shown. It is clear that heteroskedas-
ticity tends to help on most datasets.

Copula transformation and standardization In our method, we map objectives to be normally
distributed in two steps: first we apply the probability integral transform, followed by a Copula
transform using the inverse CDF of a Gaussian. To demonstrate the usefulness of such transforma-
tion, we compare it to a simple standardization of the objectives where mean and std are computed
on each datasets separately. Results are reported in Table 2. It is clear that standardization per-
forms significantly worse than the Copula transformation, indicating that it is not able to address the
problem of varying scale and noise levels across tasks. Note that the relative improvement objec-
tive is not lower bounded, so that when random search finds very small values the scale of relative
improvement can be arbitrary large (such as for the Protein dataset in FCNET).

task dataset TS std CTS Ho CTS He GP std CGP Ho CGP He

DeepAR electricity -13.2 0.3 0.8 -15.3 0.4 0.8
exchange-rate -127.2 1.8 2.9 -130.6 3.0 3.3
m4-Daily -58.0 1.0 1.1 -107.3 1.4 1.4
m4-Hourly -98.6 -0.8 -0.8 -94.7 0.7 3.0
m4-Monthly -24.2 0.3 0.6 -19.2 0.9 1.0
m4-Quarterly -15.6 0.5 0.8 -11.8 0.8 1.0
m4-Weekly -96.1 0.2 0.4 -81.9 0.3 0.6
m4-Yearly -14.0 0.4 0.7 -13.6 0.8 1.1
solar -14.1 0.4 0.5 -8.7 0.8 1.1
traffic -17.3 0.3 0.0 -7.4 0.7 0.5
wiki-rolling -4.5 0.3 0.3 -4.6 0.4 0.5

FCNet naval -20602.7 72.0 78.9 -4368.4 81.7 82.3
parkinsons -78.6 27.8 29.6 -96.1 42.1 38.8
protein -18.8 5.4 6.6 -9.6 8.1 8.3
slice -870.6 46.3 53.5 14.2 58.5 58.9

XGBoost a6a -0.7 0.0 -0.1 -0.3 0.2 0.2
australian -50.8 0.2 0.4 -53.4 3.4 3.7
german.numer -12.2 0.6 0.5 -12.7 0.6 0.7
heart -70.1 -0.1 0.9 -129.0 3.9 5.1
ijcnn1 -38.8 1.7 3.0 -11.7 5.9 5.8
madelon -37.9 -0.4 -0.4 -16.2 4.9 4.2
spambase -30.2 0.6 -0.9 -16.9 2.6 1.0
svmguide1 -28.3 0.8 -0.3 -17.0 1.2 1.2
w6a 0.6 0.9 0.5 2.7 4.0 3.4

Table 2: Relative improvements over random search. TS std and GP std respectively using a
simple standardization instead of the copula transformation. Ho and He stand for Homoskedastic
and Heteroskedastic noise.

5.2 RESULTS

We now compare the proposed methods to other HPO baselines. The results on using only the error
information are shown first followed by the results using both time and error information.

Results using only error information We start by studying the setting where only error objectives
are used to learn the copula transformation. Within each task, we first aggregate 30 replicates for
each method to compute the relative improvement over random search at every iteration, and then
average the results across all iterations. The results are reported in Table 3 , showing that CGP is
the best method for almost every task except XGBoost. In XGBoost, there are several tasks on
which methods without transfer learning perform quite well. This is not surprising as we observe in
an ablation study on copula estimators (see Table 5 in the appendix) that some tasks in XGBoost
have relatively high test errors, implying that the transferred prior will not help. In those tasks, CGP
is usually the runner-up method after standard GP. We also report the results at iteration 10, 50 and
100 in the Tables 7, 8 and 9 in the appendix where we observe CGP and Box RS are the most
competitive methods at 10th iteration but at 100 iteration, CGP is clearly the best transfer learning
method. This highlights the advantage of being adaptive to the target task of our method while
making effective transfer in the beginning.
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task dataset ABLR Box GP Box RS CGP CTS GP WS GP all WS GP best

DeepAR electricity -2.7 -2.1 0.8 0.8 0.8 0.2 -2.4 -2.3
exchange-rate 0.5 -0.2 2.1 3.3 2.9 0.6 0.6 0.3
m4-Daily -1.2 -1.0 0.1 1.4 1.1 -0.1 -0.9 -0.7
m4-Hourly -18.0 -12.1 -2.8 3.0 -0.8 -1.3 -9.8 -11.7
m4-Monthly -0.7 0.2 0.6 1.0 0.6 0.2 0.2 0.6
m4-Quarterly -0.4 -0.1 0.6 1.0 0.8 0.1 0.1 0.0
m4-Weekly -3.8 -3.2 0.5 0.6 0.4 0.1 -2.9 -3.2
m4-Yearly -0.1 0.2 0.3 1.1 0.7 0.5 -0.2 0.3
solar -0.3 0.3 0.8 1.1 0.5 0.3 -0.5 -0.1
traffic -1.3 -0.7 0.5 0.5 0.0 0.2 -0.4 -0.3
wiki-rolling 0.1 0.1 0.2 0.5 0.3 0.1 0.3 0.0

FCNet naval 57.1 70.6 80.6 82.3 78.9 -64.3 61.2 65.9
parkinsons 14.1 27.1 27.3 38.5 29.4 20.2 19.9 27.6
protein 0.3 6.8 5.8 8.3 6.6 3.3 6.3 5.9
slice 1.8 37.1 48.3 58.7 53.3 21.4 41.9 35.9

XGBoost a6a -0.1 0.1 0.1 0.2 -0.1 0.2 -0.1 -0.1
australian -1.2 1.4 3.1 3.7 0.4 1.7 1.5 0.8
german.numer -1.3 0.2 1.3 0.7 0.5 -0.3 1.3 0.2
heart 1.5 1.5 2.3 5.1 0.9 2.8 -2.1 4.4
ijcnn1 -8.1 3.1 5.0 5.8 3.0 4.1 3.4 4.4
madelon 2.4 3.5 1.7 4.2 -0.4 4.4 0.3 1.4
spambase -2.9 0.9 0.0 1.0 -0.9 1.8 -0.3 -0.5
svmguide1 -3.2 0.8 1.7 1.2 -0.3 1.1 0.4 0.4
w6a 0.8 1.1 -2.5 3.4 0.5 3.8 -0.8 0.9

Table 3: Relative improvements over random search averaged over all the iterations. The best
methods are highlighted in bold.
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Figure 1: Results using only error information, with the current optimum plotted against the number
of used evaluations.

We also show results on two example datasets from each algorithm in Figure 1, reporting confidence
intervals obtained via bootstrap. Note that the performance of the methods in the examples for
DeepAR and XGBoost exhibit quite high variations, especially in the beginning of the BO. We
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Figure 2: Two example tasks using both error and time information, with the current optimum
plotted against time.

conjecture this is due to an insufficient number of evaluations in the lookup tables. Nevertheless, the
general trend is that CTS and CGP outperform all baselines, especially in the beginning of the BO.
It can also be observed that CGP performs at least on par with the best method at the end of the BO.
Box RS is also competitive at the beginning, but as expected fails to keep its advantage toward the
end of the BO.

Results using both error and time information We then studied the ability of the copula-based
approaches to transfer information from multiple objectives. Notice it is possible to combine Copula
transformation with other multi-objective BO methods and we will leave this direction as future
work. We show two example tasks in DeepAR and FCNET in Figure 2, where we fix the total
number of iterations and plot performance against time with 2 standard error. To obtain distributions
over seeds for one method, we only consider the time range where 20 seeds are available ,which
explains why methods can start and end at different times. With the ability to leverage training time
information, the copula-based approaches have a clear advantage over all baselines, especially at the
beginning of the optimization.

We also report aggregate performance over all the tasks in Table 6 in the appendix. Due to the
different methods finishing the optimization at different times, we only compare them up to the time
taken by the fastest method. For each method we first compute an average over 30 replicates, then
compute the relative improvement over random search, and finally average the results across all time
points. The copula based methods converge to a good hyperparameter configuration significantly
faster than all the considered baselines. Note that we obtain similar results as for Hyperband-style
methods (Li et al., 2016), where the optimization can start much earlier than standard HPO, with the
key difference that we only require a single machine.

6 CONCLUSIONS

We introduced a new class of methods to accelerate hyperparameter optimization by exploiting eval-
uations from previous tasks. The key idea was to leverage a semi-parametric Gaussian Copula prior,
using it to account for the different scale and noise levels across tasks. Experiments showed that
we considerably outperform standard approaches to BO, and deal with heterogeneous tasks more
robustly compared to a number of transfer learning approaches recently proposed in the literature.
Finally, we showed that our approach can seamlessly combine multiple objectives, such as accuracy
and runtime, further speeding up the search of good hyperparameter configurations.

A number of directions for future work are open. First, we could combine our Copula-based HPO
strategies with Hyperband-style optimizers (Li et al., 2016). In addition, we could generalize our
approach to deal with settings in which related problems are not limited to the same algorithm run
over different datasets. This would allow for different hyperparameter dimensions across tasks, or
perform transfer learning across different black-boxes.
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A APPENDIX

Algorithm 2 Copula Thompson sampling (CTS)
Learn the parameters θ of µθ(x) and σθ(x) on hold-out evaluationsDM by minimizing equation 1.
while Has budget do

Sample N candidate hyperparameters x1, . . . , xN from the search space
Draw z̃i ∼ N (µθ(xi), σθ(xi)) for i = 1, . . . , N
Evaluate f(xi) where i = arg mini z̃i

end while

A.1 LOOKUP TABLES

To speed up experiments we used a lookup table approach advocated in Eggensperger et al. (2012)
which proposed to use an extrapolation model built on pre-generated evaluations to limit the number
of blackbox evaluations, thus saving a significant amount of computational time. However, the ex-
trapolation model can introduce noise and lead to inconsistencies compared to using real blackbox
evaluations. As a result, in this work we reduced BO to the problem of selecting the next hyperpa-
rameter configurations from a fixed set that has been evaluated in advance, so that no extrapolation
error is introduced.

All evaluations were obtained by querying each algorithm at hyperparameters sampled (log) uni-
formly at random from their search space as described in Table 4. The CDF on the error objectives
is given in Figure 3.
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Figure 3: CDF of error metrics for the three tasks. Every line represent one dataset. The metrics are
scaled first by min-max scaling and the x-axis is log scaled.

Results on different iterations. We plot the improvement over random research for all the meth-
ods at iteration 10, 50 and 100 at Table 7, 8 and 9, respectively. In short, at 10th iteration, transfer
learning methods, especially our CGP and Box RS, performed much better than GP. But, when look-
ing at results at 50 and 100 iterations, CGP outperforms clearly all other transfer methods because
of its improved adaptivity.

More details on prior MLP architecture. The MLP used to regress µθ and σθ consists of 3 layers
with 50 nodes, each with a dropout layer set to 0.5. The learning rate is set to 0.01, batch size to 64
and we optimize over 100 gradient updates 3 times, lowering the learning rate by 10 each time.
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tasks hyperparameter search space type scale

DeepAR

# layers [1, 5] integer linear
# cells [10, 120] integer linear

learning rate [10−4, 0.1] continuous log10
dropout rate [10−2, 0.5] continuous log10

context length ratio [10−1, 4] continuous log10
# bathes per epoch [10, 104] integer log10

XGBoost

num round [2, 29] integer log2
eta [0, 1] continuous linear

gamma [2−20, 26] continuous log2
min child weight [2−8, 26] continuous log2

max depth [2, 27] integer log2
subsample [0.5, 1] continuous linear

colsample bytree [0.3, 1] continuous linear
lambda [2−10, 28] continuous log2

alpha [2−20, 28] continuous log2

FCNET

initial lr {0.005, 0.001, 0.05, 0.01, 0.05, 0.1} categorical -
batch size {8, 16, 32, 64} categorical -

lr schedule {cosine, fix} categorical -
activation layer 1 {relu, tanh} categorical -
activation layer 2 {relu, tanh} categorical -

size layer 1 {16, 32, 64, 128, 256, 512} categorical -
size layer 2 {16, 32, 64, 128, 256, 512} categorical -

dropout layer 1 {0.0, 0.3, 0.6} categorical -
dropout layer 2 {0.0, 0.3, 0.6} categorical -

Table 4: A summary of the search spaces for the three algorithms.

task dataset KNN 10 KNN 20 KNN 5 Linear MLP

DeepAR electricity 0.831 0.831 0.831 0.801 0.740
exchange-rate 0.842 0.842 0.842 0.783 0.780
m4-Daily 0.804 0.804 0.804 0.792 0.776
m4-Hourly 0.960 0.960 0.960 0.948 0.884
m4-Monthly 0.783 0.783 0.783 0.762 0.750
m4-Quarterly 0.868 0.868 0.868 0.792 0.773
m4-Weekly 0.776 0.776 0.776 0.754 0.733
m4-Yearly 0.844 0.844 0.844 0.785 0.759
solar 0.963 0.963 0.963 0.875 0.812
traffic 0.885 0.885 0.885 0.850 0.829
wiki-rolling 0.904 0.904 0.904 0.868 0.826

FCNet naval 0.509 0.509 0.509 0.602 0.491
parkinsons 0.571 0.571 0.571 0.736 0.571
protein 0.505 0.505 0.505 0.607 0.497
slice 0.564 0.564 0.564 0.559 0.555

XGBoost a6a 1.091 1.091 1.091 1.067 1.040
australian 0.827 0.827 0.827 0.873 0.758
german.numer 0.900 0.900 0.900 0.891 0.820
heart 0.818 0.818 0.818 0.793 0.702
ijcnn1 0.951 0.951 0.951 0.936 0.917
madelon 0.908 0.908 0.908 0.887 0.834
spambase 0.931 0.931 0.931 0.950 0.818
svmguide1 0.849 0.849 0.849 0.912 0.798
w6a 1.039 1.039 1.039 1.054 1.003

Table 5: RMSE comparison for prior estimators when predicting the blackbox error given its param-
eters.
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task dataset ABLR Box GP CGP CTS GP WS GP all WS GP best

DeepAR electricity -19.7 -17.2 10.0 10.3 -0.3 -18.5 -17.0
exchange-rate 7.4 6.4 38.7 39.1 0.2 -0.3 7.7
m4-Daily -17.5 -15.7 20.1 20.6 -1.7 -16.9 -14.8
m4-Hourly -103.6 -99.7 30.9 29.8 3.0 -102.0 -102.0
m4-Monthly 3.7 6.7 5.0 4.6 -0.6 6.5 7.6
m4-Quarterly -10.3 -9.6 0.7 -0.4 -0.6 -9.2 -9.6
m4-Weekly -26.7 -24.6 0.2 -1.4 -0.6 -23.0 -23.5
m4-Yearly -3.8 -3.1 2.2 2.1 -0.1 -3.7 -2.9
solar 1.6 4.0 5.6 5.6 0.1 3.4 3.3
traffic -36.7 -34.5 3.6 3.8 0.4 -33.7 -33.6
wiki-rolling -1.1 -0.9 2.3 2.5 0.1 -0.3 -1.0

FCNet naval -80.6 69.4 90.1 89.5 -150.0 45.7 58.8
parkinsons -38.5 30.3 53.2 46.4 22.3 27.0 26.9
protein -6.9 10.1 12.7 10.8 4.1 12.6 7.4
slice -14.5 6.1 83.3 80.9 22.4 8.1 8.4

Table 6: Relative improvements over random search averaged over time.

task dataset ABLR Box GP Box RS Copula-GP Copula-TS GP WS GP all WS GP best

DeepAR electricity -4.1 -1.2 1.4 1.0 0.1 -0.1 -1.3 -1.4
exchange-rate -2.0 4.5 5.7 3.6 5.8 0.9 4.8 3.4
m4-Daily -3.4 -1.3 1.0 0.5 0.6 0.3 -1.1 0.6
m4-Hourly -1.9 2.9 4.7 4.7 5.0 5.4 3.1 3.9
m4-Monthly -1.5 1.0 1.6 1.6 1.5 0.2 1.5 1.7
m4-Quarterly -1.3 0.0 0.0 1.0 0.7 0.0 0.7 -0.1
m4-Weekly -2.6 -0.1 2.1 1.1 1.8 0.2 0.8 1.0
m4-Yearly -0.8 0.5 0.1 1.3 0.7 0.3 0.1 0.3
solar -1.3 0.5 1.8 1.4 1.4 0.6 0.3 0.0
traffic -3.0 -1.1 1.0 0.2 -0.1 0.1 -0.5 -0.5
wiki-rolling 0.2 0.5 0.6 0.8 0.6 0.1 1.0 0.4

FCNet naval 79.8 87.9 95.7 95.8 94.9 -841.0 63.2 71.0
parkinsons 5.9 32.7 42.9 46.9 45.1 -3.3 34.9 24.6
protein -2.6 5.9 8.7 11.4 8.3 0.8 10.9 5.7
slice -16.7 59.5 74.0 80.0 78.9 -42.5 59.7 59.7

XGBoost a6a -0.5 -0.1 0.0 -0.1 -0.2 -0.2 -0.2 -0.3
australian -7.9 1.6 5.3 3.1 1.2 1.2 -1.5 0.5
german.numer -0.7 0.6 1.6 0.9 0.6 -0.2 0.7 -0.3
heart -0.8 2.1 2.5 4.2 2.8 1.5 -0.3 3.8
ijcnn1 -13.9 -0.4 9.1 8.0 5.2 2.9 5.9 6.6
madelon -1.4 2.1 4.3 3.0 -1.2 1.0 1.2 4.3
spambase -5.5 -2.1 0.2 -2.7 -1.6 -1.9 -0.6 -0.5
svmguide1 -2.9 0.9 2.0 1.2 0.2 0.0 0.1 1.2
w6a -0.9 1.6 -0.7 2.1 1.7 2.2 0.5 2.1

Table 7: Relative improvements over random search at iteration 10.

task dataset ABLR Box GP Box RS Copula-GP Copula-TS GP WS GP all WS GP best

DeepAR electricity -0.6 -0.2 0.3 0.1 0.1 0.1 -0.6 -0.4
exchange-rate 1.8 -0.2 -0.1 2.1 1.3 0.6 1.2 1.0
m4-Daily -0.2 -0.2 0.2 0.6 -0.2 0.1 0.0 -0.2
m4-Hourly -10.3 -4.2 -4.7 1.9 -3.8 -4.1 -2.0 -3.9
m4-Monthly -0.3 0.2 -0.1 0.8 0.2 0.4 0.1 0.5
m4-Quarterly -0.5 -0.1 0.2 0.4 0.1 0.2 0.1 0.0
m4-Weekly -0.1 0.3 0.3 1.0 0.2 0.4 0.5 0.1
m4-Yearly 0.1 0.2 -0.1 0.7 0.4 0.5 -0.3 0.3
solar 0.2 0.4 0.4 1.0 0.4 0.5 -0.7 -0.2
traffic -0.5 -0.4 0.0 0.3 -0.2 0.3 0.1 0.2
wiki-rolling -0.2 -0.1 -0.2 0.1 -0.1 0.0 0.0 -0.5

FCNet naval 59.6 72.7 80.4 81.5 77.9 46.2 64.4 70.9
parkinsons 16.9 26.1 23.1 33.5 24.4 24.9 19.5 27.5
protein 0.0 7.0 4.2 6.8 5.1 3.2 5.3 5.8
slice 4.5 39.2 43.3 55.3 48.0 34.2 44.9 38.8

XGBoost a6a -0.1 0.1 0.1 0.2 -0.1 0.2 -0.1 -0.1
australian -0.9 1.3 2.0 4.3 -0.3 1.8 2.1 0.0
german.numer -1.5 0.1 1.0 0.4 0.5 -0.5 1.5 0.3
heart 2.6 2.5 2.3 5.1 1.8 3.7 -0.8 6.6
ijcnn1 -8.1 4.2 4.5 7.5 3.2 5.8 4.2 5.6
madelon 3.6 3.5 0.9 4.3 -0.1 4.9 0.5 1.0
spambase -2.8 1.5 -0.5 1.6 -0.6 2.2 -0.1 -0.4
svmguide1 -3.1 0.9 1.2 1.1 -0.3 1.3 0.6 0.7
w6a 1.8 1.9 -2.3 4.3 1.0 4.8 -0.6 1.0

Table 8: Relative improvements over random search at iteration 50.
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task dataset ABLR Box GP Box RS Copula-GP Copula-TS GP WS GP all WS GP best

DeepAR electricity -0.5 -0.2 0.0 0.0 0.0 -0.1 -0.2 -0.2
exchange-rate 1.0 -0.4 -0.4 0.8 0.1 0.3 0.4 0.6
m4-Daily -0.2 -0.5 -0.1 0.1 -0.1 -0.3 -0.2 -0.3
m4-Hourly -6.2 -0.6 -5.6 4.4 -1.5 2.2 3.8 -1.5
m4-Monthly -0.1 0.1 -0.2 0.3 -0.1 0.2 0.1 0.2
m4-Quarterly 0.0 -0.1 -0.1 0.1 -0.1 0.0 0.0 -0.1
m4-Weekly 0.2 0.2 0.1 0.4 0.1 0.2 0.2 0.1
m4-Yearly 0.2 0.1 -0.1 0.3 0.3 0.3 -0.1 0.3
solar 0.3 0.0 0.2 0.7 0.1 0.3 -0.4 -0.3
traffic -0.2 -0.1 0.0 0.2 -0.1 0.2 0.0 0.1
wiki-rolling 0.0 -0.2 -0.3 0.0 -0.1 -0.1 -0.1 -0.2

FCNet naval 41.1 58.2 63.0 66.0 60.8 26.1 54.1 51.5
parkinsons 13.7 24.2 14.1 34.2 18.0 24.4 10.4 27.3
protein 2.4 6.3 3.4 6.3 4.8 3.5 4.7 5.8
slice -1.3 27.3 30.9 42.4 36.5 18.2 31.6 24.2

XGBoost a6a 0.1 0.2 0.1 0.3 0.0 0.3 -0.1 -0.1
australian 0.2 1.8 1.8 4.3 0.0 3.5 1.1 1.2
german.numer -1.2 0.3 1.3 0.8 0.3 -0.2 1.2 0.6
heart 1.5 0.9 -0.3 3.3 -1.3 2.4 -3.5 3.6
ijcnn1 -2.7 3.1 2.4 4.8 1.6 4.0 1.7 2.8
madelon 3.3 4.0 -0.3 4.0 -0.1 4.8 0.3 1.0
spambase -1.6 1.4 -0.7 2.2 -1.4 3.0 -0.7 -0.9
svmguide1 -2.7 1.2 1.1 0.8 -0.3 1.7 0.8 0.2
w6a 1.5 1.2 -3.3 4.6 0.1 4.6 -0.6 2.0

Table 9: Relative improvements over random search at iteration 100.
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