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Abstract

We study a deep learning approach to address the heavy storage and computation re-
quirements of the baseline dictionary-matching (DM) for Magnetic Resonance Fingerprint-
ing (MRF) reconstruction. The MRF-Net provides a piece-wise affine approximation to
the (temporal) Bloch response manifold projection. Fed with non-iterated back-projected
images, the network alone is unable to fully resolve spatially-correlated artefacts which ap-
pear in highly undersampling regimes. We propose an accelerated iterative reconstruction
to minimize these artefacts before feeding into the network. This is done through a convex
regularization that jointly promotes spatio-temporal regularities of the MRF time-series.

1. Deep Bloch manifold projection

Magnetic Resonance Fingerprinting (MRF) (Ma et al., 2013) recently emerged to accelerate
the acquisition of tissues’ quantitative NMR characteristics. Dictionary-matching (DM)
approaches proposed for the MRF reconstruction do not scale well to the complexity of the
emerging multi-parametric quantitative MRI problems. Deep learning (DL) methodologies
have been recently introduced to overcome this problem (Cohen et al., 2018; Virtue et al.,
2017; Golbabaee et al., 2019a). Time-series of Back-Projected Images (BPI) are fed into a
compact neural network which temporally processes voxel sequences and approximates the
DM step to output the parametric maps. For instance, our proposed MRF-Net (Figure 1(a))
is able to accurately approximate the DM step by saving more than 60 times in memory
and computations (Golbabaee et al., 2019a). The MRF dictionary is only used for training
and not during parameter recovery. Figure 1(b) shows that the network provides a piece-
wise affine approximation to the Bloch response manifold projection and that rather than
memorizing the dictionary, it efficiently clusters this manifold and learns a set of hierarchical
matched-filters for affine regression of the NMR characteristics in each segment (for more
details see (Golbabaee et al., 2019a)).

2. Our parameter estimation pipeline

Trained by independently corrupted noisy fingerprints, the MRF-Net acts only along the
temporal domain and is unable to correct for dominant spatially-correlated (aliasing) arte-
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facts appearing in highly undersampled regimes. Also larger convolutional models aiming
to learn spatio-temporal structures are prone to overfitting due to the limited access to
properly large ground-truth parametric maps in practice. Further, such approaches build
customized de-noisers which require expensive re-training by changing sampling parameters
i.e. the forward model. We address these shortcomings by taking a dictionary-free com-
pressed sensing approach to spatio-temporally process data before feeding into the compact
and easily-trained MRF-Net. The undersampled k-space measurements Y ∈ Cm×L ac-
quired across L timeframes are first processed by solving the following convex regularized
problem (Golbabaee et al., 2019b):

X̂ = arg min
X
||Y −A(XV H

s )||22 + λ
S∑

i=1

||Xi||TV (P1)

in order to find S � L subspace images X ∈ Cn×S . A MRF dictionary D ∈ CL×d (L� d) is
used during the training phase for (unsupervisedly) learning the S principal subspace bases
Vs ∈ CL×S for dimensionality reduction. The forward operator A models the multi-coil
sensitivities and the per-frame subsampled 2D Fourier Transforms. The low-rank subspace
model is a convex (in fact linear) relaxed representation of the temporal dictionary responses
and when accurate enough, it is computationally advantageous over the full image repre-
sentation XFull ≈ XsV H

s ∈ Cn×L because it reconstructs smaller objects and promotes
temporally low-rank structures (Assländer et al., 2018). This prior alone is, however, insuf-
ficient to obtain artefact-free solutions e.g. when using spiral readouts (Golbabaee et al.,
2018). We additionally use the Total Variation (TV) regularization to promote spatial
smoothness across recovered subspace images. (P1) can be efficiently solved using FISTA
algorithm (Beck and Teboulle, 2009).

3. Numerical Results

Methods are tested on a simulated brain phantom1 and a healthy human brain acquired
using the Steady State Precession (FISP) sequence in (Jiang Y et al., 2015) and spiral
readouts which sample m = 732 k-space locations in each of the L = 1000 time-frames in
order to reconstruct n = 256 × 256 resolution parametric T1 and T2 maps. We simulate
d=113’640 fingerprints and use the clean temporal responses for unsupervised subspace
model learning of sufficiently low-rank (S=10). Further, fingerprints corrupted by additive
white Gaussian noise (data augmentation by factor 100) supervisedly train the dimension-
reduced MRF-Net on a standard CPU desktop.

We compare three methods for reconstructing subspace images before feeding to the
MRF-Net: non-iterative BPIs i.e. X̂ := AH(Y )Vs, and iterative reconstructions incorporat-
ing ii) only the low-rank (LR) subspace prior by solving (P1) with λ = 0, and iii) joint TV
and subspace spatio-temporal priors (LRTV) by solving P1 with an experimentally tuned
λ = 2 × 10−5. Note that the BPIs are the first iteration of the LR. Figure 2 shows the
reconstructed maps. Undersampling artefacts are visible in BPI+MRF-Net. The subspace
iterations of LR+MRF-Net also admit undesirable solutions with high-frequency artefacts
due to the insufficient measurements collected from the k-space corners in spiral readouts

1. http://brainweb.bic.mni.mcgill.ca/brainweb
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(a) MRF-Net (b) MRF-Net’s segments on T1, T2 grid

Figure 1: (a) Illustration of the MRF-Net (Golbabaee et al., 2019a): Inputs h(1) are the voxel sequences
of the subspace image reconstructed by (P1) and outputs h(4) are the per-voxel T1 and T2
parameters. The MRF-Net has implicitly 4 layers by including the unsupervisedly learned
subspace projection (first layer in gay) incorporated in solving (P1). Three last layers use
nonlinear ReLU activations (orange) and are supervisedly trained by standard backpropagation
to approximate subspace dictionary matching. (b) MRF-Net hierarchically segments the input
space and learns a piece-wise affine mapping between input-outputs for each segment. The
end-to-end segments are shown on the T1, T2 grid that generated the Bloch response manifold.

(for details see (Golbabaee et al., 2018)). By adding sufficient spatial regularization, the
proposed LRTV+MRF-Net outputs artefact-free maps within 8-12 iterations.

(a) Numerical brain phantom (b) Healthy volunteer brain

Figure 2: Reconstructed T1 (top row) and T2 (bottom row) maps for numerical brain phantom and
healthy volunteer data using MRF-Net fed with the non-iterated BPIs (left column), iteratively
reconstructed images with only low-rank (LR) subspace prior (middle column), and iteratively
reconstructed images with joint TV and low-rank subspace (LRTV) priors (right column). Un-
dersampling artefacts are visible in BPI+MRF-Net. The subspace iterations of LR+MRF-Net
removes them but it admits a solution with high-frequency artefacts due to the insufficient
measurements from the corners of the k-space. By adding sufficient spatial regularization, the
proposed LRTV+MRF-Net outputs artefact-free maps.
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