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ABSTRACT

We study the use of hypermodels to represent epistemic uncertainty and guide
exploration. This generalizes and extends the use of ensembles to approximate
Thompson sampling. The computational cost of training an ensemble grows with
its size, and as such, prior work has typically been limited to ensembles with tens
of elements. We show that alternative hypermodels can enjoy dramatic efficiency
gains, enabling behavior that would otherwise require hundreds or thousands of
elements, and even succeed in situations where ensemble methods fail to learn re-
gardless of size. This allows more accurate approximation of Thompson sampling
as well as use of more sophisticated exploration schemes. In particular, we con-
sider an approximate form of information-directed sampling and demonstrate per-
formance gains relative to Thompson sampling. As alternatives to ensembles, we
consider linear and neural network hypermodels, also known as hypernetworks.
We prove that, with neural network base models, a linear hypermodel can repre-
sent essentially any distribution over functions, and as such, hypernetworks are no
more expressive.

1 INTRODUCTION

Consider the sequential decision problem of an agent interacting with an uncertain environment,
aiming to maximize cumulative rewards. Over each time period, the agent must balance between
exploiting existing knowledge to accrue immediate reward and investing in exploratory behavior
that may increase subsequent rewards. In order to select informative exploratory actions, the agent
must have some understanding of what it is uncertain about. As such, an ability to represent and
resolve epistemic uncertainty is a core capability required of the intelligent agents.

The efficient representation of epistemic uncertainty when estimating complex models like neural
networks presents an important research challenge. Techniques include variational inference (Blun-
dell et al., 2015), dropout1 (Gal & Ghahramani, 2016) and MCMC (Andrieu et al., 2003). Another
approach has been motivated by the nonparametric bootstrap (Efron & Tibshirani, 1994) and trains
an ensemble of neural networks with random perturbations applied to each dataset (Lu & Van Roy,
2017). The spirit is akin to particle filtering, where each element of the ensemble approximates
a sample from the posterior and variation between models reflects epistemic uncertainty. Ensem-
bles have proved to be relatively effective and to address some shortcomings of alternative posterior
approximation schemes (Osband et al., 2016; 2018).

When training a single large neural network is computationally intensive, training a large ensem-
ble of separate models can be prohibitively expensive. As such, ensembles in deep learning have
typically been limited to tens of models (Riquelme et al., 2018). In this paper, we show that this
parsimony can severely limit the quality of the posterior approximation and ultimately the quality
of the learning system. Further, we consider more general approach based on hypermodels that can
realize the benefits of large ensembles without the prohibitive computational requirements.

A hypermodel maps an index drawn from a reference distribution to a base model. An ensemble is
one type of hypermodel; it maps a uniformly sampled base model index to that independently trained
base model. We will consider additional hypermodel classes, including linear hypermodels, which
we will use to map a Gaussian-distributed index to base model parameters, and hypernetworks,
for which the mapping is a neural network (Ha et al., 2016). Our motivation is that intelligent

∗DeepMind
1Although later work suggests that this dropout approximation can be of poor quality (Osband, 2016; Hron

et al., 2017).
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hypermodel design might be able to amortize computation across the entire distribution of base
models, and in doing so, offer large gains in computational efficiency.

We train our hypermodels to estimate a posterior distribution over base models conditioned on ob-
served data, in a spirit similar to that of the Bayesian hypermodel literature (Krueger et al., 2017).
Unlike typical variational approximations to Bayesian deep learning, this approach allows com-
putationally efficient training with complex multimodal distributions. In this paper, we consider
hypermodels trained through stochastic gradient descent on perturbed data (see Section 2.1 for a
full description). Training procedures for hypermodels are an important area of research, and it may
be possible to improve on this approach, but that is not the focus of this paper. Instead, we aim to
understand whether more sophisticated hypermodel architectures can substantially improve explo-
ration. To do this we consider bandit problems of varying degrees of complexity, and investigate the
computational requirements to achieve low regret over a long horizon.

To benchmark the quality of posterior approximations, we compare their efficacy when used for
Thompson sampling (Thompson, 1933; Russo et al., 2018). In its ideal form, Thompson sampling
(TS) selects each action by sampling a model from the posterior distribution and optimizing over
actions. For some simple model classes, this approach is computationally tractable. Hypermodels
enable approximate TS in complex systems where exact posterior inference is intractable.

Our results address three questions:
Q: Can alternative hypermodels outperform ensembles?
A: Yes. We demonstrate through a simple example that linear hypermodels can offer dramatic im-
provements over ensembles in the computational efficiency of approximate TS. Further, we demon-
strate that linear hypermodels can be effective in contexts where ensembles fail regardless of ensem-
ble size.

Q: Can alternative hypermodels enable more intelligent exploration?
A: Yes. We demonstrate that, with neural network hypermodels, a version of information-directed
sampling (Russo & Van Roy, 2014; 2018) substantially outperforms TS. This exploration scheme
would be computationally prohibitive with ensemble hypermodels but becomes viable with a hyper-
network.

Q: Are hypernetworks warranted?
A: Not clear. We prove a theorem showing that, with neural network base models, linear hypermod-
els can already represent essentially any distribution over functions. However, it remains to be seen
whether hypernetworks can offer statistical or computational advantages.

Variational methods offer an alternative approach to approximating a posterior distribution and sam-
pling from it. O’Donoghue et al. (2018) consider such an approach for approximating Thompson
sampling in reinforcement learning. Approaches to approximating TS and information-directed
sampling (IDS) with neural networks base models have been studied in (Lu & Van Roy, 2017;
Riquelme et al., 2018) and Nikolov et al. (2019), respectively, using ensemble representations of
uncertainty. Hypermodels have been a subject of growing interest over recent years. Ha et al. (2016)
proposed the notion of hypernetworks as a relaxed form of weight-sharing. Krueger et al. (2017)
proposed Bayesian hypernetworks for estimation of posterior distributions and a training algorithm
based on variational Bayesian deep learning. A limitation of this approach is in its requirement
that the hypernetwork be invertible. Karaletsos et al. (2018) studied Bayesian neural networks with
correlated priors, specifically considering prior distributions in which units in the neural network
are represented by latent variables and weights between units are drawn conditionally on the values
of those latent variables. Pawlowski et al. (2017) introduced another variational inference based
algorithm that interprets hypernetworks as implicit distributions, i.e. distributions that may have
intractable probability density functions but allow for easy sampling. Hu et al. (2018) proposes
the Stein neural sampler which samples from a given (un-normalized) probability distribution with
neural networks trained by minimizing variants of Stein discrepancies.

2 HYPERMODEL ARCHITECTURES AND TRAINING

We consider base models that are parameterized by an element θ of a parameter space Θ. Given
θ ∈ Θ and an input Xt ∈ <Nx , a base model posits that the conditional expectation of the output
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(a) base model

(b) hypermodel

Figure 1: A base model generates an output Yt given parameters θ and inputXt, while a hypermodel
generates base model parameters gν(z) given hypermodel parameters ν and an index z.

Yt+1 ∈ < is given by E[Yt+1|Xt, θ] = fθ(Xt), for some class of functions f indexed by θ. Figure
1a depicts this class of parameterized base models.

A hypermodel is parameterized by parameters ν, which identify a function gν : Z 7→ Θ. We will
refer to each z ∈ Z as an index, as it identifies a specific instance of the base model. In particular,
given hypermodel parameters ν, base model parameters θ can be generated by selecting z ∈ Z and
setting θ = gν(z). This notion of a hypermodel is illustrated in Figure 1b. Along with a hypermodel,
in order to represent a distribution over base models, we must specify a reference distribution pz that
can be used to sample an element of Z . A hypermodel and reference distribution together represent
a distribution over base models through offering a mechanism for sampling them by sampling an
index and passing it through the mapping.

2.1 HYPERMODEL TRAINING

Given a set of data pairs {(Xt, Yt+1) : t = 0, . . . , T−1}, a hypermodel training algorithm computes
parameters ν so that the implied distribution over base model parameters approximates its posterior.
It is important that training algorithms be incremental. This enables scalability and also allows for
ongoing modifications to the data set, as those occurring in the bandit learning context, in which
data samples accumulate as time progresses.

One approach to incrementally training a hypermodel involves perturbing data by adding noise to
response variables, and then iteratively updating parameters via stochastic gradient descent. We
will assume here that the reference distribution pz is either an Nz-dimensional unit Gaussian or a
uniform distribution over the Nz-dimensional unit hypersphere. Consider an augmented data set
D = {(Xt, Yt+1, At) : t = 0, . . . , T − 1}, where each At ∈ <Nz is a random vector that serves
to randomize computations carried out by the algorithm. Each vector At is independently sampled
from N(0, I) if pz is uniform over the unit hypersphere. Otherwise, At is independently sampled
from the unit hypersphere.

We consider a stochastic gradient descent algorithm that aims to minimize the loss function

L(ν,D) =

∫
z∈<Nz

pz(dz)

 1

2σ2
w

∑
(x,y,a)∈D

(y + σwa
>z − fgν(z)(x))2 +

1

2σ2
p

‖gν(z)− gν0(z)‖22

 ,

where ν0 is the initial vector of hypermodel parameters. Each iteration of the algorithm entails
calculating the gradient of terms summed over a minibatch of (x, y, a) tuples and random indices
z. Note that σwa>z here represents a random Gaussian perturbation of the response variable y. In
particular, in each iteration, a minibatch D̃ is constructed by sampling a subset of D uniformly with
replacement, and a set Z̃ of indices is sampled i.i.d. from pz . An approximate loss function

L̃(ν, D̃, Z̃) =
1

|Z̃|

∑
z∈Z̃

 1

2σ2
w

|D|
|D̃|

∑
(x,y,a)∈D̃

(y + σwa
>z − fgν(z)(x))2 +

1

2σ2
p

‖gν(z)− gν0(z)‖22


is defined based on these sets. Hypermodel parameters are updated according to ν ← ν −
α∇νL̃(ν, D̃, Z̃)/|D| where α, σ2

w, and σ2
p are algorithm hyperparameters. In our experiments, we
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will take the step size α to be constant over iterations. It is natural to interpret σ2
p as a prior variance,

as though the prior distribution over base model parameters is N(0, σ2
pI), and σ2

w as the standard
deviation of noise, as though the error distribution is Yt− fθ(Xt)|θ ∼ N(0, σ2

w). Note, though, that
a hypermodel can be trained on data generated by any process. One can think of the hypermodel
and base models as inferential tools in the mind of an agent rather than a perfect reflection of reality.

2.2 ENSEMBLE HYPERMODELS

An ensemble hypermodel is comprised of an ensemble of Nν base models, each identified by a
parameter vector in Θ = <Nθ . Letting indices Z be the set of Nν-dimensional one-hot vectors,
we can represent an ensemble in terms of a function gν : Z 7→ Θ with parameters ν ∈ ΘNν . In
particular, given hypermodel parameters ν ∈ ΘNν , an index z ∈ Z generates base model parameters
gν(Z) = νZ. For an ensemble hypermodel, the reference distribution pz is taken to be uniform over
the Nν elements of Z .

2.3 LINEAR HYPERMODELS

Suppose that Θ = <Nθ and Z = <Nz . Consider a linear hypermodel, defined by gν(z) = a+ Bz,
where hypermodel parameters are given by ν = (a ∈ <Nθ , B ∈ <Nθ×Nz ) and z ∈ Z is an index
with reference distribution pz taken to be the unit Gaussian N(0, I) over Nz-dimensional vectors.
Such a hypermodel can be used in conjunction with any base model that is parameterized by a vector
of real numbers.

The aforementioned linear hypermodel entails a number of parameters that grows with the product of
the numberNθ of base model parameters and the index dimensionNz , sinceB is aNθ×Nz matrix.
This can give rise to onerous computational requirements when dealing with neural network base
models. For example, suppose that we wish to model neural network weights as a Gaussian random
vector. This would require an index of dimension equal to the number of weights, and the number
of hypermodel parameters would become quadratic in the number of neural network weights. For a
large neural network, storing and updating that many parameters is impractical. As such, it is natural
to consider linear hypermodels in which the parameters a andB are linearly constrained. Such linear
constraints can, for example, represent independence or conditional independence structure among
neural network weights.

2.4 NEURAL NETWORK HYPERMODELS

More complex hypermodels are offered by neural networks. In particular, consider the case in
which gν is a neural network with weights ν, taking Nz inputs and producing Nθ outputs. Such a
representation is alternately refered to as a hypernetwork. Let the reference distribution pz be the
unit GaussianN(0, I) overNz-dimensional vectors. As a special case, a neural network hypermodel
becomes linear if there are no hidden layers.

2.5 ADDITIVE PRIOR MODELS

In order for our stochastic gradient descent algorithm to operate effectively, it is often important to
structure the base model so that it is a sum of a prior model, with parameters fixed at initialization,
and a differential model, with parameters that evolve while training. The idea here is for the prior
model to represent a sample from a prior distribution and for the differential to learn the difference
between prior and posterior as training progresses. This additive decomposition was first introduced
in (Osband et al., 2018), which demonstrated its importance in training ensemble hypermodels with
neural network base models using stochastic gradient descent. Without this decomposition, to gen-
erate neural networks that represent samples from a sufficiently diffuse prior, we would have to
initialize with large weights. Stochastic gradient descent tends to train too slowly and thus becomes
impractical if initialized in such a way.

We will consider a decomposition that uses neural network base models (including linear base mod-
els as a special case) though the concept is more general. Consider a neural network model class
{f̃θ̃ : θ̃ ∈ Θ̃} with Θ̃ = <Nθ̃ , where the parameter vector θ̃ includes edge weights and node biases.
Let the index set Z be <Nz . Let D be a diagonal matrix for which each element is the prior standard
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deviation of corresponding component of θ̃. Let B ∈ <Nθ̃×Nz be a random matrix produced at
initialization. We will take θ̃ = DBz to be parameters of the prior (base) model. Note that, given
an index z ∈ Z , this generates a prior model f̃θ̃ = f̃DBz . When we wish to completely specify a
prior model distribution, we will need to define a distribution for generating the matrix B as well as
a reference distribution pz .

Given a prior model of the kind we have described, we consider a base model of the form fθ(x) =

f̃θ̃(x) + f̂θ̂(x), where {f̂θ̂ : θ̂ ∈ Θ̂} is another neural network model class satisfying f̂0 = 0, and
θ is the concatenation of θ̃ and θ̂. With θ̃ = DBz, the idea is to compute parameters θ̂ such that
fθ = f̃DBz + f̂θ̂ approximates a sample from a posterior distribution, conditioned on data. As
such, f̂θ̂ represents a difference between prior and posterior. This decomposition is motivated by
the observation that neural network training algorithms are most effective if initialized with small
weights and biases. If we initialize θ̂ with small values, the initial values of f̂θ̂ will be small, and
in this regime, fθ ≈ f̃DBz , which is appropriate since an untrained base model should represent a
sample from a prior distribution. In general, θ̂ is the output of a neural network ĝν̂ taking the same
input z as the prior hypermodel θ̃ = DBz. As is discussed above, in the course of training, we will
only update ν̂ while keeping D and B fixed.

3 EXPLORATION SCHEMES

Our motivation for studying hypermodels stems from their potential role in improving exploration
methods. As a context for studying exploration, we consider bandit problems. In particular, we
consider the problem faced by an agent making sequential decisions, in each period selecting an
action Xt ∈ X and observing a response Yt+1 ∈ <. Here, the action set X is a finite subset of <Nx
and Yt+1 is interpreted as a reward, which the agent wishes to maximize.

We view the environment as a channel that maps Xt to Yt+1, and conditioned on Xt and the en-
vironment, Yt+1 is conditionally independent of X0, Y1, . . . , Xt−1, Yt. In other words, actions do
not induce delayed consequences. However, the agent learns about the environment from applying
actions and observing outcomes, and as such, its prediction of an outcome Yt+1 is influenced by past
observations X0, Y1, . . . , Xt−1, Yt.

A base model serves as a possible realization of the environment, while a hypermodel encodes a
belief distribution over possible realizations. We consider an agent that represents beliefs about the
environment through a hypermodel, continually updating hypermodel paramerers ν via stochastic
gradient descent, as described in Section 2.1, to minimize a loss function based on past actions and
observations. At each time t, the agent selects action Xt based on the current hypermodel. Its
selection should balance between exploring to reduce uncertainty indicated by the hypermodel and
exploiting knowledge conveyed by the hypermodel to accrue rewards.

3.1 THOMPSON SAMPLING

TS is a simple and often very effective exploration scheme that will serve as a baseline in our experi-
ments. With this scheme, each actionXt is selected by sampling an index z ∼ pz from the reference
distribution and then optimizing the associated base model to obtain Xt ∈ arg maxx∈X fgν(z)(x).
See (Russo et al., 2018) for an understanding when and why TS is effective.

3.2 INFORMATION-DIRECTED SAMPLING

IDS (Russo & Van Roy, 2014; 2018) offers an alternative approach to exploration that aims to more
directly quantify and optimize the value of information. There are multiple versions of IDS, and
we consider here a sample-based version of variance-IDS (Russo & Van Roy, 2018). In each time
period, this entails sampling a new multiset Z̃ i.i.d. from pz . Then, for each action x ∈ X we
compute the sample mean of immediate regret

rx =
1

|Z̃|

∑
z∈Z̃

(
max
x∗∈X

fgν(z)(x
∗)− fgν(z)(x)

)
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and a sample variance of reward across possible realizations of the optimal action

vx =
∑
x∗∈X

|Z̃x∗ |
|Z̃|

 1

|Z̃x∗ |

∑
z∈Z̃x∗

fgν(z)(x)− 1

|Z̃|

∑
z∈Z̃

fgν(z)(x)

2

.

Here, {Z̃x∗ : x∗ ∈ X} forms a partition of Z̃ such that, x∗ is an optimal action for each z ∈ Z̃x∗ ;
that is, Z̃x∗ = {z ∈ Z̃|x∗ ∈ arg maxx∈X fgν(z)(x)} Then, a probability vector π∗ ∈ ∆X is
obtained by solving

π∗ ∈ arg min
π∈∆X

(∑
x∈X πxrx

)2∑
x∈X πxvx

,

and action Xt sampled from π∗. Note that π∗x = 0 if Z̃x is empty. As established by (Russo &
Van Roy, 2018), the minimum over π ∈ ∆X is always attained by a probability vector that has at
most two nonzero components, and this fact can be used to simplify optimization algorithms.

Producing reasonable estimates of regret and variance calls for many distinct samples, and the num-
ber required scales with the number of actions. An ensemble hypermodel with tens of elements does
not suffice, while alternative hypermodels we consider can generate very large numbers of distinct
samples.

4 CAN HYPERMODELS OUTPERFORM ENSEMBLES?

Because training a large ensemble can be prohibitively expensive, neural network ensembles have
typically been limited to tens of models (Riquelme et al., 2018). In this section, we demonstrate
that a linear hypermodel can realize the benefits of a much larger ensemble without the onerous
computational requirements.

4.1 GAUSSIAN BANDIT WITH INDEPENDENT ARMS

We consider a Gaussian bandit with K independent arms where the mean reward vector θ∗ ∈ <K is
drawn from a Gaussian prior N(0, σ2

pI). During each time period t, the agent selects an action Xt

and observes a noisy reward Yt+1 = θ∗Xt +Wt+1, where Wt+1 is i.i.d. N(0, σ2
w). We let σ2

p = 2.25

and σ2
w = 1, and we fix the time horizon to 10,000 periods.

We compare an ensemble hypermodel and a diagonal linear hypermodel trained via SGD with per-
turbed data. Our simulation results show that a diagonal linear hypermodel requires about 50 to 100
times less computation than an ensemble hypermodel to achieve our target level of performance.

As discussed in Section 2.5, we consider base models of the form fθ(x) = f̃DBz(x) + f̂θ̂(x), where
f̃DBz(x) is an additive prior model, and f̂θ̂(x) is a trainable differential model that aims to learn the
difference between prior and posterior. For an independent Gaussian bandit, f̃θ̄(x) = f̂θ̄(x) = θ̄x
for all θ̄ and x. Although the use of prior models is inessential in this toy example, we include it for
consistency and illustration of the approach.

The index z ∈ <Nz of an ensemble hypermodel is sampled uniformly from the set of Nz-
dimensional one-hot vectors. Each row ofB ∈ <K×Nz is sampled fromN(0, I), andD = σpI . The
ensemble (differential) hypermodel takes the form ĝν̂(z) = ν̂z, where the parameters ν̂ ∈ <K×Nz
are initialized to i.i.d. N(0, 0.052). Although initializing to small random numbers instead of zeros
is unnecessary for a Gaussian bandit, our intention here is to mimic neural network initialization and
treat the ensemble hypermodel as a special case of neural network hypermodels.

In a linear hypermodel, to model arms independently, we let z1, . . . , zK ∈ <m each be drawn in-
dependently from N(0, I), and let the index z ∈ <Nz be the concatenation of z1, . . . , zK , with
Nz = Km. Let the prior parameters b1, . . . , bK ∈ <m be sampled uniformly from the m-
dimensional hypershpere, and let B ∈ <K×Nz be a block matrix with b>1 , . . . , b

>
K on the diago-

nal and zero everywhere else. Let D = σpI . The diagonal linear (differential) hypermodel takes
the form ĝν̂(z) = Cz + µ, where µ ∈ <K and matrix C ∈ <K×Nz has a block diagonal struc-
ture C = diag(c>1 , . . . , c

>
K), with c1, . . . , cK ∈ <m. The hypermodel parameters ν̂ = (C, µ) are

initialized to i.i.d. N(0, 0.052).
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We train both hypermodels using SGD with perturbed data. For an ensemble hypermodel, the per-
turbation of the data point collected at time t is σwA>t z, where At ∼ N(0, I). For a diagonal linear
hypermodel, the perturbation is σwA>t zXt , where At is sampled uniformly from the m-dimensional
unit hypersphere.

We consider an agent to perform well if its average regret over 10,000 periods is below 0.01
√
K.

We compare the computational requirements of ensemble and diagonal linear hypermodels across
different numbers of actions. As a simple machine-independent definition, we approximate the
number of arithmetic operations over each time period:

computation = nsgd × nz × ndata × nparams,

where nsgd is the number of SGD steps per time period, nz is the number of index samples per SGD
step, ndata is the data batch size, and nparams is the number of hypermodel parameters involved in
each index sample. We fix the data batch size to 1024 for both agents, and sweep over other hyper-
parameters separately for each agent. All results are averaged over 100 runs. In Figure 2, we plot the
computation needed versus number of actions. Using a diagonal linear hypermodel dramatically re-
duces the amount of computation needed to perform well relative to using an ensemble hypermodel,
with a speed-up of around 50 to 100 times for large numbers of actions.
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Figure 2: Computation required for ensemble hypermodels versus diagonal linear hypermodels to
perform well on Gaussian bandits with independent arms.

4.2 NEURAL NETWORK BANDIT

In this section we show that linear hypermodels can also be more effective than ensembles in settings
that require generalization between actions. We consider a bandit problem with rewards generated
by a neural network that takes vector-valued actions as inputs. We consider a finite action set A ⊂
<d with d = 20, sampled uniformly from the unit hypersphere. We generate data using a neural
network with input dimension 20, 2 hidden layers of size 3, and a scalar output. The output is
perturbed by i.i.d. N(0, 1) observation noise. The weights of each layer are sampled independently
from N(0, 2.25), N(0, 2.25/3), and N(0, 2.25/3), respectively, with biases from N(0, 1).

We compare ensemble hypermodels with 10, 30, 100, and 300 particles, and a linear hypermodel
with index dimension 30. Both agents use an additive prior f̃DBz(x), where f̃ is a neural network
with the same architecture as the one used to generate rewards. For the ensemble hypermodel, each
row of B is initialized by sampling independently from N(0, I), and D is diagonal with appropriate
prior standard deviations. For the linear hypermodel, we enforce independence of weights across
layers by choosing B to be block diagonal with 3 blocks, one for each layer. Each block has width
10. Within each block, each row is initialized by sampling uniformly from the 10-dimensional unit
hypersphere. For the trainable differential model, both agents use a neural network architecture
with 2 hidden layers of width 10. The parameters of the ensemble hypermodel are initialized to
truncatedN(0, 0.052). The weights of the linear hypermodel are initialized using the Glorot uniform
initialization, while the biases are initialized to zero.

In our simulations, we found that training without data perturbation gives lower regret for both
agents. In Figure 3, we plot the cumulative regret of agents trained without data perturbation. We
see that linear hypermodels achieve the least regret in the long run. The performance of ensemble hy-
permodels is comparable when the number of actions is 200. However, there is a large performance
gap when the number of actions is greater than 200, which, surprisingly, cannot be compensated
by increasing the ensemble size. We suspect that this may have to do with the reliability of neural
network regression, and linear hypermodels are somehow able to circumvent this issue.
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Figure 3: Compare (i) ensemble hypermodels, (ii) linear hypermodels, (iii) annealing ε-greedy, and
(iv) an agent assuming independent actions on a neural network bandit.

We also compare with an ε-greedy agent with a tuned annealing rate, and an agent that assumes in-
dependent actions and applies TS under the Gaussian prior and Gaussian noise assumption. The gap
between the ε-greedy agent and hypermodel agents grows as the number of actions becomes large,
as ε-greedy explores uniformly and does not write off bad actions. The performance of the agent
that assumes independent actions degrades quickly as the number of actions increases, since it does
not generalize across actions. In the appendix, we also discuss Bayes by Backprop (Blundell et al.,
2015) and dropout (Gal & Ghahramani, 2016) as approximation methods for posterior sampling.

5 CAN HYPERMODELS ENABLE MORE INTELLIGENT EXPLORATION?

IDS, as we described earlier, requires a large number of independent samples from the (approxi-
mate) posterior distribution to generate an action. One way to obtain these samples is to maintain
an ensemble of models, as is done by Nikolov et al. (2019). However, as the number of actions
increases, maintaining performance requires a large ensemble, which becomes computationally pro-
hibitive. More general hypermodels offer an efficient mechanism for generating the required large
number of base model samples. In this section, we present experimental results involving a problem
and hypermodel stylized to demonstrate advantages of IDS in a transparent manner. This context is
inspired by the one-sparse linear bandit problem constructed by Russo & Van Roy (2018). However,
the authors of that work do not offer a general computationally practical approach that implements
IDS. Hypermodels may serve this need.

We generate data according to Yt+1 = X>t θ
∗ +Wt+1 where θ∗ ∈ <Nθ is sampled uniformly from

one-hot vectors and Wt+1 is i.i.d. N(0, 1) noise. We consider a linear base model fθ(x) = θ>x

and hypermodel (gν(z))m = exp(βνm(z2
m + α))/

∑Nθ
n=1 exp(βνn(z2

n + α)), where α = 0.01, and
β = 10. As a reference distribution we let pz be N(0, I). Let the initial hypermodel parameters
ν0 be the vector with each component equal to one. Note that our hypermodel is designed to allow
representation of the prior distribution, as well as uniform distributions over subsets of one-hot
vectors. For simplicity, let Nθ be a power of two. Let I be the set of indicator vectors for all non-
singleton sublists of indices in (1, . . . , Nθ) that can be obtained by bisecting the list one or more
times. Note that |I| = Nθ − 2. Let the action space X be comprised one hot-vectors and vectors
{x/2 : x ∈ I}.
As with the one-sparse linear bandit of (Russo & Van Roy, 2018), this problem is designed so that
TS will identify the nonzero component of θ∗ by applying one-hot actions to rule out one component
per period, whereas IDS will essentially carry out a bisection search. This difference in behavior
stems from the fact that TS will only ever apply actions that have some chance of being optimal,
which in this context includes only the one-hot vectors, whereas IDS can apply actions known to be
suboptimal if they are sufficiently informative.

Figure 4 plots regret realized by TS and variance-IDS using the aforementioned hypermodel, trained
with perturbed SGD. As expected, the difference in performance is dramatic. Each plot is averaged
over 500 simulations. We used SGD hyperparameters σ2

w = 0.01 and σ2
p = 1/ logNθ. The ex-

periments are with Nθ = 200, 500 samples are used for computing the variance-based information
ratio.
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Figure 4: Cumulative regret of IDS and TS with with one-sparse models.

6 ARE HYPERNETWORKS WARRANTED?

Results of the previous sections were generated using ensemble and linear hypermodels. It remains
to be seen whether hypernetworks offer substantial benefits. One might believe that hypernetworks
can benefit from the computational advantages enjoyed by linear hypermodels while offering the
ability to represent a broader range of probability distributions over base models. The following
result refutes this possibility by establishing that, with neural network base models, linear hyper-
models can represent essentially any probability distribution over functions with finite domain. We
denote by L∞(X , B) the set of functions f : X 7→ < such that ‖f‖∞ < B, where X is finite with
|X | = K.

Theorem 1 Let pz be the unit Gaussian distribution in <K . For all ε > 0, δ > 0, B > 0, and
probability measures µ over L∞(X , B), there exist a transport map H from pz to µ, a neural
network fθ : X 7→ < with a linear output node and ReLU hidden nodes, and a linear hypermodel
gν : Z 7→ <Nθ with form gν(z) =

[
zT , νT

]T
such that

‖fgν(z) − f∗‖∞ ≤ ε
with probability at least 1− δ, where f∗ = H(z).

This result is established in Appendix A. To digest the result, first suppose that the inequality is
satisfied with ε = 0. Interpret µ as the target probability measure we wish to approximate using
the hypermodel. Note that fgν(z) and f∗ are determined by z ∼ pz , and f∗ is distributed according
to µ, since H is a transport function that maps pz to µ. If ‖fgν(z) − f∗‖∞ = 0 then fgν(z) is
also distributed according to µ, and as such, the hypermodel perfectly represents the distribution. If
ε > 0, the representation becomes approximate with tolerance ε.

Though our result indicates that linear hypermodels suffice to represent essentially all distributions
over functions, we do not rule out the possibility of statistical or computational advantages to us-
ing hypernetworks. In particular, there could be situations where hypernetworks generalize more
accurately given limited data, or where training algorithms operate more effectively with hypernet-
works. In supervised learning, deep neural networks offer such advantages even though a single
hidden layer suffices to represent essentially any function. Analogous benefits might carry over to
hypernetworks, though we leave this question open for future work.

7 CONCLUSION

Our results offer initial signs of promise for the role of hypermodels beyond ensembles in improving
exploration methods. We have shown that linear hypermodels can offer large gains in computational
efficiency, enabling results that would otherwise require ensembles of hundreds or thousands of ele-
ments. Further, these efficiency gains enable more sophisticated exploration schemes. In particular,
we experiment with a version of IDS sampling and demonstrate benefits over methods based on
TS. Finally, we consider the benefits of hypernetworks and establish that, with neural network base
models, linear hypermodels are already able to represent essentially any distribution over functions.
Hence, to the extent that hypernetworks offer advantages, this would not be in terms of the class of
distributions that can be represented.
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A UNIVERSAL APPROXIMATION VIA LINEAR HYPERMODELS

Assume that X ⊂ < is a finite set with |X | = K, and µ is a probability measure over the bounded
functions f : X → < such that ‖f‖∞ ≤ B. First, we show that we can approximately sample a
function from µ using a ReLU model with an linear hypermodel, with the input to the hypermodel
drawn from the K-dimensional uniform distribution. Our main result is summarized below:

Theorem 2 Let pz be the uniform distribution over [0, 1]K . For all ε > 0, δ ∈ (0, 1), B > 0,
and probability measures µ over L∞(X , B), there exists a transport map H from pz to µ, a neural
network fθ : X 7→ < with a linear output node and ReLU hidden nodes, and a linear hypermodel
gν : Z 7→ <Nθ with form gν(z) =

[
zT , νT

]T
such that

‖fgν(z) − f∗‖∞ ≤ ε,

with probability at least 1− δ, where f∗ = H(z).

Proof of Theorem 2: Note that since |X | = K, the functions f : X → < can be represented as
vectors in <K and hence µ can be viewed as a probability measure over <K . Since pz is absolutely
continuous with respect to the Lebesgue measure, from Brenier’s theorem, there exists a measurable
transport map H : <K → <K from pz to µ. Notice that we can always assume H(z) = 0 for
z /∈ [0, 1]K since all the probability mass under pz is in [0, 1]K , and this assumption does not affect
the measurability of H . To show that each component of H is Lebesgue integrable, let H(z)[x]
denote the component of H(z) corresponding to x. Note that∫

<K
|H(z)[x]|dz =

∫
[0,1]K

|H(z)[x]|dz ≤
∫

[0,1]K
Bdz = B,

where the inequality follows from the fact that µ is over L∞(X , B).

From Theorem 1 in Lu et al. (2017), for any ε > 0 and δ ∈ (0, 1), there exists a ReLU model
H̃ : <K → <K s.t. for any x ∈ X ,∫

<K
|H(z)[x]− H̃(z)[x]|dz < εδ/K,

where H(z)[x] and H̃(z)[x] are respectively the component of H(z) and H̃(z) corresponding to x.
Note that the above inequality implies:∫
<K
‖H(z)− H̃(z)‖∞dz ≤

∫
<K
‖H(z)− H̃(z)‖1dz =

∑
x∈X

∫
<K
|H(z)[x]− H̃(z)[x]|dz < εδ.

Hence we have

Ez∼pz

[
‖H(z)− H̃(z)‖∞

]
=

∫
[0,1]K

‖H(z)− H̃(z)‖∞dz ≤
∫
<K
‖H(z)− H̃(z)‖∞dz < εδ.

Note that we can always assume ‖H̃(z)‖∞ ≤ B for z ∈ [0, 1]K . If this assumption does not hold,
we can add some ReLU layers to cap H̃ to ensure ‖H̃(z)‖∞ ≤ B. Since ‖H(z)‖∞ ≤ B almost
surely, this cap will not increase Ez∼pz

[
‖H(z)− H̃(z)‖∞

]
.

We now discuss how to implement a ReLU model h̃ : X×[0, 1]K → [−B,B] s.t. h̃(x, z) = H̃(z)[x]

based on the ReLU implementation of the K-dimensional H̃(z). Note that it is straightforward to
use ReLU to implement the K-dimensional one-hot encoding for all x ∈ X . Since ‖H̃(z)‖∞ ≤ B,
by defining

h̃(x, z) =

[∑
x′∈X

max
{

4B × 1(x′ = x) + H̃(z)[x]− 2B, 0
}]
− 2B

we have h̃(x, z) = H̃(z)[x]. Since both H̃(z) and the one-hot encoding can be implemented by
ReLU, h̃(x, z) can also be implemented by ReLU.
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Finally, we discuss how to construct the target ReLU model fθ : X → < and the linear hypermodel
gν based on h̃. Note that the ReLU corresponding to h̃ has K + 1 input nodes, one corresponding
to x (called InputX) and K corresponding to z (called InputZ). Thus, by treating z as part of
the parameter vector θ, fθ : X → < is construct as follows: we make InputZ hidden nodes, and
the only input node to each node in InputZ is InputX. Specifically, the input to the ith node in
InputZ is 0 × x + zi with scalar weight 0 and bias zi, where zi is the ith component of z. Also
note that given h̃, the components in θ are either constant or components in z, thus gν is linear and
can be written as gν(z) =

[
zT , νT

]T
. Since the components in z are statistically independent, and

components in θ = gν(z) are either constant or components in z, consequently, the components in
θ are statistically independent. Note that by definition, fgν(z)(x) = h̃(x, z) = H̃(z)[x]. By defining
f∗ = H(z), we have Ez∼pz

[
‖fgν(z) − f∗‖∞

]
< εδ. From Markov’s, with probability at least

1− δ, we have ‖fgν(z) − f∗‖∞ ≤ ε. q.e.d.

Finally, we prove Theorem 1 based on Theorem 2:

Proof of Theorem 1: The proof is similar to that of Theorem 2. Recall that µ can be viewed as
a probability measure over <K . Since pz = N(0, IK) is absolutely continuous with respect to the
Lebesgue measure, from Brenier’s theorem, there exists a measurable transport mapH : <K → <K
from pz to µ, moreover, H(z) = ∇zφ(z) for a convex scalar function φ : <K → <. Notice that for
the given δ ∈ (0, 1), we can always choose a large enough η > 0, such that P (z ∈ Bη) ≥ 1− δ/2,
where Bη = {z : ‖z‖2 ≤ η}.

We define an auxiliary function H ′ : <K → <K as

H ′(z) =

{
H(z) if z ∈ Bη
0 otherwise

Since H is measurable, H ′ is also measurable. Moreover, since H ′(z) = H(z) = ∇zφ(z) on the
compact set Bη , thus H ′(z) is bounded in Bη . Thus, for any x ∈ X , we have∫

<K
|H ′(z)[x]| dz =

∫
Bη
|H ′(z)[x]| dz <∞.

Similar to the proof for Theorem 2, for the given ε and δ, there exists a ReLU model H̃ : <K → <K
s.t. ∫

<K
‖H ′(z)− H̃(z)‖∞dz < εδ/2.

Notice that

Ez∼pz

[
‖H ′(z)− H̃(z)‖∞

]
=

∫
<K
‖H ′(z)−H̃(z)‖∞pz(z)dz <

∫
<K
‖H ′(z)−H̃(z)‖∞dz < εδ/2,

where with a little bit abuse of notation pz(·) denotes the probability density function of the proba-
bility measure pz . The first inequality follows from pz(z) ≤ (2π)−K/2 < 1.

The subsequent analysis is similar to that in Theorem 2. Similarly, we can prove that with probability
at least 1 − δ/2, we have ‖fgν(z) − H ′(z)‖∞ ≤ ε, where fθ is a ReLU model and gν is a linear

hypermodel and can be written as gν(z) =
[
zT , νT

]T
. Moreover, the components in θ = gν(z)

are statistically independent. Recall that with probability at least 1− δ/2, we have H ′(z) = H(z).
Thus, from the union bound, we have with probability at least 1−δ, we have ‖fgν(z)−H(z)‖∞ ≤ ε.
By setting f∗ = H(z), we have proved the theorem. q.e.d.

B ADDITIVE PRIORS

Osband et al. (2018) discuss the benefits of using an additive prior to represent prior uncertainty
over models. In sequential decision making, it is particularly crucial to be able to represent prior
uncertainties when there is little data available. In this section, we demonstrate the effectiveness
of additive priors by comparing ensembles with and without additive priors on the neural network
bandit problem described in Section 4.2. Both ensembles are initialized randomly using standard
neural network initializations. Since weights are typically initialized to small values (otherwise
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Figure 5: Compare ensembles with and without additive priors on a neural network bandit.

training could be difficult), the outputs of ensembles that do not use additive priors will be close
to zero and will not reflect prior uncertainties in general. We see in Figure 5 that ensembles with
additive priors achieve significantly lower regrets across different numbers of actions and ensemble
sizes.

C ALGORITHM SENSITIVITY ANALYSIS

In order to analyze the sensitivity of the algorithm on different parameters, we present a series
of experiments on the neural network bandit, similar to Section 4.2. The default values of the
parameters used in these experiments are same as the values used to generate Figure 3. The results
from the experiments are presented below.

In Figure 6 we present some results from sensitivity analysis on observation noise and perturbation
noise. The plot shows the regret of linear hypermodel at 100k steps, with different perturbation
scales σ̃w (standard deviation of the noise added to the response variable in the loss function) and
standard deviations of the observation noise σw. Both σ̃w and σw take values from {0, 1, 2}. Observe
that for σw = 0 and σw = 1, perturbation scale of 0 works the best; however, on increasing the
observation noise to σw = 2, a perturbation scale of 1 performs better than perturbation scale of
0. The reason for this could be that SGD step is introducing sufficient amount of noise when σw
is 0 or 1, but it seems that we need to inject additional noise for larger observation noise. From
this, it is clear that we need to introduce perturbation into the loss function, as the observation noise
grows. Even though there is a discrepancy in the cumulative regret for different perturbation scales,
the algorithm seems to be robust to the variation in perturbation scale across different levels of
observation noise.
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Figure 6: Performance of linear hypermodel with varying strengths in observation noise and pertur-
bation

In Figure 7 we present results on how mis-specification in prior can affect the performance of the
linear hypermodel. Plot shows the regret of linear hypermodel after 100k steps, when the prior is
mis-specified. Prior is mis-speicified by drawing weights of the prior network from a distribution
such that the variance of these weights are a factor m times that of the variance of the weights of
the generator, we call this value m as the prior weight multiplier. We can see that a very small value
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of m does not induce sufficient exploration and leads to a huge regret. Similarly, a large value of m
can also induce more exploration than desired and leads to some additional regret.

0 1 2 3 4 5
prior weight multiplier - m

2.5

5

7.5

10

12.5

cu
m

ul
at

iv
e 

re
gr

et
 (k

) a
t 1

00
k 

st
ep

s
num actions

200

500

1000

Figure 7: Performance of linear hypermodels for different values of multiplier m

In Figure 8, we show how performance of a linear hypermodel is affected by the index dimension.
Recall from Section 4.2 that we use a disjoint segment of the index vector to generate prior weights
for each layer. We vary the index dimension per layer as 1, 2, 3, 5 and 10 (corresponding to the
entire index vector with dimension 3, 6, 9, 15, and 30) for 500 random seeds, and observe the
average cumulative regret attained by the algorithm after 100k steps. Although there is some noise,
we observe that as the index dimension increases the cumulative regret decreases. However, the
improvement is marginal beyond an index dimension.
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Figure 8: Performance of linear hypermodels for different index dimensions

D DIAGONAL LINEAR HYPERMODELS AND BAYES BY BACKPROP

An alternative approach for approximating posterior distributions for neural networks is variational
methods such as Bayes by Backprop (Blundell et al., 2015). Bayes by Backprop assumes a diagonal
Gaussian distribution as the variational posterior of neural network weights, which in effect uses a
diagonal linear hypermodel. Its training algorithm follows the variational inference framework and
aims to minimize a KL loss.

One can also train a diagonal linear hypermodel using perturbed SGD as stated in Section 2.1. Fixing
the diagonal hypermodel architecture, one can ask whether perturbed SGD or whether Bayes by
Backprop is a better training algorithm when used for Thompson sampling. We test these algorithms
on the neural network bandit problem in Section 4.2.

We find that when training a diagonal hypermodel using perturbed SGD, base models that use an
additive prior as in Section 2.5 are difficult to train. Instead, we consider base models that are a
single neural network whose weights are given by DBz + θ, where z ∼ N(0, I). The prior is
encoded in DBz, where matrix B has rows sampled from the unit hypersphere during initialization
and D encodes appropriate standard deviations. The learnable parameter θ = gν(z) = µ + Cz
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Figure 9: Compare (i) a diagonal hypermodel agent trained with perturbed SGD, (ii) a diagonal
hypermodel agent trained with Bayes by Backprop, (iii) a linear hypermodel agent trained with
perturbed SGD, and (iv) a dropout agent on a small neural network bandit.

where C is a diagonal matrix and both µ and C are initialized to zero. Initially, the weights of the
base model are dominated by DBz, which is desirable since we want samples from the prior when
there is little or no data.

Further, to make results comparable with the linear hypermodel results in Section 4.2, we increase
the size of the base network for diagonal hypermodel agents so that the number of trainable pa-
rameters is approximately on the same level as that of a linear hypermodel agent in Section 4.2.
Specifically, we let the base network be an MLP with 2 hidden layers of size 60.

We observed in our experiments that Bayes by Backprop does not work well with its originally
proposed KL regularization. We find that we had to decrease the strength of the KL regularization
by an order to get competitive performance. Further, Bayes by Backprop performs badly when the
prior standard deviation of the weights is specified far from 0.1 to 0.3, which could suggest that
Bayes by Backprop may only support very limited prior specifications. In Figure 9, we show the
cumulative regret of the best tuned Bayes by Backprop agent.

Compared to Bayes by Backprop, perturbed SGD is easier to tune. We observed that perturbations
do not make much difference in this toy example, and that regularization of base model parameters
does not play a big role here as we are doing SGD. We plot the cumulative regret of the best tuned
perturbed SGD agent in Figure 9. We see that given the diagonal hypermodel architecture, per-
turbed SGD performs slightly better than Bayes by Backprop. Both agents are worse than a linear
hypermodel agent trained with perturbed SGD.

E DROPOUT AS A POSTERIOR APPROXIMATION FOR NEURAL NETWORKS

Another popupar approach for approximating posterior distributions for neural networks is dropout
(Gal & Ghahramani, 2016). The dropout approach applies independent Bernoulli masks to the
activations during training, and Gal & Ghahramani (2016) argue that applying dropout masks once
again in a forward pass approximates sampling from the posterior distribution. To make the number
of trainable parameters comparable to other agents, we choose the network to have 2 hidden layers
of size 100. We then sweep over the probability of keeping each neuron, and find that a keeping
probability of 0.5 works well. In Figure 9, we see that the performance of a tuned dropout agent is
worse than the hypermodel agents.
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