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ABSTRACT

When mastering a complex manipulation task, humans often decompose the task
into sub-skills of their body parts, practice the sub-skills independently, and then
execute the sub-skills together. Similarly, a robot with multiple end-effectors can
perform complex tasks by coordinating sub-skills of each end-effector. To realize
temporal and behavioral coordination of skills, we propose a modular framework
that first individually trains sub-skills of each end-effector with skill behavior
diversification, and then learns to coordinate end-effectors using diverse behaviors
of the skills. We demonstrate that our proposed framework is able to efficiently
coordinate skills to solve challenging collaborative control tasks such as picking up
a long bar, placing a block inside a container while pushing the container with two
robot arms, and pushing a box with two ant agents. Videos and code are available
at https://clvrai.com/coordination.

1 INTRODUCTION

Imagine you wish to play Chopin’s Fantaisie Impromptu on the piano. With little prior knowledge
about the piece, you would first practice playing the piece with each hand separately. After inde-
pendently mastering the left and right hand parts, you would move on to practicing with both hands
simultaneously. To find the synchronized and non-interfering movements of two hands, you would
try variable ways of playing the same melody with each hand, and eventually create a complete piece
of music. Through the decomposition of skills into sub-skills of two hands and learning variations
of sub-skills, humans make the learning process of manipulation skills much faster than learning
everything at once.

Can autonomous agents efficiently learn complicated tasks with coordination of different skills from
multiple end-effectors like humans? Learning to perform collaborative and composite tasks from
scratch requires a huge amount of environment interaction and extensive reward engineering, which
often results in undesired behaviors (Riedmiller et al., 2018). Hence, instead of learning a task at once,
modular approaches (Andreas et al., 2017; Oh et al., 2017; Frans et al., 2018; Lee et al., 2019; Peng
et al., 2019; Goyal et al., 2020) suggest to learn reusable primitive skills and solve more complex
tasks by recombining the skills. However, all these approaches either focus on working with single
end-effector manipulation or single agent locomotion, and these do not scale to multi-agent problems.

To this end, we propose a modular framework that learns to coordinate multiple end-effectors
with their primitive skills for various robotics tasks, such as bimanual manipulation. The main
challenge is that naive simultaneous execution of primitive skills from multiple end-effectors can
often cause unintended behaviors (e.g. collisions between end-effectors). Thus, as illustrated in
Figure 1, our model needs to learn to appropriately coordinate end-effectors; and hence needs a way
to obtain, represent, and control detailed behaviors of each primitive skill. Inspired by these intuitions,
our method consists of two parts: (1) acquiring primitive skills with diverse behaviors by mutual
information maximization, and (2) learning a meta policy that selects a skill for each end-effector and
coordinates the chosen skills by controlling the behavior of each skill.

The main contribution of this paper is a modular and hierarchical approach that tackles cooperative
manipulation tasks with multiple end-effectors by (1) learning primitive skills of each end-effector
independently with skill behavior diversification and (2) coordinating end-effectors using diverse
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Figure 1: Composing complex skills using multiple agents’ primitive skills requires proper coordina-
tion between agents since concurrent execution of primitive skills requires temporal and behavioral
coordination. For example, to move a block into a container on the other end of the table, the agent
needs to not only utilize pick, place, and push primitive skills at the right time but also select the
appropriate behaviors for these skills, represented as latent vectors z1, z2, z3, and z4 above. Naive
methods neglecting either temporal or behavioral coordination will produce unintended behaviors,
such as collisions between end-effectors.

behaviors of the skills. Our empirical results indicate that our proposed method is able to efficiently
learn primitive skills with diverse behaviors and coordinate these skills to solve challenging collabo-
rative control tasks such as picking up a long bar, placing a block inside the container on the right
side, and pushing a box with two ant agents. We provide additional qualitative results and code at
https://clvrai.com/coordination.

2 RELATED WORK

Deep reinforcement learning (RL) for continuous control is an active research area. However, learning
a complex task either from a sparse reward or a heavily engineered reward becomes computationally
impractical as the target task becomes complicated. Instead of learning from scratch, complex
tasks can be tackled by decomposing the tasks into easier and reusable sub-tasks. Hierarchical
reinforcement learning temporally splits a task into a sequence of temporally extended meta actions.
It often consists of one meta policy (high-level policy) and a set of low-level policies, such as options
framework (Sutton et al., 1999). The meta policy decides which low-level policy to activate and the
chosen low-level policy generates an action sequence until the meta policy switches it to another low-
level policy. Options can be discovered without supervision (Schmidhuber, 1990; Bacon et al., 2017;
Nachum et al., 2018; Levy et al., 2019), meta-learned (Frans et al., 2018), pre-defined (Kulkarni et al.,
2016; Oh et al., 2017; Merel et al., 2019; Lee et al., 2019), or attained from additional supervision
signals (Andreas et al., 2017; Ghosh et al., 2018). However, option frameworks are not flexible to
solve a task that requires simultaneous activation or interpolation of multiple skills since only one
skill can be activated at each time step.

To solve composite tasks multiple policies can be simultaneously activated by adding Q-
functions (Haarnoja et al., 2018a), additive composition (Qureshi et al., 2020; Goyal et al., 2020), or
multiplicative composition (Peng et al., 2019). As each policy takes the whole observation as input
and controls the whole agent, it is not robust to changes in unrelated parts of the observation. For
example, a left arm skill can be affected by the pose change in the right arm, which is not relevant to
the left arm skill. Hence, these skill composition approaches can fail when an agent encounters a new
combination of skills or a new skill is introduced since the agent will experience unseen observations.

Instead of having a policy with the full observation and action space, multi-agent reinforcement
learning (MARL) suggests to explicitly split the observation and action space according to agents
(e.g. robots or end-effectors), which allows efficient low-level policy training as well as flexible skill
composition. For cooperative tasks, communication mechanisms (Sukhbaatar et al., 2016; Peng et al.,
2017; Jiang & Lu, 2018), sharing policy parameters (Gupta et al., 2017), and decentralized actor
with centralized critic (Lowe et al., 2017; Foerster et al., 2018) have been actively used. However,
these approaches suffer from the credit assignment problem (Sutton, 1984) among agents and the
lazy agent problem (Sunehag et al., 2018). As agents have more complicated morphology and
larger observation space, learning a policy for a multi-agent system from scratch requires extremely
long training time. Moreover, the credit assignment problem becomes more challenging when the
complexity of cooperative tasks increases and all agents need to learn completely from scratch. To
resolve these issues, we propose to first train reusable skills for each agent in isolation, instead of
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Figure 2: Our method is composed of two components: a meta policy and a set of agent-specific
primitive policies relevant to task completion. The meta policy selects which primitive skill to run for
each agent as well as the behavior embedding (i.e. variation in behavior) of the chosen primitive skill.
Each selected primitive skill takes as input the agent observation and the behavior embedding and
outputs action for that agent.

learning primitive skills of multiple agents together. Then, we recombine these skills (Maes & Brooks,
1990) to complete more complicated tasks with learned coordination of the skills.

To coordinate skills from multiple agents, the skills have to be flexible; hence, a skill can be adjusted
to collaborate with other agents’ skills. Maximum entropy policies (Haarnoja et al., 2017; 2018a;b)
can learn diverse ways to achieve a goal by maximizing not only reward but also entropy of the policy.
In addition, Eysenbach et al. (2019) proposes to discover diverse skills without reward by maximizing
entropy as well as mutual information between resulting states and latent representations of skills (i.e.
skill embeddings). Our method leverages the maximum entropy policy (Haarnoja et al., 2018b) with
the discriminability objective (Eysenbach et al., 2019) to learn a primitive skill with diverse behaviors
conditioned on a controllable skill embedding. This controllable skill embedding will be later used as
a behavior embedding for the meta policy to adjust a primitive skill’s behavior for coordination.

3 METHOD

In this paper, we address the problem of solving cooperative manipulation tasks that require collab-
oration between multiple end-effectors or agents. Note that we use the terms “end-effector” and
“agent” interchangeably in this paper. Instead of learning a multi-agent task from scratch (Lowe et al.,
2017; Gupta et al., 2017; Sunehag et al., 2018; Foerster et al., 2018), modular approaches (Andreas
et al., 2017; Frans et al., 2018; Peng et al., 2019) suggest to learn reusable primitive skills and solve
more complex tasks by recombining these skills. However, concurrent execution of primitive skills of
multiple agents fails when agents never experienced a combination of skills during the pre-training
stage, or skills require temporal or behavioral coordination.

Therefore, we propose a modular and hierarchical framework that learns to coordinate multiple agents
with primitive skills to perform a complex task. Moreover, during primitive skill training, we propose
to learn a latent behavior embedding, which provides controllability of each primitive skill to the meta
policy while coordinating skills. In Section 3.2, we describe our modular framework in detail. Next,
in Section 3.3, we elaborate how controllable primitive skills can be acquired. Lastly, we describe
how the meta policy learns to coordinate primitive skills in Section 3.4.

3.1 PRELIMINARIES

We formulate our problem as a Markov decision process defined by a tuple {S,A, T , R, ρ, γ} of states,
actions, transition probability, reward, initial state distribution, and discount factor. In our formulation,
we assume the environment includes N agents. To promote consistency in our terminology, we use
superscripts to denote the index of agent and subscripts to denote time or primitive skill index. Hence,
the state space and action space for an agent i can be represented as Si andAi where each element of
Si is a subset of the corresponding element in S andA = A1×A2×· · ·×AN , respectively. For each
agent i, we provide a set of mi skills, Πi = {πi1, . . . , πimi}. A policy of an agent i is represented as
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(a) RL (b) MARL (c) Modular (d) RL-SBD (e) MARL-SBD (f) Modular-SBD

Figure 3: Different multi-agent architectures. (a) The vanilla RL method considers all agents as a
monolithic agent; thus a single policy takes the full observation as input and outputs the full action.
(b) The multi-agent RL method (MARL) consists of N policies that operate on the observations and
actions of corresponding agents. (c) The modular network consists of N sets of skills for the N
agents trained in isolation and a meta policy that selects a skill for each agent. (d-f) The RL, MARL,
and modular network methods augmented with skill behavior diversification (SBD) has a meta policy
that outputs a skill behavior embedding vector z for each skill.

πi
cit

(ait|sit) ∈ Πi, where cit is a skill index, sit ∈ Si is a state, and ait ∈ Ai is an agent action at time t.

An initial state s0 is sampled from ρ, and then, N agents take actions a1t , a
2
t , . . . , a

N
t sampled from a

composite policy π(a1t , a
2
t , . . . , a

N
t |st, c1t , c2t , . . . , cNt ) = (π1

c1t
(a1t |st), π2

c2t
(a2t |st), . . . , πNcNt (aNt |st))

and receive a single reward rt. The performance is evaluated based on a discounted return R =∑T−1
t=0 γtrt, where T is the episode horizon.

3.2 MODULAR FRAMEWORK

As illustrated in Figure 2, our model is composed of two components: a meta policy πmeta and a set
of primitive skills of N agents Π1, . . . ,ΠN . Note that each primitive skill πici ∈ Πi contains variants
of behaviors parameterized by an Nz-dimensional latent behavior embedding zi (see Section 3.3).
The meta policy selects a skill to execute for each agent, rather than selecting one primitive skill for
the entire multi-agent system to execute. Also, we give the meta policy the capability to select which
variant of the skill to execute (see Section 3.4). Then, the chosen primitive skills are simultaneously
executed for Tlow time steps.

The concurrent execution of multiple skills often leads to undesired results and therefore requires
coordination between the skills. For example, naively placing a block in the left hand to a container
being moved by the right hand can cause collision between the two robot arms. The arms can avoid
collision while performing the skills by properly adjusting their skill behaviors (e.g. the left arm
leaning to the left side while placing the block and the right arm leaning to the right side while
pushing the container) as shown in Figure 1. In our method, the meta policy learns to coordinate
multiple agents’ skills by manipulating the behavior embeddings (i.e. selecting a proper behavior
from diverse behaviors of each skill).

3.3 TRAINING AGENT-SPECIFIC PRIMITIVE SKILLS WITH DIVERSE BEHAVIORS

To adjust a primitive skill to collaborate with other agents’ skills in a new environment, the skill
needs to support variations of skill behaviors when executed at a given state. Moreover, a behavioral
variation of a skill should be controllable by the meta policy for skill coordination. In order to make
our primitive skill policies generate diverse behaviors controlled by a latent vector z, we leverage the
entropy and mutual information maximization objective introduced in Eysenbach et al. (2019).

More specifically, a primitive policy of an agent i outputs an action a ∈ A conditioned on the current
state s ∈ S and a latent behavior embedding z ∼ p(z), where the prior distribution p(z) is Gaussian
(we omit agent i in this section for the simplicity of notations). Diverse behaviors conditioned on
a random sample z can be achieved by maximizing the mutual information between behaviors and
states MI(s, z), while minimizing the mutual information between behaviors and actions given the
state MI(a, z|s), together with maximizing the entropy of the policyH(a|s) to encourage diverse
behaviors. The objective can be written as follows (we refer the readers to Eysenbach et al. (2019)
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Algorithm 1 ROLLOUT

1: Input: Meta policy πmeta, sets of primitive policies Π1, ...,ΠN , and meta horizon Tlow
2: Initialize an episode t← 0 and receive initial state s0
3: while episode is not terminated do
4: Sample skill indexes and behavior embeddings (c1t , . . . , c

N
t ), (z1t , . . . , z

N
t ) ∼ πmeta(st)

5: τ ← 0
6: while τ < Tlow and episode is not terminated do
7: at+τ = (a1t+τ , . . . , a

N
t+τ ) ∼ (π1

c1t
(st+τ , z

1
t ), . . . , πN

cNt
(st+τ , z

N
t ))

8: st+τ+1, rt+τ ← ENV(st+τ , at+τ )
9: τ ← τ + 1

10: end while
11: Add a transition st, (c1t , . . . , c

N
t ), (z1t , . . . , z

N
t ), st+τ , rt:t+τ−1 to the rollout buffer B

12: t← t+ τ
13: end while

for derivation):

F(θ) = MI(s, z)−MI(a, z|s) +H(a|s) = H(a|s, z)−H(z|s) +H(z) (1)
= H(a|s, z) + Ez∼p(z),s∼π(z)[log p(z|s)]− Ez∼p(z)[log p(z)] (2)

≥ H(a|s, z) + Ez∼p(z),s∼π(z)[log qφ(z|s)− log p(z)], (3)

where the learned discriminator qφ(z|s) approximates the posterior p(z|s).

To achieve a primitive skill with diverse behaviors, we augment Equation (3) to the environment
reward:

rt + λ1H(a|s, z) + λ2Ez∼p(z),s∼π(z)[log qφ(z|s)− log p(z)], (4)
where λ1 is the entropy coefficient and λ2 is the diversity coefficient which corresponds identifia-
bility of behaviors. Maximizing Equation (3) encourages multi-modal exploration strategies while
maximizing the reward rt forces to achieve its own goal. Moreover, by maximizing identifiability of
behaviors, the latent vector z, named behavior embedding, can represent a variation of the learned
policy and thus can be used to control the behavior of the policy. For example, when training a
robot to move an object, a policy learns to move the object quickly as well as slowly, and these
diverse behaviors map to different latent vectors z. We empirically show that the policies with diverse
behaviors achieve better compositionality with other agents in our experiments.

3.4 COMPOSING PRIMITIVE SKILLS WITH META POLICY

We denote the meta policy as πmeta(c1, . . . , cN , z1, . . . , zN |st), where ci ∈ [1,mi] represents a skill
index of an agent i ∈ [1, N ] and zi ∈ RNz represents a behavior embedding of the skill. Every
Tlow time steps, the meta policy chooses one primitive skill πici ∈ Πi for each agent i. Also, the
meta policy outputs a set of latent behavior embeddings (z1, z2, . . . , zN ) and feeds them to the
corresponding skills (i.e. πici(a

i|si, zi) for agent i). Once a set of primitive skills {π1
c1 , . . . , π

N
cN }

are chosen to be executed, each primitive skill generates an action ai ∼ πici(a
i|si, zi) based on the

current state si and the latent vector zi. Algorithm 1 illustrates the overall rollout process.

Since there are a finite number of skills for each agent to execute, the meta action space for each agent
[1,mi] is discrete, while the behavior embedding space for each agent RNz is continuous. Thus, the
meta policy is modeled as a (2×N )-head neural network where the first N heads represent mi-way
categorical distributions for skill selection and the last N heads represent Nz-dimensional Gaussian
distributions for behavior control of the chosen skill.

3.5 IMPLEMENTATION

We model the primitive policies and posterior distributions qφ as neural networks. We train the
primitive policies using soft actor-critic (Haarnoja et al., 2018b). When we train a primitive policy,
we use a unit Gaussian distribution as the prior distribution of latent variables p(z). We use 5 as
the size of latent behavior embedding Nz . Each primitive policy outputs the mean and standard
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(a) JACO PICK-PUSH-PLACE (b) JACO BAR-MOVING (c) ANT PUSH

Figure 4: The composite tasks pose a challenging combination of object manipulation and locomotion
skills, which requires coordination of multiple agents and temporally extended behaviors. (a) The
left Jaco arm needs to pick up a block while the right Jaco arm pushes a container, and then it places
the block into the container. (b) Two Jaco arms are required to pick and place a bar-shaped block
together. (c) Two ants push the red box to the goal location (green circle) together.

deviation of a Gaussian distribution over an action space. For a primitive policy, we apply tanh
activation to normalize the action between [−1, 1]. We model the meta policy as neural network with
multiple heads that output the skill index ci and behavior embedding zi for each agent. The meta
policy is trained using PPO (Schulman et al., 2017; 2016; Dhariwal et al., 2017). All policy networks
in this paper consist of 3 fully connected layers of 64 hidden units with ReLU nonlinearities. The
discriminator qφ in Equation (4) is a 2-layer fully connected network with 64 hidden units.

4 EXPERIMENTS

To demonstrate the effectiveness of our framework, we compare our method to prior methods in the
field of multi-agent RL and ablate the components of our framework to understand their importance.
We conducted experiments on a set of challenging robot control environments that require coordination
of different agents to complete collaborative robotic manipulation and locomotion tasks.

Through our experiments, we aim to answer the following questions: (1) can our framework efficiently
learn to combine primitive skills to execute a complicated task; (2) can our learned agent exhibit
collaborative behaviors during task execution; and (3) can our framework leverage the controllable
behavior variations of the primitive skills to achieve better coordination?

For details about environments and training, please refer to the supplementary material. As the
performance of training algorithms varies between runs, we train each method on each task with 6
different random seeds and report mean and standard deviation of each method’s success rate.

4.1 BASELINES

We compare the performance of our method with various single- and multi-agent RL methods
illustrated in Figure 3:

Single-agent RL (RL): A vanilla RL method where a single policy takes as input the full observation
and outputs all agents’ actions.

Multi-agent RL (MARL): A multi-agent RL method where each of N policies takes as input the
observation of the corresponding agent and outputs an action for that agent. All policies share the
global critic learned from a single task reward (Lowe et al., 2017).

Modular Framework (Modular): A modular framework composed of a meta policy and N sets of
primitive skills (i.e. one or more primitive skills per agent). Every Tlow time steps, the meta policy
selects a primitive skill for each agent based on the full observation. Then, the chosen skills are
executed for Tlow time steps.
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Figure 5: Success rates of our method (Modular-SBD) and baselines. For modular frameworks
(Modular and Modular-SBD), we shift the learning curves rightwards the total number of environment
steps the agent takes to learn the primitive skills (0.9 M, 1.2 M, and 2.0 M, respectively). Our method
substantially improves learning speed and performance on JACO PICK-PUSH-PLACE and ANT PUSH.
The shaded areas represent the standard deviation of results from six different seeds. The curves are
smoothed using moving average over 10 runs.

Single-agent RL with Skill Behavior Diversification (RL-SBD): An RL method augmented with
the behavior diversification objective. A meta policy is employed to generate a behavior embedding
for a low-level policy, and the low-level policy outputs all agents’ actions conditioned on the behavior
embedding and the full observation for Tlow time steps. The meta policy and the low-level policy are
jointly trained with the behavior diversification objective described in Equation (4).

Multi-agent RL with Skill Behavior Diversification (MARL-SBD): A MARL method augmented
with the behavior diversification objective. A meta policy generates N behavior embeddings. Then,
each low-level policy outputs each agent’s action conditioned on its observation and behavior
embedding for Tlow time steps. All policies are jointly trained to maximize Equation (4).

Modular Framework with Skill Behavior Diversification (Modular-SBD, Ours): Our method
which coordinates primitive skills of multiple agents. The modular framework consists of a meta
policy and N sets of primitive skills, where each primitive skill is conditioned on a behavior
embedding z. The meta policy takes as input the full observation and selects both a primitive skill
and a behavior embedding for each agent. Then, each primitive skill outputs action for each agent.

4.2 JACO PICK-PUSH-PLACE

We developed JACO PICK-PUSH-PLACE and JACO BAR-MOVING environments using two Kinova
Jaco arms, where each Jaco arm is a 9 DoF robotic arm with 3 fingers. JACO PICK-PUSH-PLACE
starts with a block on the left and a container on the right. The robotic arms need to pick up the block,
push the container to the center, and place the block inside the container. For successful completion
of the task, the two Jaco arms have to concurrently execute their distinct sets of skills and dynamically
adjust their picking, pushing, and placing directions to avoid collision between arms.

Primitives skills. There are three primitive skills available to each arm: Picking up, Pushing, and
Placing to center (see Figure 4a). Picking up requires a robotic arm to pick up a small block, which is
randomly placed on the table. If the block is not picked up after a certain amount of time or the arm
drops the block, the agent fails. Pushing learns to push a big container to its opposite side (e.g. from
left to the center or from right to center). The agent fails if it cannot place the container to the center.
Placing to center requires placing an object in the gripper to the table. The agent only succeeds when
it stably places the object at the desired location on the container.

Composite task. Our method (Modular-SBD) can successfully perform JACO PICK-PUSH-PLACE
task while all baselines fail to compose primitive skills as shown in Figure 5a. The RL and MARL
baselines cannot learn the composite task mainly because the agent requires to learn the combinatorial
number of skill compositions and to solve the credit assignment problem across multiple agents.
Since the composite task requires multiple primitive skills of multiple agents to be performed properly
at the same time, a reward signal about a failure case cannot be assigned to the correct agent or skill.
By using pre-trained primitive skills, the credit assignment problem is relaxed and all agents can
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Jaco Pick-Push-Place Jaco Bar-Moving Ant Push
RL 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

MARL 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
RL-SBD 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

MARL-SBD 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Modular 0.324 ± 0.468 0.917 ± 0.276 0.003 ± 0.058

Modular-SBD (Ours) 0.902 ± 0.298 0.950 ± 0.218 0.323 ± 0.468

Table 1: Success rates for all tasks, comparing our method against baselines. Each entry in the table
represents average success rate and standard deviation over 100 runs. The baselines learning from
scratch fail to learn complex tasks with multiple agents.

perform their skills concurrently. Therefore, the Modular baseline learns to achieve success but shows
significantly lower performance than our method (Modular-SBD). This is because the lack of skill
behavior diversification makes it impossible to adjust pushing and placing trajectories during skill
composition time, which resulting in frequent end-effector collisions.

4.3 JACO BAR-MOVING

In JACO BAR-MOVING, two Jaco arms need to pick up a long bar together, move the bar towards a
target location while maintaining its rotation, and place it on the table (see Figure 4b). The initial
position of the bar is randomly initialized every episode and an agent needs to find appropriate
coordination between two arms for each initialization. Compared to JACO PICK-PUSH-PLACE,
this task requires that the two arms synchronize their movements and perform more micro-level
adjustments to their behaviors.

Primitives skills. There are two pre-trained primitive skills available to each arm: Picking up and
Placing towards arm. Picking up is same as described in Section 4.2. Placing towards arm learns to
move a small block (half size of the block used in the composite task) in the hand towards the robotic
arm and then place it on the table. The agent fails if it cannot place the block to the target location.

Composite task. The JACO BAR-MOVING task requires the two arms to work very closely together.
For example, the Picking up skill of both arms should be synchronized when they start to lift the
bar and two arms require to lift the bar while maintaining the relative position between them since
they are connected by holding the bar. The modular framework without explicit coordination of
skills (Modular) can synchronize the execution of picking, moving, and placing. But the inability
to micro-adjust the movement of the other arm causes instability of bar picking and moving. This
results in degraded success rates compared to the modular framework with explicit coordination.
Meanwhile, all baselines without pre-defined primitive skills fail to learn JACO BAR-MOVING.

4.4 ANT PUSH

We developed a multi-ant environment, ANT-PUSH, inspired from Nachum et al. (2019), simulated in
the MuJoCo (Todorov et al., 2012) physics engine. We use the ant model in OpenAI Gym (Brockman
et al., 2016). In this environment, two ants need to push a large object toward a green target place,
collaborating with each other to keep the angle of the object as stable as possible (see Figure 4c).

Primitives skills. We train walking skills of an ant agent in 4 directions: up, down, left, and right.
During primitive skill training, a block (half size of the block used in the composite task) and an
ant agent are randomly placed. Pushing the block gives an additional reward to the agent, which
prevents an ant to avoid the block. The learned primitive skills have different speed and trajectories
conditioned on the latent behavior embedding.

Composite task. Our method achieves 32.3% success rate on ANT PUSH task while all baselines fail
to compose primitive skills as shown in Figure 5c and Table 1. The poor performance of RL, MARL,
RL-SBD, and MARL-SBD baselines shows the difficulty of credit assignment between agents, which
leads one of the ants moves toward a block and pushes it but another ant does not move. Moreover,
the Modular baseline with primitive skills also fails to learn the pushing task. This result illustrates
the importance of coordination of agents, which helps synchronizing and controlling the velocities of
both ant agents to push the block toward the goal position while maintaining its rotation.
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Figure 6: Learning curves of our method with
different diversity coefficients λ2 on ANT PUSH.
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Figure 7: Success rates of our method with dif-
ferent Tlow coefficients on Jaco environments.

4.5 EFFECT OF DIVERSITY OF PRIMITIVE SKILLS

To analyze the effect of the diversity of primitive skills, we compare our model with primitive
skills trained with different diversity coefficients λ2 = {0.0, 0.05, 0.1, 0.5, 1.0} in Equation (4) on
ANT PUSH. Figure 6 shows that with small diversity coefficients λ2 = {0.05, 0.1}, the agent can
control detailed behaviors of primitive skills while primitive skills without diversity (λ2 = 0) cannot
be coordinated. The meta policy tries to synchronize two ant agents’ positions and velocities by
switching primitive skills, but it cannot achieve proper coordination without diversified skills. On
the other hand, large diversity coefficients λ2 = {0.5, 1.0} make the primitive skills often focus on
demonstrating diverse behaviors and fail to achieve the goals of the skills. Hence, these primitive
skills do not have enough functionality to solve the target task. The diversity coefficient needs to be
carefully chosen to acquire primitive skills with good performance as well as diverse behaviors.

4.6 EFFECT OF SKILL SELECTION INTERVAL Tlow

To analyze the effect of the skill selection interval hyperparameter Tlow, we compare our method
trained with Tlow = {1, 2, 3, 5, 10} on Jaco environments. The success rate curves in Figure 7
demonstrate that smaller Tlow values in range [1, 3] lead to better performance. This can be because
the agent can realize more flexible skill coordination by adjusting the behavior embedding frequently.

In addition to the fixed Tlow values, we also consider the variation of our method in which the skill
behavior embedding is only sampled when the meta policy updates its skill selection. Concretely,
we set the value of Tlow to 1 but update (z1t , . . . , z

N
t ) only if (c1t , . . . , c

N
t ) 6= (c1t−1, . . . , c

N
t−1). We

observe that in this setting, the meta policy at times switch back and forth between two skills in two
consecutive time steps, leading to slightly worse performance compared to our method with small
Tlow values. This indicates that the meta policy needs to adjust the behavior embedding in order to
optimally coordinate skills of the different agents.

5 CONCLUSION

In this paper, we propose a modular framework with skill coordination to tackle challenges of
composition of sub-skills with multiple agents. Specifically, we use entropy maximization with
mutual information maximization to train controllable primitive skills with diverse behaviors. To
coordinate learned primitive skills, the meta policy predicts not only the skill to execute for each agent
(end-effector) but also the behavior embedding that controls the chosen primitive skill’s behavior.
The experimental results on robotic manipulation and locomotion tasks demonstrate that the proposed
framework is able to efficiently learn primitive skills with diverse behaviors and coordinate multiple
agents (end-effectors) to solve challenging cooperative control tasks. Acquiring skills without
supervision and extending our method to a visual domain are exciting directions for future work.
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A ENVIRONMENT DETAILS

The details of observation spaces, action spaces, number of agents, and episode lengths are described
in Table 2. All units in this section are in meters unless otherwise specified.

Jaco Pick-Push-Place Jaco Bar-Moving Ant Push
Observation Space 88 88 100
- Robot observation 62 62 82
- Object observation 26 26 18
Action Space 18 18 16
Number of Agents 2 2 2
Episode length 150 100 200

Table 2: Environment details

A.1 ENVIRONMENT DESCRIPTIONS

In both Jaco environments, the robot works on a table with size (1.6, 1.6) and top center position
(0, 0, 0.82). The two Jaco arms are initialized at positions (−0.16,−0.16, 1.2) and (−0.16, 0.24, 1.2).
Left arm and right arm objects are initialized around (0.3, 0.2, 0.86) and (0.3,−0.2, 0.86) respectively
in all primitive training and composite task training environments, with small random position and
rotation perturbation.

In the Jaco Pick-Push-Place task, the right jaco arm needs to pick up the object and place it into the
container initialized at the other side of the table. Success is defined by contact between the object
and the inner top side of the container.

In the Jaco Bar-Moving task, the two Jaco arms need to together pick the long bar up by height of 0.7,
move it towards the arms by distance of 0.15, and place it back on the table. Success is defined by (1)
the bar being placed within 0.04 away from the desired destination both in height and in xy-position
and (2) the bar having been picked 0.7 above the table.

In the Ant Push task, the two ant agents need to push a big box together to the goal position. The
box has a size of 8.0× 1.6× 1.6. The distance between ants and the box is 20 cm and the distance
between the box and the goal is 30 cm. Initial positions have 1 cm of randomness and the agent has a
randomness of 0.01 in each joint. The task is considered as success when both the distances between
left and right end of the box and the goal are within 5 cm.

A.2 REWARD DESIGN

For every task, we add a control penalty, −0.001 ∗ ‖a‖2, to regularize the magnitude of actions where
a is a torque action performed by an agent.

Jaco Pick: To help the agent learn to reach, pick, and hold the picked object, we provide dense
reward to the agent defined by the weighted sum of pick reward, gripper-to-cube distance reward,
cube position and quaternion stability reward, hold duration reward, success reward, and robot control
reward. More concretely,

R(s) = λpick · (zbox − zinit) + λdist · dist(pgripper, pbox) + λpos · dist(pbox, pinit)+

λquat · abs(∆quat) + λhold · thold + λsuccess · 1success + λctrl‖a‖2,

where λpick = 500, λdist = 100, λpos = 1000, λquat = 1000, λhold = 10, λsuccess = 100, λctrl =
1× 10−4.

Jaco Place: Reward for place primitive is defined by the weighted sum of xy-distance reward, height
reward (larger when cube close to floor), success reward, and robot control reward.

R(s) = λxy · distxy(pbox, pgoal) + λz · |zbox − zgoal|+ λsuccess · 1success + λctrl‖a‖2,

where λxy = 500, λz = 500, λsuccess = 500, λctrl = 1× 10−4.
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Jaco Push: Reward for push primitive is defined by the weighted sum of gripper reaching reward,
box-to-destination distance reward, quaternion stability reward, hold duration reward, success reward,
and robot control reward.

R(s) = λreaching · dist(pgripper, pbox) + λpos · dist(pbox, pdest)+

λquat · abs(∆quat) + λhold · thold + λsuccess · 1success + λctrl‖a‖2,

where λreaching = 100, λpos = 500, λquat = 30, λhold = 10, λsuccess = 1000, λctrl = 1× 10−4.

Jaco Pick-Push-Place: Reward for Pick-Push-Place is defined by the weighted sum of gripper
contact reward, per-stage reach/pick/push/place rewards, success reward, and control reward. We
tune the reward carefully for all baselines.

R(s) = λcontact ·
(
1left gripper touches container + 1right gripper touches box

)
+

λreach · 1reach ·
(
dist(pleft gripper, pcontainer) + dist(pright gripper, pbox)

)
+

λpick · 1pick · dist(pbox, pbox target) + λplace · 1place · dist(pbox, pbox target)+

λpush · dist(pcontainer, pcontainer target) + λsuccess · 1success + λctrl · ‖a‖2,

where λreach = 10, λcontact = 10, λpick = λplace = λplace = 10, λsuccess = 50, λctrl = 0, and
1reaching, 1pick, and 1place are indicator functions specifying whether the agent is in reaching, pick or
place stage. Agent stages are determined by how many multiples of 25 steps the agent has stepped
through in the environment.

Jaco Bar-Moving: Reward for Bar-Moving is defined by the weighted sum of per-stage
reach/pick/move/place rewards, success reward, and control reward.

R(s) = λreach · 1reach ·
(
dist(pleft gripper, pleft handle) + dist(pright gripper, pright handle)

)
+

λpick · 1pick · dist(pbar, pbar target) + λmove · 1place · distxy(pbar, pbar target)+

λplace · 1place · distz(pbar, pbar target) + λsuccess · 1success + λctrl · ‖a‖2,

where λreach = 10, λpick = 30, λmove = 100, λplace = 100, λsuccess = 100, λctrl = 1 × 10−4,
and 1pick and 1place are indicator functions specifying whether the agent is in pick or place stage.
Agent stages are determined by whether the pick objective is fulfilled or not.

Ant Push & Ant Moving: Reward for ANT PUSH is defined by upright, velocity towards the desired
direction. We provide a dense reward to encourage the desired locomotion behavior using velocity,
stability, and posture, as following:

R(s) =λvel · abs(∆xant) + λboxvel · abs(∆xbox) + λupright · cos(θ)− λheight · abs(0.6− h)+

λgoal · dist(pgoal, pbox),

where λvel = 50, λboxvel = 20, λupright = 1, λheight = 0.5. For ANT PUSH, we provide an
additional reward based on distance between the box and the goal position with λgoal = 200.

B EXPERIMENT DETAILS

We use PyTorch (Paszke et al., 2017) for our implementation and all experiments are conducted on a
workstation with Intel Xeon Gold 6154 CPU and 4 NVIDIA GeForce RTX 2080 Ti GPUs.
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B.1 HYPERPARAMETERS

Parameters Value
learning rate 3e-4

gradient steps 50
batch size 256

discount factor 0.99
target smoothing coefficient 0.005

reward scale (SAC) 1.0
experience buffer size (# episodes) 1000

Tlow 1 for JACO, 5 for ANT
Nz (dimensionality of z) 5

Table 3: Hyperparameters

B.2 NETWORK ARCHITECTURES

Actor Networks: In all experiments, we model our actor network for each primitive skill as a 3-layer
MLP with hidden layer size 64. The last layer of the MLP is two-headed – one for the mean of the
action distribution and the other for the standard deviation of it. We use ReLU as activation function
in hidden layers. We do not apply any activation function for the final output layer. The action
distribution output represents per-dimension normal distribution, from which single actions can be
sampled and executed in the environment.

Critic Networks: The critic network for each primitive skill and meta policy is modeled as a 2-layer
MLP with hidden layer size 128. ReLU is used as an activation function in the hidden layers. The
critic network output is used to assess the value of a given state-action pair, and is trained by fitting
its outputs to the target Q-value clamped by ±100.

Meta Policy: The meta policy is modeled as a 3-layer MLP with hidden layer size of 64. Since
the actions of meta policy are sampled from N categorical distributions for each end-effector/agent
and N normal distributions for behavior embeddings, the output dimension of the meta policy is∑N
i=1(mi +Nz). The meta policy uses ReLU as an activation function for all layers except for the

final output layer.

B.3 TRAINING DETAILS

For all baselines, we train the meta policies using PPO and the low-level policies using SAC. We use
the same environment configurations, composite task reward definitions, and value of Tlow across all
baselines.

For Jaco tasks, we train a total of 4 primitive skills – right arm pick, right arm place-to-center, right
arm place-towards-arm, and left arm push – to be composed by meta-policy. For Jaco Pick-Push-
Place, we provide the meta-policy with right arm pick and right arm place-to-center as right arm
primitives and left arm push as left arm primitives; for Jaco Bar-Moving, we provide the meta-policy
with right arm pick and right arm place-towards-arm as both right and left arm primitives and left
arm pick and right arm place-towards-arm as left arm primitives. We obtain left arm primitives for
bar-moving task by using the learned right arm primitives directly.

To obtain the 4 primitives skills described above, we train right arm pick with diversity coefficient
λ2 = 0.01 and the other three primitives with λ2 = 0.1. The destination of right arm push is set to
(0.3,−0.03, 0.86), which is slightly left of the center of the table. After pick primitive is trained,
we train the two right arm place primitives where episodes are initialized by intermediate states
of successful right arm pick episodes where the height of the box is larger than 0.94 (0.01 higher
than the target pick height). The place destinations for towards-arm and to-center primitives are
(0.15,−0.2, 0.86) and (0.3,−0.02, 0.86), respectively.

For non-modular baselines that incorporates skill behavior diversification, we use λ2 = 0.01 for both
Jaco Pick-Push-Place and Jaco Bar-Moving because both tasks require picking skills, which can only
be trained with a small value of λ2.
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