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ABSTRACT

Mixture models, a basic building block in countless statistical models, involve latent
random variables over discrete spaces, and existing posterior inference methods
can be inaccurate and/or very slow. In this work we introduce a novel deep learning
architecture for efficient amortized Bayesian inference over mixture models. While
previous approaches to amortized clustering assumed a fixed or maximum number
of mixture components and only amortized over the continuous parameters of
each mixture component, our method amortizes over the local discrete labels of
all the data points, and performs inference over an unbounded number of mixture
components. The latter property makes our method natural for the challenging
case of nonparametric Bayesian models, where the number of mixture components
grows with the dataset. Our approach exploits the exchangeability of the generative
models and is based on mapping distributed, permutation-invariant representations
of discrete arrangements into varying-size multinomial conditional probabilities.
The resulting algorithm parallelizes easily, yields iid samples from the approximate
posteriors along with a normalized probability estimate of each sample (a quantity
generally unavailable using Markov Chain Monte Carlo) and can easily be applied
to both conjugate and non-conjugate models, as training only requires samples
from the generative model. We also present an extension of the method to models
of random communities (such as infinite relational or stochastic block models). As
a scientific application, we present a novel approach to neural spike sorting for
high-density multielectrode arrays.

1 INTRODUCTION

Mixture models (or equivalently, probabilistic clustering models) are a staple of statistical modelling
in which a discrete latent variable is introduced for each observation, indicating its mixture component
identity. Popular inference methods in these models fall into two main classes. When exploring the
full posterior is crucial (e.g. there is irreducible uncertainty about the latent structure or many separate
local optima exist), the method of choice is Markov Chain Monte Carlo (MCMC) (Neal, 2000; Jain
& Neal, 2004). This method is asymptotically accurate but time-consuming, with convergence that is
difficult to assess. Models whose likelihood and prior are non-conjugate are particularly challenging,
since in general in these cases the model parameters cannot be marginalized and must be kept as part
of the state of the Markov chain. Alternatively, variational methods (Blei & Jordan, 2004; Kurihara
et al., 2007; Hughes et al., 2015) are typically much faster but do not come with accuracy guarantees.

As an alternative to MCMC and variational approaches, in recent years there has been steady
progress on amortized inference methods, and such is the spirit of this work. Concretely, we
propose a novel technique to perform amortized approximate posterior inference over discrete latent
variables in mixture models. The basic idea is to use neural networks to express posteriors in the
form of multinomial distributions (with varying support) in terms of fixed-dimensional, distributed
representations that respect the permutation symmetries imposed by the discrete variables. A major
advantage of our architecture, compared to previous approaches to amortized clustering, is its ability
to handle an arbitrary number of clusters. This makes the method a natural choice for nonparametric
Bayesian models, such as Dirichlet process mixture models (DPMM), and their extensions, where the
number of components, a measure of the model complexity, is inferred as a posterior random variable;
see (Rodriguez & Mueller, 2013) for a recent overview. Moreover, the method can be applied to both
conjugate and non-conjugate models.
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The term ‘amortization’ refers to the process of investing computational resources to train a model
that is later used for very fast posterior inference (Gershman & Goodman, 2014). Concretely, the
amortized approach learns a parametrized function qθ(z|x) that approximates p(z|x) for any x;
learning the model parameters θ may be computationally challenging, but once θ is in hand then
evaluating qθ(z|x) for new data x is fast.

The amortized inference literature can be coarsely divided into two approaches. On one side,
the variational autoencoder approach (Kingma & Welling, 2013), with roots in the wake-sleep
algorithm (Hinton et al., 1995), learns qθ(z|x) along with the generative model pφ(x|z). While
p(z) is usually a known simple distribution, for discrete latent variables backpropagation cannnot
be performed through them, and special approaches have been developed for those cases (Mnih &
Rezende, 2016; Jang et al., 2016; Maddison et al., 2016).

Our work corresponds to the alternative case: a generative model p(x, z) is postulated , and posterior
inference is the main focus of the learning phase. Amortized methods in this case usually involve a
degree of specialization to the particular generative model of interest. Examples include methods
developed for Bayesian networks (Stuhlmüller et al., 2013), sequential Monte Carlo (Paige & Wood,
2016), probabilistic programming (Ritchie et al., 2016; Le et al., 2016), neural decoding (Parthasarathy
et al., 2017) and particle tracking (Sun & Paninski, 2018). Our work is specialized to the case where
the latent variables are discrete and their range is not fixed beforehand.

In the approach we present, after training the neural architecture using labeled samples from a
particular generative model, we can obtain independent, parallelizable, approximate posterior samples
of the discrete variables for any new set of observations of arbitrary size, with no need for expensive
MCMC steps. These samples can be used (i) to compute approximate expectations, (ii) as high
quality importance samples, or (iii) as independent Metropolis-Hastings proposals.

In Section 2 we study amortized mixtures and in Section 3 we review related works. In Section 4
we discuss quantitative evaluations of the new method. In Section 5 we present an extension of the
method to random community graph models. We close in Section 6 with a neuroscientific application
of this method to spike sorting for high-density multielectrode probes.

2 AMORTIZING MIXTURE MODELS

We start by presenting mixture models from the perspective of probabilistic models for cluster-
ing (McLachlan & Basford, 1988). The latter introduce random variables ci denoting the cluster
number to which the data point xi is assigned, and assume a generating process of the form

α1, α2 ∼ p(α)

N ∼ p(N)

c1 . . . cN ∼ p(c1, . . . , cN |α1)

µ1 . . . µK |c1:N ∼ p(µ1, . . . µK |α2)

xi ∼ p(xi|µci) i = 1 . . . N

Here α1, α2 are hyperparameters. The number of clusters K is a random variable, indicating the
number of distinct values among the sampled ci’s, and µk denotes a parameter vector controlling the
distribution of the k-th cluster (e.g., µk could include both the mean and covariance of a Gaussian
mixture component). We assume that the priors p(c1:N |α1) and p(µ1:K |α2) are exchangeable,

p(c1, . . . , cN |α1) = p(cσ1 , . . . , cσN
|α1) ,

where {σi} is an arbitrary permutation of the indices, and similarly for p(µ1:K |α2). Our interest
in this work is in cases where K can take any value K ≤ N , such as the Chinese Restaurant
Process (CRP), or its Pitman-Yor generalization. Of course, our methods will also work for models
with K < B with fixed B, such as Mixtures of Finite Mixtures (Miller & Harrison, 2018).

Given N data points x = {xi}, we would like to draw independent samples from the posterior

p(c1:N |x) = p(c1|x)p(c2|c1,x) . . . p(cN |c1:N−1,x). (1)

Note that p(c1 = 1|x) = 1, since the first data point is always assigned to the first cluster. While
we might also be interested in the hidden variables α1, α2, µk, the reason to focus on the discrete
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variables ci’s is that given samples from them, it is generally relatively easy to obtain posterior
samples from p(α1|c1:N ) and p(µk, α2|x, c1:N ).

We would like to model all the factors in (1) in a unified way, with a generic factor given by

p(cn|c1:n−1,x) =
p(c1 . . . cn,x)

K+1∑
c′n=1

p(c1 . . . c
′
n,x)

. (2)

Here we assumed that there are K unique values in c1:n−1, and therefore cn can take K + 1 values,
corresponding to xn joining any of the K existing clusters, or forming its own new cluster.

We are interested in approximating (2):

p(cn|c1:n−1,x) ≈ qθ(cn|c1:n−1,x), (3)

where qθ is parameterized by a flexible model such as a neural network that takes as inputs (c1:n−1,x),
then extracts features and combines them nonlinearly to output a probability distribution on cn.
Critically, we will design the network to enforce the highly symmetric structure of the lhs of (3).

To make this symmetric structure more transparent, and in light of the expression (2), let us consider
the joint distribution of the assignments of the first n data points,

p(c1, . . . , cn,x) . (4)

A neural representation of this quantity should respect the permutation symmetries imposed on the xi’s
by the values of c1:n. Therefore, our first task is to build permutation-invariant representations of the
observations x. The general problem of constructing such invariant encodings was discussed recently
in (Zaheer et al., 2017); to adapt this approach to our context, we consider three distinct permutation
symmetries:

• Permutations within a cluster: (4) is invari-
ant under permutations of xi’s in the same clus-
ter. For each of the K clusters that have been
sampled so far, we define the encoding

Hk =
∑
i:ci=k

h(xi) h : Rdx → Rdh (5)

which is clearly invariant under permutations
of xi’s in the same cluster. In general h is an
encoding function we learn from data, unless
p(x|µ) belongs to an exponential family and
the prior p(c1:N ) is constant, as shown in Ap-
pendix A.

• Permutations between clusters: (4) is invari-
ant under permutations of the cluster labels. In
terms of the within-cluster invariants Hk, this
symmetry can be captured by

G =

K∑
k=1

g(Hk), g : Rdh → Rdg . (6)

(G1, U) (G2, U)

(G3, U) (G4, U)

Figure 1: Encoding cluster labels. The col-
ored points have fixed labels c1:n−1, forming
K = 3 clusters. The four possible labels for
the circled point give four encoding vectors
Gk, while the vector U encodes the 3 gray
unlabeled points (Best seen in color).

• Permutations of the unassigned data points: (4) is also invariant under permutations of the
N − n unassigned data points. This can be captured by

U =

N∑
i=n+1

u(xi) , u : Rdx → Rdu . (7)

Note that G and U provide fixed-dimensional, symmetry-invariant representations of the assigned
and non-assigned data points, respectively, for any values of N and K. Encodings of this form were
shown in (Zaheer et al., 2017) to lead to arbitrarily accurate approximations of symmetric functions.
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Figure 2: Architecture of the Neural Clustering Process. The full model is composed by the deep
networks h, g, u, f . Left: After assigning the cluster labels c1:n−1, each possible discrete value k
for cn gives a different symmetry-invariant encoding of x1:n into the vector Gk, using the functions h
and g. The remaining, yet-unassigned points xn+1:N are encoded by u and summed into the vector U .
Right: Each pair Gk, U is mapped by f into a real number (logit), which in turn is mapped into the
multinomial distribution qθ(cn|c1:n−1,x) via a variable-input softmax.

2.1 THE VARIABLE-INPUT SOFTMAX

After assigning values to c1:n−1, each of the K + 1 possible values for cn corresponds to h(xn)
appearing in one particular Hk in (5), and yields a separate vector Gk in (6). See Figure 1 for an
example. In terms of the Gk’s and U , we propose to model (2) as

qθ(cn = k|c1:n−1,x) =
ef(Gk,U)∑K+1

k′=1 e
f(Gk′ ,U)

k = 1 . . .K + 1 , (8)

where we have introduced a new real-valued function f . In other words, each value of cn corresponds
to a different channel through which the encoding h(xn) flows to the logit value f , as shown
in Figure 2. Note that k = K + 1 corresponds to cn forming its own new cluster with Hk = h(xn).

The softmax (8) differs from its usual form in, e.g., classification networks, where a fixed number
of categories receive their logit values f from the fixed-size final layer of an MLP. In our case, the
discrete identity of each logit is determined by the neural path that the input h(xn) takes to G, thus
allowing a flexible number of categories.

In eq. (8), θ denotes the parameters in the functions h, g, u and f , which we represent with neural
networks. By storing and updating G and U for successive values of n, the computational cost of a
full i.i.d. sample of c1:N is O(NK), the same as a single Gibbs sweep. See Algorithm 1 for details;
we term this approach the Neural Clustering Process (NCP). It is relatively easy to run hundreds of
copies of Algorithm 1 in parallel on a GPU, with each copy yielding a different set of samples c1:N .1

2.2 THE OBJECTIVE FUNCTION

In order to learn the parameters θ of the neural networks, we use stochastic gradient descent to
minimize the expected KL divergence,

Ep(N)p(x)DKL(p(c|x)‖qθ(c|x)) = −Ep(N)Ep(c1:N ,x)

[
N∑
n=2

log qθ(cn|c1:n−1,x)

]
+ const. (9)

Samples from p(c1:N ,x) are obtained from the generative model, irrespective of the model being
conjugate. If we can take an unlimited number of samples from the generative model, we can
potentially train a neural network to approximate p(cn|c1:n−1,x) arbitrarily accurately. Note that the
gradient here acts only on the variable-input softmax term qθ, not p(c,x), so there is no problem of
backpropagating through discrete variables (Jang et al., 2016; Maddison et al., 2016).

1A Pytorch implementation of the algorithm is available at https://bit.ly/2lkGJ1b
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Algorithm 1 O(NK) Neural Clustering Process Sampling
1: hi ← h(xi), ui ← u(xi) i = 1 . . . N {Notation}
2: U ←

∑N
i=2 ui {Initialize unassigned set}

3: H1 ← h1, G← g(H1), K ← 1, c1 ← 1 {Create first cluster with x1}
4: for n← 2 . . . N do
5: U ← U − un {Remove xn from unassigned set}
6: HK+1 ← 0 {We define g(0) = 0}
7: for k ← 1 . . .K + 1 do
8: Gk ← G+ g(Hk + hn)− g(Hk) {Add xn to cluster k}
9: qk ← ef(Gk,U)

10: end for
11: qk ← qk/

∑K+1
k′=1 qk′ , cn ∼ qk {Normalize probabilities and sample assignment}

12: if cn = K + 1 then
13: K ← K + 1
14: end if
15: G← G− g(Hcn) + g(Hcn + hn) {Add point xn to sampled cluster cn}
16: Hcn ← Hcn + hn
17: end for
18: Return c1 . . . cN

2.3 TWO EXAMPLES

Clustering in 2D Gaussian models: The generative model is

α ∼ Exp(1) c1:N ∼ CRP(α)

N ∼ Uniform[5, 100]

µk ∼ N(0, σ2
µ12) k = 1 . . .K

xi ∼ N(µci , σ
212) i = 1 . . . N

(10)

where CRP stands for the Chinese Restaurant Process, with concentration parameter α, σµ = 10, and
σ = 1. Figure 3 shows that the NCP captures the posterior uncertainty inherent in clustering this data.
Note that since the generative model is an analytical known distribution, there is no distinction here
between training and test sets.

Clustering of MNIST digits: We consider next a DPMM over MNIST digits, with generative model

α ∼ Exp(1) c1:N ∼ CRP10(α)

N ∼ Uniform[5, 100]

lk ∼ Unif[0, 9]− without replacement. k = 1 . . .K

xi ∼ Unif[MNIST digits with label lci ] i = 1 . . . N

where CRP10 is a Chinese Restaurant Process truncated to up to 10 clusters, and dx = 28 × 28.
Training was performed by sampling xi from the MNIST training set. Figure 4 shows posterior
samples for a set of digits from the MNIST test set, illustrating how the estimated model correctly
captures the shape ambiguity of some of the digits. Note that in this case the generative model has no
analytical expression (and therefore is non-conjugate), but this presents no problem; a set of labelled
samples is all we need for training. See Appendix F for details of all the network architectures used.
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Figure 3: Mixture of 2D Gaussians: Given the observations in the leftmost panel, we show samples
from the NCP posterior. Note that less-reasonable samples are assigned lower probability by the NCP.
The dotted ellipses indicate assignments which differ from the first, highest-probability sample. Our
GPU implementation gives thousands of such samples in a fraction of a second. (Best seen in color.)
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Figure 4: NCP trained on MNIST clusters. The top row shows 20 images from the MNIST test
set. The five rows below show five samples of c1:20 from the NCP posterior. Note that each sample
captures some ambiguity suggested by the form of particular digits.

3 RELATED WORKS

Permutation-invariant neural architectures have been explored recently in (Ravanbakhsh et al., 2017;
Korshunova et al., 2018; Lee et al., 2018; Bloem-Reddy & Teh, 2019; Wagstaff et al., 2019). The
representation of a set via a sum (or mean) of encoding vectors was also used in (Guttenberg et al.,
2016; Ravanbakhsh et al., 2016; Edwards & Storkey, 2017; Zaheer et al., 2017; Garnelo et al.,
2018a;b).

Most works on neural network-based clustering focus on learning features as inputs to traditional
clustering algorithms, as reviewed in (Du, 2010; Aljalbout et al., 2018; Min et al., 2018). The works
closest to ours are (Le et al., 2016) and (Lee et al., 2018). Both present techniques for amortized
inference of mixtures of Gaussians, so it is instructive to compare them in detail to our approach.

The work (Le et al., 2016) studies amortized inference of a variable number of latent variables
generated during the trace of a general sequential probabilistic program. For the case of a mixture
of 2D Gaussians with a latent random number of components, a 2D histogram image of binned
observations is fed to a convolutional network whose output enters into a recurrent neural network
with a fixed-sized softmax output layer to estimate the number of clusters. The network also outputs
the means and covariances of each cluster.

The work (Lee et al., 2018) presents Set Transformer, an attention-based architecture that improves
the simple sum-based set encoding that we used above. In their 2D Gaussian clustering application,
the number of components is fixed beforehand, and inference is made only on the cluster parameters.

These approaches have several limitations compared to ours. First, the number of clusters is upper
bounded by the size of the softmax layer (Le et al., 2016) or fixed (Lee et al., 2018). Second, the
models perform inference on the continuous parameters µk, but not on the discrete labels of each data
point. Finally, in (Le et al., 2016), the use of a convnet on a 2D histogram to determine the number of
clusters does not scale to higher dimensional data due to the curse of dimensionality. In Table 1 we
summarize the comparison between the three approaches.

Property NCP Program Compilation Set Transformer
Number of mix. components Arbitrary Bounded Fixed
Amortizes discrete labels Yes No No
Amortizes component parameters No Yes Yes
Scales to high dimensional data Yes No Yes

Table 1: Comparing amortized approaches to Gaussian mixtures. We compare NCP with Pro-
gram Compilation (Le et al., 2016) and Set Transformer (Lee et al., 2018), two previous approaches
to amortized mixtures of Gaussians. Note however that NCP can be applied to any mixture model.
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Figure 5: Quantitative Evaluations. Upper left: Two 2D clusters of 50 points each (k = 0, 1) and a
line over possible locations of a 101st last point. Upper right: Assuming the 2D model from (10),
the posterior p(c101|c1:100,x) can be computed exactly, and we compare it to the NCP estimate as a
function of the horizontal coordinate of x101, as this point moves over the gray line on the upper left
panel. Geweke’s Tests. Lower left: The curves compare the exact mean (± one std.) of the number
of clusters K for different N ’s from the CRP prior (with α = 0.7), with sampled estimates using
equation (11). Lower right: Similar comparison for the full histogram of K for N = 30 points.

4 EXPECTATIONS, EVALUATIONS AND DIAGNOSTICS

Samples from the NCP can be used to compute approximate expectations. If the interest is in
asymptotically exactness, the samples can be used as self-normalized importance samples, E[f(c)] =∑M
i=1 f(c(i))wi/

∑M
i=1 wi where wi = p(x, c(i))/qθ(c

(i)|x). Alternatively, the samples can be used
as proposals in Metropolized independent sampling (Liu, 1996). Of course, in both cases the variance
of the estimated expectations will be lower when the NCP posterior is closer to the true posterior.

The examples presented in Sec. 2.3 provide strong qualitative evidence that our approximations to
the true posterior distributions in these models are capturing the uncertainty inherent in the observed
data. But we would like to go further and ask quantitatively how well our approximations match
the exact posterior. Unfortunately, for sample sizes much larger than N = O(10) it is impossible to
compute the exact posterior in these models. Nonetheless, there are several quantitative metrics we
can examine to check the accuracy of the model output.

Global symmetry from exchangeability: Our results relied on p(c1:N |α1) being exchangeable,
which in turn implies exchangeability of the joint posterior (1). But this is not explicit in the rhs
of (1), where a particular order is chosen for the expansion. If our model learns the conditional
probabilities correctly, this symmetry should be (approximately) satisfied, and this can be monitored
during training, as we show in Appendix C.

Estimated vs. Analytical Probabilities: Some conditional probabilities can be computed analyt-
ically and compared with the estimates output by the network; in the example shown in Figure 5,
upper-right, the estimated probabilities are in close agreement with their exact values.

Geweke’s Tests: A popular family of tests that check the correctness of MCMC implementa-
tions (Geweke, 2004) can also be applied in our case: verify the (approximate) identity between the
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N: 95   Clusters: 3 Observed Data 3 Clusters    Prob: 0.196 3 Clusters    Prob: 0.186 3 Clusters    Prob: 0.090 3 Clusters    Prob: 0.080

Figure 6: Community Detection with Neural Block Processes. The model is a single-type Infinite
Relational Model (Kemp et al., 2006; Xu et al., 2006), with a CRP prior with α = 0.7. The entries in
each block are Bernoulli samples, with a block parameter sampled from a Beta(0.2, 0.2) prior. From
left to right: (i) the original block structure, sampled from the generative model, (ii) the observed
random permutation of rows and columns, (iii) four samples from the NBP posterior, along with their
estimated probabilities. Each sample from the posterior here corresponds to a plausible partition.

prior p(c1:N ) and

qθ(c1:N ) ≡
∫
dx qθ(c1:N |x) p(x) , (11)

where p(x) is the marginal from the generative model. Figure 5 shows such a comparison for the 2D
Gaussian DPMM from Section 2.3, showing excellent agreement.

NCP vs. MCMC: NCP has some advantages over MCMC approaches. First, it gives a probability
estimate for each sample, in general unavailable in MCMC. Secondly, NCP enjoys higher efficiency,
due to parallelization of iid samples. For example, in the Gaussian 2D example in eq.(10), in the time
a collapsed Gibbs sampler produces one (correlated) sample, our GPU-based method produces more
than 100 iid approximate samples. Finally, NCP does not need a burn-in period.

NCP vs. Variational Inference: In Section 6, we compare NCP with a variational approach on
clustering neural spikes. For 2000 spikes, the variational approach returned one clustering estimate in
0.76 secs., but does not properly handle the uncertainty about the number of clusters. NCP produced
150 clustering configurations in 10 secs., efficiently capturing clustering uncertainty. In addition, the
variational approach requires a preprocessing step that projects the samples to lower dimensions,
whereas NCP directly consumes the high-dimensional data by learning an encoder function h.

5 COMMUNITIES

As an extension, we consider now a similar prior as above over cluster labels, but the observation
model is more challenging:

α,N ∼ p(α), p(N)

c1 . . . cN ∼ p(c1, . . . , cN |α)

φk1,k2 ∼ p(φ|β) k1 ≤ k2
xi,j ∼ Bernoulli(φci,cj ) , i ≤ j , i, j = 1 . . . N

where k1, k2 = 1 . . .K. Here p(c1:n|α) can be any exchangeable prior, and the binary observations
xi,j represent edges in a graph of N vertices. We focus on the symmetric graph case here, so
φk1,k2 = φk2,k1 and xi,j ≡ xj,i. We use a Beta model for p(φ|β), but other choices are possible.

These models include stochastic block models (Holland et al., 1983; Nowicki & Snijders, 2001) and
the single-type Infinite Relational Model (Kemp et al., 2006; Xu et al., 2006; Schmidt & Morup,
2013). Neural architectures for communities in graphs have been studied in (Chen et al., 2019) as a
classification problem for every node over a fixed predetermined number of clusters.

We could proceed similarly to the clustering case, considering N particles, each given by a row of
the adjacency matrix xi = (xi,1 . . . xi,N ). But we should be careful when encoding these particles.
When values of c1:n are assigned, a generic encoding h(xi) would ignore the permutation symmetries
present among the components of xi, i.e., the columns of xi,j , as a result of the c1:n assignments
(the same three permutation symmetries discussed above for clustering models). Moreover, a fixed
encoding h(xi) cannot accommodate the arbitrary length N of xi. In Appendix B we present an
invariant encoding that respects all these requirements. We call our approach Neural Block Process
(NBP). See Figure 6 for an example.
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6 APPLICATION: SPIKE SORTING WITH NCP

Large-scale neural population recordings using multi-electrode arrays (MEA) are crucial for under-
standing neural circuit dynamics. Each MEA electrode reads the signals from many neurons, and
each neuron is recorded by multiple nearby electrodes. As a key analysis step, spike sorting converts
the raw signal into a set of spike trains belonging to individual neurons (Pachitariu et al., 2016; Chung
et al., 2017; Jun et al., 2017; Lee et al., 2017; Chaure et al., 2018; Carlson & Carin, 2019). At the core
of many spike sorting pipelines is a clustering algorithm that groups the detected spikes into clusters,
each representing a putative neuron (Figure 7). However, clustering spikes can be challenging: (1)
Spike waveforms form highly non-Gaussian clusters in spatial and temporal dimensions, and it is
unclear what are the optimal features for clustering. (2) It is unknown a priori how many clusters there
are. (3) Existing methods do not perform well on spikes with low signal-to-noise ratios (SNR) due to
increased clustering uncertainty, and fully-Bayesian approaches proposed to handle this uncertainty
(Wood & Black, 2008; Carlson et al., 2013) do not scale to large datasets.

To address these challenges, we propose a novel approach to spike clustering using NCP. We consider
the spike waveforms as generated from a Mixture of Finite Mixtures (MFM) distribution (Miller &
Harrison, 2018), which can be effectively modeled by NCP. (1) Rather than selecting arbitrary features
for clustering, the spike waveforms are encoded with a convolutional neural network (ConvNet),
which is learned end-to-end jointly with the NCP network to ensure optimal feature encoding. (2)
Using a variable-input softmax function, NCP is able to perform inference on cluster labels without
assuming a fixed or maximum number of clusters. (3) NCP allows for efficient probablistic clustering
by GPU-parallelized posterior sampling, which is particularly useful for handling the clustering
uncertainty of ambiguous small spikes. (4) The computational cost of NCP training can be highly
amortized, since neuroscientists often sort spikes form many statistically similar datasets.

We trained NCP for spike clustering using synthetic spikes from a simple yet effective generative
model that mimics the distribution of real spikes, and evaluated the spike sorting performance on
labeled synthetic data, unlabeled real data and hybrid test data by comparing NCP against two other
methods: (1) vGMFM, variational inference on Gaussian MFM (Hughes & Sudderth, 2013). (2)
Kilosort, a state-of-the-art spike sorting pipeline described in Pachitariu et al. (2016). In Appendix D,
we describe the dataset, neural architecture, and the training/inference pipeline of NCP spike sorting.
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Figure 7: Clustering multi-channel spike waveforms using NCP. Each row is an electrode channel.
Spikes with the same color belong to the same cluster. (Scale bar: 5× standard deviation (SD)).

Synthetic Data. We run NCP and vGMFM on 20 sets of synthetic test data each with 500, 1000, and
2000 spikes. As the ground-truth cluster labels are known, we compared the clustering quality using
Adjusted Mutual Information (AMI) (Vinh et al., 2010). The AMI of NCP is on average 11% higher
than vGMFM (Figure 13), showing better performance of NCP on synthetic data.

Real Data. We run NCP, vGMFM and Kilosort on a retina recording with white noise stimulus as
described in Appendix D, and extracted the averaged spike template of each cluster (i.e. putative
neuron). Example clustering results in Figure 8 (top) shows that NCP produces clean clusters with
visually more distinct spike waveforms compared to vGMFM. As real data do not come with ground-
truth cluster labels, we compared the spike templates extracted from NCP and Kilosort using retinal
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receptive field (RF), which is computed for each cluster as the mean of the stimulus present at each
spike. A clearly demarcated RF provides encouraging evidence that the spike template corresponds
to a real neuron. Side-by-side comparisons of matched RF pairs are shown in Figure 8 (bottom-left)
and Figure 14. Overall, NCP found 103 templates with clear RFs, among which 48 were not found by
Kilosort. Kilosort found 72 and 17 of them were not found by NCP (Figure 8 bottom-right), showing
that NCP performs at least as well as Kilosort, and finds many additional templates with clear RFs.
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Figure 8: Spike sorting on real data. 2000 spikes from real data were clustered by NCP (top-left)
and vGMFM (top-mid). Each column shows the spikes assigned to one cluster (overlaying traces
and their average). Each row is one electrode channel. Top-right: t-SNE visualization of the spike
clusters. Bottom-left: Example pairs of matched RFs recovered by NCP (red boxes) and Kilosort
(blue boxes). Blank indicates no matched counterpart. Bottom-right: Venn diagram of recovered RFs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Unit ID (PTP order)

NCP
Kilosort
vGMFM

Found
Not Found

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Unit ID (PTP order)

0

10

20

PT
P 

(S
U)

(D
ot

s)

1

10

20

Fi
rin

g 
ra

te
 (H

z)
 (g

re
y 

ba
rs

)

Figure 9: Spike sorting on hybrid data. Top: NCP, Kilo-
sort, vGMFM recovered 13, 8, and 6 of the 20 injected
ground-truth templates. Bottom: Peak-to-peak (PTP) size
and firing rate of each injected template. (Smaller tem-
plates with lower firing rates are more challenging.)
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Figure 10: Clustering ambiguous small
spikes. In both examples, multiple plausi-
ble clustering results of small spikes were
produced by sampling from the NCP pos-
terior. (scale bar = 5× SD)

Hybrid Data. We compared NCP against vGMFM and Kilosort on a hybrid recording with partial
ground truth as in Pachitariu et al. (2016). Spikes from 20 ground-truth templates were inserted into a
real recording to test the spike sorting performance on realistic recordings with complex background
noise and colliding spikes. As shown in Figure 9, NCP recovered 13 of the 20 injected ground-truth
templates, outperforming both Kilosort and vGMFM, which recovered 8 and 6, respectively.

Probabilistic clustering of ambiguous small spikes. Sorting small spikes has been challenging
due to the low SNR and increased uncertainty of cluster assignment. By efficient GPU-parallelized
posterior sampling of cluster labels, NCP is able to handle the clustering uncertainty by producing
multiple plausible clustering configurations. Figure 10 shows examples where NCP separates spike
clusters with amplitude as low as 3-4× the standard deviation of the noise into plausible units that
are not mere scaled version of each other but have distinct shapes on different channels.

Overall, our results show that using NCP for spike sorting provides high clustering quality, matches
or outperforms a state-of-the-art method, and handles clustering uncertainty by efficient posterior
sampling, demonstrating substantial promise for incorporating NCP into production-scale pipelines.
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A NEURAL CLUSTERING PROCESS FOR EXPONENTIAL FAMILIES

The likelihood for an exponential family is given by

p(x|µ) = eµ·t(x)−ψ(µ)m(xi) (12)

= eλ·h(x)m(xi) (13)

where t(x) is a vector of sufficient statistics, and we defined

h(x) = (1, t(x)) (14)
λ = (−ψ(µ), µ) (15)

Let us denote by K and K ′ ≥ K the total number of distinct values in c1:n and c1:N , respectively.
Consider the joint distribution

p(c1:N ,x, µ) = p(c1:N )p(µ)

K′∏
k=1

eλk·
∑

i:ci=k h(xi)
N∏
i=1

m(xi) (16)

from which we obtain the marginal distributions

p(c1:n,x) =
∑

cn+1...cN

p(c1:N ,x) (17)

=
∑

cn+1...cN

∫
dµp(c1:N )p(µ)

K′∏
k=1

eλk·(Hk+
∑

i>n:ci=k h(xi))
N∏
i=1

m(xi) (18)

= F (H1, . . . ,HK , h(xn+1), . . . , h(xN ))

N∏
i=1

m(xi) (19)

where we defined

Hk =
∑

i≤n,ci=k

h(xi) k = 1 . . .K (20)

and Hk = 0 for k > K.

Note now that if p(c1:N ) is constant, all the dependence of F on c1:n, x1:n is encoded in the Hk’s,
and F is symmetric under separate permutations of the Hk’s and the h(xi)’s for i > n. Based on
these symmetries we can approximate F as

F ' ef(G,U) (21)

modulo adding to f any function symmetric on all xi’s, where

G =

K∑
k=1

g(Hk) (22)

U =

N∑
i=n+1

u(xi) (23)

In the conditional probability we are interested in,

p(cn|c1:n−1,x) =
p(c1:n,x)∑
cn
p(c1:n,x)

, (24)

the product of the m(xi)’s in (19) cancels. Similarly, adding to f a function symmetric on all xi’s
leaves invariant our proposed approximation

qθ(cn = k|c1:n−1,x) =
ef(Gk,U)∑K+1

k′=1 e
f(Gk′ ,U)

k = 1 . . .K + 1 . (25)
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B DETAILS OF THE NEURAL BLOCK PROCESS

Let us recall the generative model in this case,

α,N ∼ p(α), p(N)

c1 . . . cN ∼ p(c1, . . . , cN |α)

φk1,k2 ∼ Beta(α, β) k1 ≤ k2 (26)
xi,j ∼ Bernoulli(φci,cj ) , i ≤ j , i, j = 1 . . . N

where k1, k2 = 1 . . .K. The prior p(c1:n|α) can be any exchangeable priors for clustering, and the
observations xi,j represent the presence or absence of an edge in a graph of N vertices. We set
φk1,k2 = φk2,k1 and xi,j ≡ xj,i, and assume for notational convenience that xij ∈ {+1,−1}.

B.1 ENCODING EACH ROW OF THE ADJACENCY MATRIX

In principle posterior inference in this case can proceed similarly to the clustering case, by considering
N particles, each given by a row of the adjacency matrix xi = (xi,1, . . . , xi,N ). But we should be
careful when encoding these particles. Consider the situation when the values of c1:n have been
assigned. Encoding with a generic function h(xi) would ignore the permutation symmetries present
among the components of xi, i.e., the columns of the matrix xi,j , as a result of the c1:n assignments.
These symmetries are the same three symmetries discussed above for clustering models. Moreover, a
fixed function h(xi) would not be able to accommodate the fact that the length of xi changes with
the size N of the dataset.

Suppose that there are K clusters among the c1:n, each with sk elements. In order to simplify the
notation, let us assume that the N − n unassigned points all belong to an additional (K + 1)-th
cluster with sK+1 = N − n, so we assume cn+1:N = K + 1, and we have

∑K+1
k=1 sk = N and

sk =
∑N
j=1 δ(cj = k).

Now, in each row xi, the number sk of elements in the k-th cluster can be split as

sk = s−i,k + s+i,k

s+i,k =

N∑
j=1

δ(cj = k)δ(xi,j = +1)

s−i,k =

N∑
j=1

δ(cj = k)δ(xi,j = −1)

and note that both s−i,k and s+i,k are invariant under the symmetry of permuting the indices within
cluster k.

Example: N = 5 and x1 = (+1,+1,−1,+1,+1). If four assignments were made c1 = c2 = 1,
c3 = c4 = 2, then K = 2 and c5 = 3, and from x1 we get s+1,1 = 2, s−1,1 = 0, s+1,2 = 1, s−1,2 =

1, s+1,3 = 1, s−1,3 = 0. If we permute the columns 3 and 4, both from cluster k = 2, we get
x1 = (+1,+1,+1,−1,+1), but all the s±1,j’s stay invariant.

Additional invariants can be obtained combining s+j,k and s−j,k across all rows xj’s with cj = ci, such
as

m+
ci,k

=
1

sci

∑
j:cj=ci

s+j,k (27)

v+ci,k =
1

sci

∑
j:cj=ci

(s+j,k −m
+
ci,k

)2 (28)

and similarly m−ci,k and v−ci,k. Note that these invariants are the same for all rows xj with cj = k.
The motivation to consider them is that, if the partition corresponding to c1:n is correct, then for
i ≤ n and k ≤ K we have n+i,k ' m+

ci,k
since they are both estimators of the latent Bernoulli
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parameter φci,k. For the same reason, if the partition is correct and those two estimators of φci,k are
exact, then v+ci,k ' 0. Similarly for m−ci,k and v−ci,k. Then these values provide learning signals to the
network that estimates the probability of the assignments c1:n being correct.

Therefore we propose to encode the components of xi belonging to cluster k as

ri,k = (s+i,k,m
+
ci,k

, v+ci,k, s
−
i,k,m

−
ci,k

, v−ci,k) ∈ R6. (29)

In order to preserve the symmetry of the first K labels under permutations, we combine them as

ti ≡
K∑
k=1

t(ri,k) ∈ Rdt (30)

where the encoding function is t : R6 → Rdt . The encoding (29) of the unassigned components
xi,n+1:N is kept separate and denoted as qi = ri,K+1.

In summary, each row xi of the adjacency matrix is represented by the fixed-dimensional pair
(ti, qi) ∈ Rdt+6 in a way that respects the symmetries of the assignments c1:n: permutations between
members of a cluster, permutations of cluster labels and permutations among unassigned columns.

B.2 CLUSTERING THE ROWS OF THE ADJACENCY MATRIX

We can proceed now as in regular clustering, encoding each cluster of xi’s within c1:n as

Hk =
∑
i:ci=k

h(ti, qi) ∈ Rdh k = 1 . . .K, (31)

and defining the permutation invariant, fixed-dimensional vectors

G =

K∑
k=1

g(Hk), (32)

U =

N∑
i=n+1

u(ti, qi). (33)

In terms of these quantities, the conditional probabilities are defined as usual as

qθ(cn = k|c1:n−1,x) =
ef(Gk,U)∑K+1

k′=1 e
f(Gk′ ,U)

(34)

for k = 1 . . .K + 1, with hn = h(tn, qn) and with Gk being the value of G for the different
configurations. Compared to the regular clustering case, here we need to learn the additional
function t. We call our approach Neural Block Process (NBP).
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C MONITORING GLOBAL PERMUTATION INVARIANCE

As mentioned in Section 5, we must verify the symmetry of the posterior likelihood under global
permutations of all the data points. We show such a check in Figure 11.
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Figure 11: Global permutation invariance. Training curves for the NCP model of 2D Gaussians in
Section 2. Each minibatch was evaluated for 8 random permutations of the order of the points in the
dataset. Above: Mean of the NLL over the permutations. Below: NLL standard deviation/NLL mean.
Note that the ratio is of order 10−2.

17



Under review as a conference paper at ICLR 2020

D DETAILS OF SPIKE SORTING USING NCP

Data preprocessing. Training and test data come from the retinal recordings in Chichilnisky &
Kalmar (2002) using a 512-channel 2D hexagonal MEA with 20 kHz sampling rate. After spike
detection (Lee et al., 2017), each multi-channel spike waveform was assigned to the channel where
the waveform has the maximum peak-to-peak (PTP) amplitude (i.e. the center channel, ch0). This
partitioned the recording data by channel such that each center-channel-based partition only contains
multi-channel spike waveforms centered at that channel. Each spike waveform is represented as a 7
× 32 array containing the 32 time steps surrounding the peak from the center channel and the same
time window from the 6 immediate neighbor channels (Figure 7). These 7× 32 arrays are the spikes
on which clustering was performed.

Neural architecture for NCP spike sorting. The overall architecture is the same as the one described
in Section 2 and Figure 2. To extract useful features from the spatial-temporal patterns of spike
waveforms, we use a 1D ConvNet as the h and u encoder functions. The convolution is applied
along the time axis, with each electrode channel treated as a feature dimension. The ConvNet uses a
ResNet architecture (He et al., 2016) with 4 residual blocks, each having 32, 64, 128, 256 feature
maps (kernel size = 3, stride = [1, 2, 2, 2]). The last block is followed by an averaged pooling layer
and a final linear layer. The outputs of the ResNet encoder are the hi and ui vectors of NCP, i.e.
hi = ResNetEncoder(xi). We used dh = du = 256. The other two functions, g and f , are identical
to those in the 2D Gaussian example.

Training NCP using synthetic data. To train NCP for spike clustering, we created synthetic labeled
training data using a MFM generative model (Miller & Harrison, 2018) of noisy spike waveforms
that mimic the distribution of real spikes:

N ∼ Uniform[Nmin, Nmax] (35)
K ∼ 1 + Poisson(λ) (36)

π1 . . . πK ∼ Dirichlet(α1, . . . , αK) (37)

c1 . . . cN ∼ Cat(π1, . . . , πK) (38)
µk ∼ p(µ) k = 1 . . .K (39)
xi ∼ p(xi|µci ,Σs ⊗ Σt) i = 1 . . . N (40)

Here, N is the number of spikes between [200, 500]. The number of clusters K is sampled from a
shifted Poisson distribution with λ = 2 so that each channel has on average 3 clusters. π1:K represents
the proportion of each cluster and is sampled from a Dirichlet distribution with α1:K = 1. The
training spike templates µk ∈ R7×32 are sampled from a reservoir of 957 ground-truth templates not
present in any test data, with the temporal axis slightly jittered by random resampling. Finally, each
waveform xi is obtained by adding to µci Gaussian noise with covariance given by the Kronecker
product of spatial and temporal correlation matrices estimated from the training data. This method
creates spatially and temporally correlated noise patterns similar to real data (Figure 12). We trained
NCP for 20000 iterations on a GPU with a batch size of 32 to optimize the NLL loss by the Adam
optimizer (Kingma & Ba, 2015). A learning rate of 0.0001 was used (reduced by half at 10k and 17k
iterations).

Probabilistic spike clustering using NCP. At inference time, we fed the 7 x 32 arrays of spike
waveforms to NCP, and performed GPU-parallelized posterior sampling of cluster labels (Figure 2
and Figure 7). Using beam search (Graves, 2012; Sutskever et al., 2014) with a beam size of 150, we
were able to efficiently sample 150 high-likelihood clustering configurations for 2000 spikes in less
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Figure 12: Synthetic data examples. Example of 500 synthetic spikes from 3 clusters.
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Figure 13: Clustering synthetic data. The AMI scores for clustering 20 sets of 500, 1000, and 2000
unseen synthetic spikes.

than 10 seconds on a single GPU. After clustering, we obtained a spike template for each cluster as
the average shape of the spike waveforms. The clustering configuration with the highest probability
was used for most experiments.

The spike sorting pipelines for real and hybrid data. The real data is a 49-channel, 20-minute
retina recording with white noise stimulus. To create the hybrid test data, 20 ground-truth spike
templates were manually selected from a 49-channel test recording and inserted into another test
dataset according to the original spike times.

For NCP and vGMFM, we performed clustering on 2000 randomly sampled spikes from each channel
(clusters containing less than 20 spikes were discarded), and assigned all remaining spikes to a cluster
based on the L2 distance to the cluster centers. Then, a final set of unique spike templates were
computed, and each detected spike was assigned to one of the templates. The clustering step of
vGMFM uses the first 5 PCA components of the spike waveforms as input features. For Kilosort,
we run the entire pipeline using the Kilosort2 package (Pachitariu, 2019). After extracting spike
templates and RFs from each pipeline, we matched pairs of templates from different methods by
L-infinity distance and pairs of RFs by cosine distance.

Electrode drift in real MEA data. The NCP spike sorting pipeline described above does not take
into consideration electrode drift over time, which is present in some real recording data. As a
step towards addressing the problem of spike sorting in the presence of electrode drift (Calabrese &
Paninski, 2011; Shan et al., 2017), we describe in Sup. Material E a generalization of NCP to handle
data in which the per-cluster parameters (e.g. the cluster means) are nonstationary in time.
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Figure 14: Spike sorting on real data. Receptive fields of 55 randomly selected pairs of units
recovered from Kilosort and NCP spike sorting. (Red boxes indicate units found by NCP; blue
boxes by Kilosort.) Both approaches find the spikes with the biggest peak-to-peak (PTP) size. For
smaller-PTP units often one sorting method finds a cell that the other sorter misses. NCP and KS find
a comparable number of units with receptive fields here, with NCP finding a few more than KS; see
text for details.
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Figure 15: Neural Particle Tracking. Left: Time trajectories of 5 2D particles. Note that particles can appear
or disappear at arbitrary times. Middle and right: Two posterior samples. Note that since only one particle is
observed at each time, a particle not observed for some time leads to a possible ambiguity on the number of
particles. (Best seen in color.)

E PARTICLE TRACKING

Inspired by the problem of electrode drift (Calabrese & Paninski, 2011; Pachitariu, 2019; Shan et al.,
2017), let us consider now a generative model given by

ct ∼ p(ct|c1, . . . , ct−1) t = 1, . . . , T (41)
µk,t ∼ p(µk,t|µk,t−1) k = 1 . . .K t = 1, . . . , T (42)
xt ∼ p(xt|µct,t) t = 1, . . . , T (43)

In this model, a cluster corresponds to the points along the time trajectory of a particle, and (42)
represents the time evolution of the cluster parameters. The cluster labels ct indicate which particle is
observed at time t, and note that particles can in principle appear or disappear at any time.

To take the time evolution into account, we let particles influence one another with a weight that
depends on their time distance. For this, let us introduce a time-decay constant b > 0, and generalize
the NCP equations to

Hk,t =

t∑
t′=1:ct′=k

e−b|t−t
′|h(xt′) k = 1 . . .K , (44)

Gt =

K∑
k=1

g(Hk,t) , (45)

Ut =

T∑
t′=t+1

e−b|t−t
′|u(xt′) . (46)

The conditional assignment probability for ct is now

qθ(ct = k|c1:t−1,x) =
ef(Gk,t,Ut)∑K+1

k′=1 e
f(Gk′,t,Ut)

(47)

for k = 1 . . .K + 1. The time-decay constant b is learnt along with all the other parameters. We can
also consider replacing e−b|t−t

′| with a general distance function e−d(|t−t
′|). Figure 15 illustrates

this model in a simple 2D example. We call this approach Neural Particle Tracking.

F NEURAL ARCHITECTURES IN THE EXAMPLES

To train the networks in the examples, we used stochastic gradient descent with Adam (Kingma &
Ba, 2015), with learning rate 10−4. The number of samples in each mini-batch were: 1 for p(N), 1
for p(c1:N ), 64 for p(x|c1:N ). The architecture of the functions in each case were:
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CLUSTERS: 2D GAUSSIANS

• h: MLP [2-256-256-256-128] with ReLUs
• u: MLP [2-256-256-256-128] with ReLUs
• g: MLP [128-256-256-256-256] with ReLUs
• f : MLP [384-256-256-256-1] with ReLUs

CLUSTERS: MNIST

• h: 2 layers of [convolutional + maxpool + ReLU] + MLP [320-256-128] with ReLUs
• u: same as h
• g: MLP [256-128-128-128-128-256] with ReLUs
• f : MLP [384-256-256-256-1] with ReLUs

COMMUNITIES: IRL

• t: MLP [6-64-64-64-256] with ReLUs
• h: MLP [262-64-64-64-256] with ReLUs
• u: MLP [262-64-64-64-256] with ReLUs
• g: MLP [256-64-64-64-256] with ReLUs
• f : MLP [512-64-64-64-64-1] with ReLUs

22


	Introduction
	Amortizing Mixture Models
	The Variable-input Softmax
	The Objective Function
	Two Examples

	Related Works
	Expectations, Evaluations and diagnostics
	Communities
	Application: spike sorting with NCP
	Neural Clustering Process for Exponential Families
	Details of the Neural Block Process
	Encoding each row of the adjacency matrix
	Clustering the rows of the adjacency matrix

	Monitoring global permutation invariance
	Details of spike sorting using NCP
	Particle tracking
	Neural architectures in the examples

