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ABSTRACT

Overparameterized neural networks can be highly accurate on average on an i.i.d.
test set yet consistently fail on atypical groups of the data (e.g., by learning spu-
rious correlations that hold on average but not in such groups). Distributionally
robust optimization (DRO) allows us to learn models that instead minimize the
worst-case training loss over a set of pre-defined groups. However, we find that
naively applying group DRO to overparameterized neural networks fails: these
models can perfectly fit the training data, and any model with vanishing average
training loss also already has vanishing worst-case training loss. Instead, the poor
worst-case performance arises from poor generalization on some groups. By cou-
pling group DRO models with increased regularization—a stronger-than-typical
`2 penalty or early stopping—we achieve substantially higher worst-group accu-
racies, with 10–40 percentage point improvements on a natural language inference
task and two image tasks, while maintaining high average accuracies. Our results
suggest that regularization is important for worst-group generalization in the over-
parameterized regime, even if it is not needed for average generalization. Finally,
we introduce a stochastic optimization algorithm, with convergence guarantees, to
efficiently train group DRO models.

1 INTRODUCTION

Machine learning models are typically trained to minimize the average loss on a training set, with
the goal of achieving high accuracy on an independent and identically distributed (i.i.d.) test set.
However, models that are highly accurate on average can still consistently fail on rare and atypical
examples (Hovy & Sgaard, 2015; Blodgett et al., 2016; Tatman, 2017; Hashimoto et al., 2018;
Duchi et al., 2019). Such models are problematic when they violate equity considerations (Jurgens
et al., 2017; Buolamwini & Gebru, 2018) or rely on spurious correlations: misleading heuristics
that work for most training examples but do not always hold. For example, in natural language
inference (NLI)—determining if two sentences agree or contradict—the presence of negation words
like ‘never’ is strongly correlated with contradiction due to artifacts in crowdsourced training data
(Gururangan et al., 2018; McCoy et al., 2019). A model that learns this spurious correlation would be
accurate on average on an i.i.d. test set but suffer high error on groups of data where the correlation
does not hold (e.g., the group of contradictory sentences with no negation words).

To avoid learning models that rely on spurious correlations and therefore suffer high loss on some
groups of data, we instead train models to minimize the worst-case loss over groups in the training
data. The choice of how to group the training data allows us to use our prior knowledge of spurious
correlations, e.g., by grouping together contradictory sentences with no negation words in the NLI
example above. This training procedure is an instance of distributionally robust optimization (DRO),
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Common training examples Test examples

(P) The economy 
could be still better.
(H) The economy has 
never been better.

y: waterbird
a: water
background

y: landbird
a: land 
background

y: waterbird
a: land    
background

y: dark hair
a: male

y: blond hair
a: female

y: blond hair
a: male

y: contradiction
a: has negation

y: entailment
a: no negation

y: entailment
a: has negation

(P) Read for Slate's take 
on Jackson's findings.
(H) Slate had an opinion 
on Jackson's findings.

(P) There was silence 
for a moment.
(H) There was a short period 
of time where no one spoke.

Waterbirds

CelebA

MultiNLI

Figure 1: Representative training and test examples for the datasets we consider. The correlation
between the label y and the spurious attribute a at training time does not hold at test time.

which optimizes for the worst-case loss over potential test distributions (Ben-Tal et al., 2013; Duchi
et al., 2016). Existing work on DRO has focused on models that cannot approach zero training loss,
such as generative models (Oren et al., 2019) or convex predictive models with limited capacity
(Maurer & Pontil, 2009; Shafieezadeh-Abadeh et al., 2015; Namkoong & Duchi, 2017; Duchi &
Namkoong, 2018; Hashimoto et al., 2018).

We study group DRO in the context of overparameterized neural networks in three applications (Fig-
ure 1)—natural language inference with the MultiNLI dataset (Williams et al., 2018), facial attribute
recognition with CelebA (Liu et al., 2015), and bird photograph recognition with our modified ver-
sion of the CUB dataset (Wah et al., 2011). The problem with applying DRO to overparameterized
models is that if a model achieves zero training loss, then it is optimal on both the worst-case (DRO)
and the average training objectives (Zhang et al., 2017; Wen et al., 2014). In the vanishing-training-
loss regime, we indeed find that group DRO models do no better than standard models trained to
minimize average loss via empirical risk minimization (ERM): both models have high average test
accuracies and worst-group training accuracies, but low worst-group test accuracies (Section 3.1).
In other words, the generalization gap is small on average but large for the worst group.

In contrast, we show that strongly-regularized group DRO models that do not attain vanishing train-
ing loss can significantly outperform both regularized and unregularized ERM models. We con-
sider `2 penalties, early stopping (Section 3.2), and group adjustments that minimize a risk measure
which accounts for the differences in generalization gaps between groups (Section 3.3). Across the
three applications, regularized group DRO improves worst-case test accuracies by 10–40 percentage
points while maintaining high average test accuracies. These results give a new perspective on gen-
eralization in neural networks: regularization might not be important for good average performance
(e.g., models can “train longer and generalize better” on average (Hoffer et al., 2017)) but it appears
important for good worst-case performance.

Finally, to carry out the experiments, we introduce a new stochastic optimizer for group DRO that is
stable and scales to large models and datasets. We derive convergence guarantees for our algorithm
in the convex case and empirically show that it behaves well in our non-convex models (Section 5).

2 SETUP

Consider predicting labels y ∈ Y from input features x ∈ X . Given a model family Θ, loss
` : Θ× (X × Y) → R+, and training data drawn from some distribution P , the standard goal is to
find a model θ ∈ Θ that minimizes the expected loss EP [`(θ; (x, y)] under the same distribution P .
The standard training procedure for this goal is empirical risk minimization (ERM):

θ̂ERM := arg min
θ∈Θ

E(x,y)∼P̂ [`(θ; (x, y))], (1)

where P̂ is the empirical distribution over the training data.

In distributionally robust optimization (DRO) (Ben-Tal et al., 2013; Duchi et al., 2016), we aim
instead to minimize the worst-case expected loss over an uncertainty set of distributions Q:

min
θ∈Θ

{
R(θ) := sup

Q∈Q
E(x,y)∼Q[`(θ; (x, y))]

}
. (2)
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The uncertainty setQ encodes the possible test distributions that we want our model to perform well
on. Choosing a general family Q, such as a divergence ball around the training distribution, confers
robustness to a wide set of distributional shifts, but can also lead to overly pessimistic models which
optimize for implausible worst-case distributions (Duchi et al., 2019).

To construct a realistic set of possible test distributions without being overly conservative, we lever-
age prior knowledge of spurious correlations to define groups over the training data and then define
the uncertainty set Q in terms of these groups. Concretely, we adopt the group DRO setting (Hu
et al., 2018; Oren et al., 2019) where the training distribution P is assumed to be a mixture of m
groups Pg indexed by G = {1, 2, . . . ,m}.1 We define the uncertainty set Q as any mixture of these
groups, i.e.,Q := {

∑m
g=1 qgPg : q ∈ ∆m}, where ∆m is the (m− 1)-dimensional probability sim-

plex; this choice ofQ allows us to learn models that are robust to group shifts. Because the optimum
of a linear program is attained at a vertex, the worst-case risk (2) is equivalent to a maximum over
the expected loss of each group,

R(θ) = max
g∈G

E(x,y)∼Pg
[`(θ; (x, y))]. (3)

We assume that we know which group each training point comes from—i.e., the training data com-
prises (x, y, g) triplets—though we do not assume we observe g at test time, so the model cannot use
g directly. Instead, we learn a group DRO model minimizing the empirical worst-group risk R̂(θ):

θ̂DRO := arg min
θ∈Θ

{
R̂(θ) := max

g∈G
E(x,y)∼P̂g

[`(θ; (x, y))]
}
, (4)

where each group P̂g is an empirical distribution over all training points (x, y, g′) with g′ = g (or
equivalently, a subset of training examples drawn from Pg). Group DRO learns models with good
worst-group training loss across groups. This need not imply good worst-group test loss because of
the worst-group generalization gap δ := R(θ) − R̂(θ). We will show that for overparameterized
neural networks, δ is large unless we apply sufficient regularization.

2.1 APPLICATIONS

In the rest of this paper, we study three applications that share a similar structure (Figure 1): each
data point (x, y) has some input attribute a(x) ∈ A that is spuriously correlated with the label y,
and we use this prior knowledge to form m = |A| × |Y| groups, one for each value of (a, y). We
expect that models that learn the correlation between a and y in the training data would do poorly on
groups for which the correlation does not hold and hence do worse on the worst-group lossR(θ).

Object recognition with correlated backgrounds (Waterbirds dataset). Object recognition
models can spuriously rely on the image background instead of learning to recognize the actual
object (Ribeiro et al., 2016). We study this by constructing a new dataset, Waterbirds, which com-
bines bird photographs from the Caltech-UCSD Birds-200-2011 (CUB) dataset (Wah et al., 2011)
with image backgrounds from the Places dataset (Zhou et al., 2017). We label each bird as one of
Y = {waterbird, landbird} and place it on one of A = {water background, land background}, with
waterbirds (landbirds) more frequently appearing against a water (land) background (Appendix C.1).
There are n = 4795 training examples and 56 in the smallest group (waterbirds on land).

Object recognition with correlated demographics (CelebA dataset). Object recognition models
(and other ML models more generally) can also learn spurious associations between the label and
demographic information like gender and ethnicity (Buolamwini & Gebru, 2018). We examine this
on the CelebA celebrity face dataset (Liu et al., 2015), using hair color (Y = {blond, dark}) as the
target and gender (A = {male, female}) as the spurious attribute. There are n = 162770 training
examples in the CelebA dataset, with 1387 in the smallest group (blond-haired males).

Natural language inference (MultiNLI dataset). In natural language inference, the task is to
determine if a given hypothesis is entailed by, neutral with, or contradicts a given premise. Prior
work has shown that crowdsourced training datasets for this task have significant annotation artifacts,
such as the spurious correlation between contradictions and the presence of the negation words

1 In our main experiments, m = 4 or 6; we also use m = 64 in our supplemental experiments.
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nobody, no, never, and nothing (Gururangan et al., 2018). We divide the MultiNLI dataset (Williams
et al., 2018) into m = 6 groups, one for each pair of labels Y = {entailed, neutral, contradictory}
and spurious attributes A = {no negation, negation}. There are n = 206175 examples in our
training set, with 1521 examples in the smallest group (entailment with negations); see Appendix C.1
for more details on dataset construction and the training/test split.

3 COMPARISON BETWEEN GROUP DRO AND ERM

To study the behavior of group DRO vs. ERM in the overparametrized setting, we fine-tuned
ResNet50 models (He et al., 2016) on Waterbirds and CelebA and a BERT model (Devlin et al.,
2019) on MultiNLI. These are standard models for image classification and natural language infer-
ence which achieve high average test accuracies on their respective tasks.

We train the ERM (1) and group DRO (4) models using standard (minibatch) stochastic gradient de-
scent and (minibatch) stochastic algorithm introduced in Section 5, respectively. We tune the learn-
ing rate for ERM and use the same setting for DRO (Appendix C.2). For each model, we measure
its average (in-distribution) accuracy over training and test sets drawn from the same distribution,
as well as its worst-group accuracy on the worst-performing group.

3.1 ERM AND DRO HAVE POOR WORST-GROUP ACCURACY IN THE OVERPARAMETERIZED
REGIME

Overparameterized neural networks can perfectly fit the training data and still generalize well on
average (Zhang et al., 2017). We start by showing that these overparameterized models do not
generalize well on the worst-case group when they are trained to convergence using standard regu-
larization and hyperparameter settings (He et al., 2016; Devlin et al., 2019), regardless of whether
they are trained with ERM or group DRO.2

ERM. As expected, ERM models attain near-perfect worst-group training accuracies of at least
99.9% on all three datasets and also obtain high average test accuracies (97.3%, 94.8%, and 82.5%
on Waterbirds, CelebA, and MultiNLI). However, they perform poorly on the worst-case group at
test time with worst-group accuracies of 60.0%, 41.1%, and 65.7% respectively (Table 1, Figure 2).
Their low worst-group accuracies imply that these models are brittle under group shifts.

DRO. The ERM models trained above nearly perfectly classify every training point, and are there-
fore near-optimal for both the ERM (1) and DRO (4) objectives. Indeed, we find that group DRO
models perform similarly to ERM models, attaining near-perfect training accuracies and high aver-
age test accuracies, but poor worst-group test accuracies (Table 1, Figure 2).

Discussion. The ERM and DRO models attain near-perfect training accuracy and vanishing train-
ing loss even in the presence of default regularization (batch normalization and standard `2 penalties
for ResNet50, and dropout for BERT). However, despite generalizing well on average, they do not
generalize well on the worst-case group, and consequently suffer from low worst-group accuracies.
This gap between average and worst-group test accuracies arises not from poor worst-group train-
ing performance—the models are near-perfect at training time, even on the worst-case groups—but
from variations in the generalization gaps across groups. Even though DRO is designed to improve
worst-group performance, we find no improvements on worst-group test accuracies since the models
already achieve vanishing worst-group losses on the training data.

3.2 DRO IMPROVES WORST-GROUP ACCURACY UNDER APPROPRIATE REGULARIZATION

Classically, we can control the generalization gap with regularization techniques that constrain the
model family’s capacity to fit the training data. In the modern overparameterized regime, explicit

2 Training to convergence is a widespread practice for image models (Zhang et al., 2017; Hoffer et al.,
2017). Pre-trained language models are typically pretrained until convergence (Devlin et al., 2019; Radford
et al., 2019) but fine-tuned for a fixed small number of epochs because average test accuracy levels off quickly;
we verified that training to convergence gave equally high average test accuracy.
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ERM DRO ERM DRO
Train 100.0 100.0 100.0 100.0
Test 97.3 97.4 60.0 76.9
Train 100.0 100.0 99.9 100.0
Test 94.8 94.7 41.1 41.1
Train 99.9 99.3 99.9 99.0
Test 82.5 82.0 65.7 66.4

Train 97.6 99.1 35.7 97.5
Test 95.7 96.6 21.3 84.6
Train 95.7 95.0 40.4 93.4
Test 95.8 93.5 37.8 86.7

Train 86.2 80.1 7.1 74.2
Test 93.8 93.2 6.7 86.0
Train 91.3 87.5 14.2 85.1
Test 94.6 91.8 25.0 88.3
Train 91.5 86.1 78.6 83.3
Test 82.8 81.4 66.0 77.7

Average Accuracy Worst-Group Accuracy
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Table 1: Average and worst-group accuracies for each training method. Both ERM and DRO models
perform poorly on the worst-case group in the absence of regularization (top). With strong regu-
larization (middle, bottom), DRO achieves high worst-group performance, significantly improving
from ERM. Cells are colored by accuracy, from low (red) to medium (white) to high (blue) accuracy.

Training Time0

1

Ac
cu

ra
cy

ERM
Standard Regularization

Training Time

DRO
Standard Regularization

Training Time

ERM
Strong 2 Penalty

Training Time

DRO
Strong 2 Penalty

Dark hair, female Dark hair, male Blond, female Blond, male

Figure 2: Training (light) and validation (dark) accuracy for CelebA throughout training. With de-
fault hyperparameters and training to convergence, ERM and DRO models achieve perfect training
accuracy across groups, but generalize badly on the worst-case group (red line in the left panels).
With strong `2 penalties, ERM models get high average train and test accuracies at the cost of the
rare group (panel 3). DRO models achieve high train and test accuracies across groups (panel 4).

regularization is not critical for average performance: models can do well on average even when all
regularization is removed (Zhang et al., 2017), and default regularization settings (like in the models
trained above) still allow models to perfectly fit the training data. Here, we study if increasing regu-
larization strength—until the models no longer perfectly fit the training data—can rescue worst-case
performance. We find that departing from the vanishing-training-loss regime allows DRO models to
significantly outperform ERM models on worst-group test accuracy while maintaining high average
accuracy. We investigate two types of regularization:

`2 penalties. The default coefficient of the `2-norm penalty λ‖θ‖22 in ResNet50 is λ = 0.0001 (He
et al., 2016). We find that increasing λ by several orders of magnitude—to λ = 1.0 for Waterbirds
and λ = 0.1 for CelebA—does two things: 1) it prevents both ERM and DRO models from achieving
perfect training accuracy, and 2) substantially reduces the generalization gap for each group.

With strong `2 penalties, both ERM and DRO models still achieve high average test accuracies.
However, because no model can achieve perfect training accuracy in this regime, ERM models sacri-
fice worst-group training accuracy (35.7% and 40.4% on Waterbirds and CelebA; Table 1, Figure 2)
and consequently obtain poor worst-group test accuracies (21.3% and 37.8%, respectively).
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In contrast, DRO models attain high worst-group training accuracy (97.5% and 93.4% on Waterbirds
and CelebA). The small generalization gap in the strong-`2-penalty regime means that high worst-
group training accuracy translates to high worst-group test accuracy, which improves over ERM
from 21.3% to 84.6% on Waterbirds and from 37.8% to 86.7% on CelebA.

While these results show that strong `2 penalties have a striking impact on ResNet50 models for
Waterbirds and CelebA, we found that increasing the `2 penalty on the BERT model for MultiNLI
resulted in similar or worse robust accuracies than the default BERT model with no `2 penalty.

Early stopping. A different, implicit form of regularization is early stopping (Hardt et al., 2016b).
We use the same settings in Section 3.1, but only train each model for a fixed (small) number of
epochs (Section C.2). As with strong `2 penalties, curtailing training reduces the generalization gap
and prevents models from fitting the data perfectly. In this setting, DRO also does substantially better
than ERM on worst-group test accuracy, improving from 6.7% to 86.0% on Waterbirds, 25.0% to
88.3% on CelebA, and 66.0% to 77.7% on MultiNLI. Average test accuracies are comparably high
in both ERM and DRO models, though there is a small drop of 1− 3% for DRO (Table 1, Figure 2).

Discussion. We conclude that regularization—preventing the model from perfectly fitting the
training data—does matter for worst-group accuracy. Specifically, it controls the generalization gap
for each group, even on the worst-case group. Good worst-group test accuracy then becomes a ques-
tion of good worst-group training accuracy. Since no regularized model can perfectly fit the training
data, ERM and DRO models make different training trade-offs: ERM models sacrifice worst-group
for average training accuracy and therefore have poor worst-group test accuracies, while DRO mod-
els maintain high worst-group training accuracy and therefore do well at test time. Our findings
raise questions about the nature of generalization in neural networks, which has been predominantly
studied only in the context of average accuracy (Zhang et al., 2017; Hoffer et al., 2017).

3.3 ACCOUNTING FOR GENERALIZATION THROUGH GROUP ADJUSTMENTS IMPROVES DRO

In the previous section, we optimized for the worst-group training loss via DRO (4), relying on
regularization to control the worst-group generalization gap and translate good worst-group training
loss to good worst-group test loss. However, even with regularization, the generalization gap can
vary significantly across groups: in the Waterbirds DRO model with a strong `2 penalty, the smallest
group has a train-test accuracy gap of 15.4% compared to just 1.0% for the largest group. This
suggests that we can obtain better worst-group test loss if at training time, we prioritize obtaining
lower training loss on the groups that we expect to have a larger generalization gap.

We make this approach concrete by directly minimizing an estimated upper bound on the worst-
group test loss, inspired by ideas from structural risk minimization (Vapnik, 1992). The key con-
sideration is that each group g has its own generalization gap δg = E(x,y)∼Pg

[`(θ; (x, y))] −
E(x,y)∼P̂g

[`(θ; (x, y))]. To approximate optimizing for the worst-group test loss R(θ) =

maxg∈G E(x,y)∼P̂g
[`(θ; (x, y))] + δg , we propose using the simple, parameter-independent heuristic

δ̂g = C/
√
ng , where ng is the group size for g and C is a model capacity constant which we treat

as a hyperparameter. This gives the group-adjusted DRO estimator

θ̂adj := arg min
θ∈Θ

max
g∈G

{
E(x,y)∼P̂g

[`(θ; (x, y))] +
C
√
ng

}
. (5)

The scaling with 1/
√
ng reflects how smaller groups are more prone to overfitting than larger groups,

and is inspired by the general size dependence of model-complexity-based generalization bounds
(see, e.g., Cao et al. (2019)).

By incorporating group adjustments in (5), we encourage the model to focus more on fitting the
smaller groups. We note that this method of using a 1/

√
n surrogate for the generalization gap only

works in the group DRO setting, where we consider the worst-group loss over groups of different
sizes. It does not apply in the ERM setting; if we were minimizing average training loss, the 1/

√
n

term would simply be a constant and not affect the optimization.

Results. We evaluate group adjustments using group DRO models with strong `2 penalties (as in
Section 3.2). In Waterbirds (λ = 1.0), worst-group test accuracy improves by 5.9%, cutting the
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Naïve Adjusted Naïve Adjusted
Waterbirds 96.6 93.7 84.6 90.5

CelebA 93.5 93.4 86.7 87.8

Average Accuracy Worst-Group Accuracy

Table 2: Average and worst-group test accuracies with and without group adjustments. Group ad-
justments improve worst-group accuracy, though average accuracy drops for Waterbirds.

Training Time0.7

1.0

Ac
cu

ra
cy

C = 0

Landbird, land Landbird, water Waterbird, land Waterbird, water
Training Time

C = 1

Training Time

C = 2

Training Time

C = 4

Figure 3: Training (light) and validation (dark) accuracies for each group over time, for different
adjustments C. When C = 0, the generalization gap for waterbirds on land (green line) is large,
dragging down worst-group accuracy. At C = 2, which has the best worst-group validation accu-
racy, the accuracies are balanced. At C = 4, we overcompensate for group sizes, so smaller groups
(e.g., waterbirds on land) do better at the expense of larger groups (e.g., landbirds on land).

error rate by more than a third (Table 2 and Figure 3). The improvements in CelebA (λ = 0.1)
are more modest, with worst-group accuracy increasing by 1.1%; `2 penalties are more effective in
CelebA and there is not as much variation in the generalization gaps by group at λ = 0.1. We did
not evaluate group adjustments on MultiNLI as it did not benefit from stronger `2 penalties.

Empirically, group adjustments also help in the early stopping setting of Section 3.2 (in the next
section, we evaluate models with group adjustments and early stopping across a grid of `2 penalty
strengths). However, it is difficult to rigorously study the effects of early stopping (e.g., because the
group losses have not converged to a stable value), so we leave a more thorough investigation of the
interaction between early stopping and group adjustments to future work.

4 COMPARISON BETWEEN DRO AND IMPORTANCE WEIGHTING

Our results above show that strongly-regularized DRO models can be significantly more robust than
ERM models. Here, we show theoretically and empirically that DRO also outperforms a strong
importance weighting baseline that is commonly used in machine learning tasks where the train and
test distributions differ (Shimodaira, 2000; Byrd & Lipton, 2019). Recall that in our setting, the test
distribution can be any mixture of the group distributions. For some assignment of weights w ∈ ∆m

to groups, an importance-weighted estimator would learn

θ̂w := arg min
θ∈Θ

E(x,y,g)∼P̂ [wg `(θ; (x, y))]. (6)

Empirical comparison. We consider an importance-weighted baseline with weights set to the in-
verse training frequency of each group, wg = 1/Eg′∼P̂ [I(g′ = g)]. This optimizes for a test
distribution with uniform group frequencies and is analogous to the common upweighting technique
for label shifts (Cui et al., 2019; Cao et al., 2019); intuitively, this attempts to equalize average and
worst-group error by upweighting the minority groups. Concretely, we train our weighted model by
sampling from each group with equal probability (Shen et al., 2016), since a recent study found this
to be more effective than similar reweighting/resampling methods (Buda et al., 2018).

Unlike group DRO, upweighting the minority groups does not necessarily yield uniformly low train-
ing losses across groups in practice, as some groups might be easier to fit than others. To compare
upweighting (UW) with ERM and DRO, we train models across the same grid of `2 penalty strengths
and early stopping at the epoch with best worst-group validation accuracy (Table 3).3 In CelebA and

3To avoid advantaging the DRO models by allowing them to tune additional hyperparameters, we restrict
our search for group adjustments to the one `2 penalty strength used in Section 3.3. See Appendix C.2.
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Waterbirds, upweighting performs much better than ERM but is slightly outperformed by DRO.
However, upweighting fails on MultiNLI, achieving lower average and worst-group accuracies than
even ERM. With upweighting, it appears that the rare group is overemphasized and extremely low
training accuracy is achieved for that group at the cost of others.

Waterbids 97.0 (0.2) 95.1 (0.3) 93.5 (0.3) 63.7 (1.9) 88.0 (1.3) 91.4 (1.1)
CelebA 94.9 (0.2) 92.9 (0.2) 92.9 (0.2) 47.8 (3.7) 83.3 (2.8) 88.9 (2.3)

MultiNLI 82.8 (0.1) 81.2 (0.1) 81.4 (0.1) 66.4 (1.6) 64.8 (1.6) 77.7 (1.4)

Average Accuracy Worst-Group Accuracy
ERM DROUW ERM DROUW

Table 3: Comparison of ERM, upweighting (UW), and group DRO models, with binomial standard
deviation in parenthesis. For each objective, we grid search over `2 penalty strength, number of
epochs, and group adjustments and report on the model with highest validation accuracy. These
numbers differ from the previous tables because of the larger grid search.

0

0.6
1

(
;z

1)

1 * 2
0

0.6
1

(
;z

2)

Figure 4: Toy example illustrating that DRO and importance weighting are not equivalent. The DRO
solution is θ∗, while any importance weighting would result in solutions at θ1 or θ2.

Theoretical comparison. Should we expect importance weighting to learn models with good worst-
case loss? We show that importance weighting and DRO can learn equivalent models in the convex
setting under some importance weights, but not necessarily when the models are non-convex.

We analyze the general framework of having weights w(z) for each data point z, which is more
powerful than the specific choice above of assigning weights by groups. By minimizing the weighted
loss Ez∼P [w(z)`(θ; z)] over some source distribution P , we can equivalently minimize the expected
loss Ez∼Q[`(θ; z)] over a target distribution Q where Q(z) ∝ w(z)P (z). However, we want good
worst-case performance over a family ofQ ∈ Q, instead of a singleQ. Are there weightsw such that
the resulting model θ̂w achieves optimal worst-group risk? In the convex regime, standard duality
arguments show that this is the case (see Appendix A.1 for the proof):
Proposition 1. Suppose that the loss `(·; z) is continuous and convex for all z in Z , and let the
uncertainty set Q be a set of distributions supported on Z . Assume that Q and the model family
Θ ⊆ Rd are convex and compact, and let θ∗ ∈ Θ be a minimizer of the worst-group objectiveR(θ).
Then there exists a distribution Q∗ ∈ Q such that θ∗ ∈ arg minθ Ez∼Q∗ [`(θ; z)].

However, this equivalence breaks down when the loss ` is non-convex:
Counterexample 1. Consider a uniform data distribution P supported on two pointsZ = {z1, z2},
and let `(θ; z) be as in Figure 4, with Θ = [0, 1]. The DRO solution θ∗ achieves a worst-case loss of
R(θ∗) = 0.6. Now consider any weights (w1, w2) ∈ ∆2 and w.l.o.g. let w1 ≥ w2. The minimizer of
the weighted lossw1`(θ; z1)+w2`(θ; z2) is θ1, which only attains a worst-case loss ofR(θ∗) = 1.0.
Remark. Under regularity conditions, there exists a distribution Q such that θ∗ is a first-order
stationary point of Ez∼Q[`(θ; z)] (see e.g., Arjovsky et al. (2019)). However, as the counterexample
demonstrates, in the non-convex setting this does not imply that θ∗ actually minimizes Ez∼Q[`(θ; z)].

This negative result implies that in the non-convex setting, there may not be any choice of weights w
such that the resulting minimizer θ̂w is robust. Even if such weights did exist, they depend on θ∗ and
obtaining these weights requires that we solve a dual DRO problem, making reweighting no easier
to implement than DRO. Common choices of weights, such as inverse group size, are heuristics that
may not yield robust solutions (as observed for MultiNLI in Table 3).
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5 ALGORITHM

To train group DRO models efficiently, we introduce an online optimization algorithm with conver-
gence guarantees. Prior work on group DRO has either used batch optimization algorithms, which
do not scale to large datasets, or stochastic optimization algorithms without convergence guarantees.

In the convex and batch case, there is a rich literature on distributionally robust optimization which
treats the problem as a standard convex conic program (Ben-Tal et al., 2013; Duchi et al., 2016;
Bertsimas et al., 2018; Lam & Zhou, 2015). For general non-convex DRO problems, two types of
stochastic optimization methods have been proposed: (i) stochastic gradient descent (SGD) on the
Lagrangian dual of the objective (Duchi & Namkoong, 2018; Hashimoto et al., 2018), and (ii) direct
minimax optimization (Namkoong & Duchi, 2016). The first approach fails for group DRO because
the gradient of the dual objective is difficult to estimate in a stochastic and unbiased manner.4 An al-
gorithm of the second type has been proposed for group DRO (Oren et al., 2019), but this work does
not provide convergence guarantees, and we observed instability in practice under some settings.

Recall that we aim to solve the optimization problem (4), which can be rewritten as

min
θ∈Θ

sup
q∈∆m

m∑
g=1

qgE(x,y)∼Pg
[`(θ; (x, y))]. (7)

Extending existing minimax algorithms for DRO (Namkoong & Duchi, 2016; Oren et al., 2019), we
interleave gradient-based updates on θ and q. Intuitively, we maintain a distribution q over groups,
with high masses on high-loss groups, and update on each example proportionally to the mass on its
group. Concretely, we interleave SGD on θ and exponentiated gradient ascent on q (Algorithm 1).
(In practice, we use minibatches and a momentum term for θ; see Appendix C.2 for details.) The key
improvement from the existing group DRO algorithm (Oren et al., 2019) is that q is updated using
gradients instead of picking the group with worst average loss at each iteration, which is important
for stability and obtaining convergence guarantees. The run time of the algorithm is similar to that
of SGD for a given number of epochs (less than a 5% difference), as run time is dominated by the
computation of the loss and its gradient.

Algorithm 1: Online optimization algorithm for group DRO
Input: Step sizes ηq, ηθ;Pg for each g ∈ G
Initialize θ(0) and q(0)

for t = 1, . . . , T do
g ∼ Uniform(1, . . . ,m) // Choose a group g at random
x, y ∼ Pg // Sample x, y from group g

q′ ← q(t−1); q′g ← q′g exp(ηq`(θ
(t−1); (x, y))) // Update weights for group g

q(t) ← q′/
∑
g′ q
′
g′ // Renormalize q

θ(t) ← θ(t−1) − ηθq(t)
g ∇`(θ(t−1); (x, y)) // Use q to update θ

end

We analyze the convergence rate by studying the error εT of the average iterate θ̄(1:T ):

εT = max
q∈∆m

L
(
θ̄(1:T ), q

)
−min
θ∈Θ

max
q∈∆m

L
(
θ, q
)
, (8)

where L(θ, q) :=
∑m
g=1 qgE(x,y)∼Pg

[`(θ; (x, y))] is the expected worst-case loss. Applying results
from Nemirovski et al. (2009), we can show that Algorithm 1 has a standard convergence rate of
O
(
1/
√
T
)

in the convex setting (proof in Section A.2):
Proposition 2. Suppose that the loss `(·; (x, y)) is non-negative, convex, B∇-Lipschitz continuous,
and bounded by B` for all (x, y) in X × Y , and ‖θ‖2 ≤ BΘ for all θ ∈ Θ with convex Θ ⊆ Rd.
Then, the average iterate of Algorithm 1 achieves an expected error at the rate

E[εT ] ≤ 2m

√
10(B2

ΘB
2
∇ +B2

` logm)

T
. (9)

where the expectation is taken over the randomness of the algorithm.
4 The dual optimization problem for group DRO is minθ,β

1
α
Eg[max(0,Ex,y∼P̂g

[`(θ; (x, y)) | g]−β)]+β
for constantα. The max over expected loss makes it difficult to obtain an unbiased, stochastic gradient estimate.
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6 RELATED WORK

The problem of non-uniform accuracy. Existing approaches to addressing non-uniform accuracy
over the data distribution include domain adaptation techniques for known target distributions (Ben-
David et al., 2006; Ganin & Lempitsky, 2015) and work in ML fairness (Dwork et al., 2012; Hardt
et al., 2016a; Kleinberg et al., 2017). As we discuss in Section 4, importance weighting is a classic
example of the former (Shimodaira, 2000). Byrd & Lipton (2019) empirically study importance
weighting in neural networks and demonstrate that it has little effect unless regularization is applied.
This is consistent with the theoretical analysis in Wen et al. (2014), which points out that weighting
has little impact in the zero-loss regime, and with our own observations in the context of DRO.

Distributionally robust optimization. Prior work in DRO typically defines the uncertainty set
Q as a divergence ball around the training distribution over (x, y) (Ben-Tal et al., 2013; Lam &
Zhou, 2015; Duchi et al., 2016; Miyato et al., 2018; Esfahani & Kuhn, 2018; Bertsimas et al.,
2018; Blanchet & Murthy, 2019). With small divergence balls of radii O(1/n), DRO acts as a
regularizer (Shafieezadeh-Abadeh et al., 2015; Namkoong & Duchi, 2017). However, when the
radius is larger, the resulting Q can be too pessimistic. In contrast, group DRO considers Q that
is of wider radius but with fewer degrees of freedom (shifts over groups instead of over (x, y)).
Prior work proposed group DRO in the context of label shifts (Hu et al., 2018) and shifts in data
sources (Oren et al., 2019). Our work studies group DRO in the overparameterized regime with
vanishing training loss and poor worst-case generalization. In contrast, most DRO work has focused
on the classic (underparameterized) model setting (Namkoong & Duchi, 2017; Hu et al., 2018; Duchi
et al., 2019). Sinha et al. (2018) study neural networks but with a more conservative Wasserstein
uncertainty set that leads to non-vanishing training loss; and Oren et al. (2019) study neural networks
but for generative modeling where loss tradeoffs arise naturally.

Generalization of robust models. There is extensive work investigating generalization of neural
networks in terms of average loss, theoretically and empirically (Hardt et al., 2016b; Szegedy et al.,
2016; Hoffer et al., 2017). However, analysis on robust losses is limited. For label shifts, prior
work has observed overfitting on rare labels and proposed algorithms to mitigate it (Buda et al.,
2018; Cui et al., 2019; Cao et al., 2019). In the DRO literature, generalization bounds on the DRO
objective exist for particular uncertainty sets (e.g., Duchi & Namkoong (2018)), but those works do
not study overparameterized models. Invariant prediction models, mostly from the causal inference
literature, similarly aim to achieve high performance on a range of test distributions (Peters et al.,
2016; Bühlmann & Meinshausen, 2016; Heinze-Deml & Meinshausen, 2017; Rothenhäusler et al.,
2018; Yang et al., 2019; Arjovsky et al., 2019). For example, the maximin regression framework
(Meinshausen & Bühlmann, 2015) also assumes group-based shifts, but focuses on settings without
the generalization problems identified in our work.

7 DISCUSSION

In this paper, we analyzed group DRO in overparameterized neural networks and highlighted the
importance of regularization for worst-case group generalization. When strongly regularized, group
DRO significantly improves worst-group accuracy at a small cost in average accuracy.

As an application, we showed that group DRO can prevent models from learning pre-specified spu-
rious correlations. Our supplemental experiments also suggest that group DRO models can maintain
high worst-group accuracy even when groups are imperfectly specified (Appendix B). While han-
dling shifts beyond pre-specified group shifts is important future work, existing work has identified
many distributional shifts that can be expressed with pre-specified groups, e.g., batch effects in bi-
ology (Leek et al., 2010), or image artifacts (Oakden-Rayner et al., 2019) and patient demographics
(Badgeley et al., 2019) in medicine.

More generally, our observations call for a deeper analysis of average vs. worst-case generalization
in the overparameterized regime. Such analysis may shed light on the failure modes of deep neural
networks as well as provide additional tools (beyond strong `2 penalties or early stopping) to counter
poor worst-case generalization while maintaining high average accuracy.
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A PROOFS

A.1 EQUIVALENCE OF DRO AND IMPORTANCE WEIGHTING IN THE CONVEX SETTING

Proposition 1. Suppose that the loss `(·; z) is continuous and convex for all z in Z , and let the
uncertainty set Q be a set of distributions supported on Z . Assume that Q and the model family
Θ ⊆ Rd are convex and compact, and let θ∗ ∈ Θ be a minimizer of the worst-group objectiveR(θ).
Then there exists a distribution Q∗ ∈ Q such that θ∗ ∈ arg minθ Ez∼Q∗ [`(θ; z)].

Proof. Let h(θ,Q) := Ez∼Q[`(θ; z)]. Since the loss `(θ; z) is continuous and convex in θ for all z in
Z , we have that h(θ,Q) is continuous, convex in θ, and concave (linear) in Q. Moreover, since con-
vexity and lower semi-continuity are preserved under arbitrary pointwise suprema, supQ∈Q h(θ,Q)
is also convex and lower semi-continuous (therefore proper).

Together with the compactness of Θ and Q, the above conditions imply (by Weierstrass’ theorem,
proposition 3.2.1, Bertsekas (2009)), that the optimal value of the DRO objective

inf
θ∈Θ
R(θ) = inf

θ∈Θ
sup
Q∈Q

h(θ,Q). (10)

is attained at some θ∗ ∈ Θ.
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A similar argument implies that the sup-inf objective

sup
Q∈Q

inf
θ∈Θ

h(θ,Q) (11)

attains its optimum at some Q∗ ∈ Q.

Moreover, because Θ and Q are compact and h is continuous, we have the max-min equality (see,
e.g., Ex 5.25 in Boyd & Vandenberghe (2004))

sup
Q∈Q

inf
θ∈Θ

h(θ,Q) = inf
θ∈Θ

sup
Q∈Q

h(θ,Q). (12)

Together, the above results imply that (θ∗, Q∗) form a saddle point (proposition 3.4.1, Bertsekas
(2009)), that is,

sup
Q∈Q

h(θ∗, Q) = h(θ∗, Q∗) = inf
θ∈Θ

h(θ,Q∗). (13)

In particular, the second equality indicates that the optimal DRO model θ∗ also minimizes the
weighted risk h(θ,Q∗) = EZ∼Q∗ [`(θ;Z)], as desired.

A.2 CONVERGENCE RATE OF ALGORITHM 1

Proposition 2. Suppose that the loss `(·; (x, y)) is non-negative, convex, B∇-Lipschitz continuous,
and bounded by B` for all (x, y) in X × Y , and ‖θ‖2 ≤ BΘ for all θ ∈ Θ with convex Θ ⊆ Rd.
Then, the average iterate of Algorithm 1 achieves an expected error at the rate

E[εT ] ≤ 2m

√
10[B2

ΘB
2
∇ +B2

` logm]

T
. (14)

where the expectation is taken over the randomness of the algorithm.

Proof. Our proof is an application of the regret bound for online mirror descent on saddle point
optimization from Nemirovski et al. (2009).

We first introduce the existing theorem. Consider the saddle-point optimization problem

min
θ∈Θ

max
q∈∆m

m∑
g=1

qgfg(θ) (15)

under the following assumptions:

Assumption 1. fg is convex on Θ.

Assumption 2. fg(θ) = Eξ∼q[Fg(θ; ξ)] for some function Fg .

Assumption 3. We generate i.i.d. examples ξ ∼ q. For a given θ ∈ Θ and ξ ∈ Ξ, we can compute
Fg(θ, ξ) and unbiased stochastic subgradient∇Fg(θ; ξ), that is, Eξ∼q [∇Fg(θ; ξ)] = ∇fg(θ).

Online mirror descent with some c-strongly convex norm ‖ · ‖θ, yielding iterates θ(1), . . . , θ(T ) and
q(1), . . . , q(T ), has the following guarantee.

Theorem 1 (Nemirovski et al. (2009), Eq 3.23). Suppose that Assumptions 1-3 hold. Then the
pseudo-regret of the average iterates q̄g(1:T ) and q̄g(1:T ) can be bounded as

E

[
max
q∈∆m

m∑
g=1

qgfg(θ̄
(1:T ))−min

θ∈Θ

m∑
g=1

q̄g
(1:T )fg(θ)

]
≤ 2

√
10[R2

θM
2
∗,θ +M2

∗,q logm]

T
, (16)
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where

E

∥∥∥∥∥∇θ
m∑
g=1

qFg(θ; ξ)

∥∥∥∥∥
2

∗,θ

 ≤M∗,θ (17)

E

∥∥∥∥∥∇q
m∑
g=1

qFg(θ; ξ)

∥∥∥∥∥
2

∗,q

 ≤M∗,q (18)

R2
θ =

1

c
(max

θ
‖θ‖2θ −min

θ
‖θ‖2θ) (19)

for online mirror descent with c-strongly convex norm ‖ · ‖θ.

It remains to formulate our algorithm as an instance of online mirror descent applied to the saddle-
point problem above. We start by defining the following:

Definition 1. Let q be a distribution over ξ = (x, y, g) that is a uniform mixture of individual group
distributions Pg:

(x, y, g) ∼ q :=
1

m

m∑
g′=1

Pg′ . (20)

Definition 2. Let Fg′(θ; (x, y, g))) := mI[g = g′]`(θ; (x, y)). Correspondingly, let fg′ :=
EPg′ [`(θ; (x, y))].

We now check that Assumptions 1-3 hold under the original assumptions in the statement of Theo-
rem 2:

1. We assume that the loss `(·; (x, y)) is non-negative, continuous, and convex for all (x, y)
in X × Y . As a result, fg(θ) is non-negative, continuous, and convex on Θ.

2. The expected value of Fg(θ) over distribution q is fg(θ):

Ex,y,g∼q[Fg′(θ; (x, y, g))] =
1

m

m∑
i=1

EPi
[Fg′(θ; (x, y, g)) | g = i]

=
1

m
EPg′ [Fg′(θ; (x, y, g)) | g = g′]

=
1

m
EPg′ [m`(θ;x, y) | g = g′]

= EPg′ [`(θ;x, y) | g = g′]

= fg′(θ).

3. We can compute an unbiased stochastic subgradient∇Fg′(θ; (x, y, g))

Ex,y,g∼q[∇Fg′(θ; (x, y, g))] = Ex,y,g∼q[∇mI[g = g′]`(θ; (x, y))]

=
1

m

m∑
i=1

EPi [∇mI[g = g′]`(θ;x, y)]

= EQg′ [∇`(θ; (x, y))]

= ∇fg(θ).

Finally, we compute the constants required for the regret bound in Theorem 1. Recalling the original
assumptions of Theorem 2,

1. Bounded losses: `(θ; (x, y)) ≤ B` for all x, y, θ

2. Bounded gradients: ‖∇`(θ; (x, y))‖2 ≤ B∇ for all θ, x, y
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3. Bounded parameter norm: ‖θ‖2 ≤ BΘ for all θ ∈ Θ,

we obtain:

E


∥∥∥∥∥∥∇θ

m∑
g′=1

qg′Fg′(θ; (x, y, g))

∥∥∥∥∥∥
2

∗,θ

 ≤ m2B2
∇ = M∗,θ (21)

E


∥∥∥∥∥∥∇q

m∑
g′=1

qg′Fg′(θ; (x, y, g))

∥∥∥∥∥∥
2

∗,q

 ≤ m2B2
` = M∗,q (22)

R2
θ = max

θ
‖θ‖2θ −min

θ
‖θ‖2θ = B2

Θ. (23)

Plugging in these constants into the regret bound from Theorem 1, we obtain

E

[
max
q∈∆m

m∑
g=1

qgfg(θ̄
(1:T ))−min

θ∈Θ

m∑
g=1

q̄g
(1:T )fg(θ)

]
≤ 2m

√
10[B2

ΘB
2
∇ +B2

` logm]

T
(24)

This implies Theorem 2 because the minimax game is convex-concave.

B SUPPLEMENTARY EXPERIMENTS

Group DRO can maintain high robust accuracy even when spurious attributes are not perfectly spec-
ified. We repeat the CelebA experiment on models with strong `2 penalties (Section 3.2) but with
inexact group specifications:

1. Instead of the ground-truth spurious attribute Male, we provide a related attribute Wearing
Lipstick, and

2. We also specify four distractor/non-spurious attributes (Eyeglasses, Smiling, Double Chin,
and Oval Face).

Optimizing for worst-case performance over all 26 = 64 groups (for all combinations of 5 attributes
and 1 label), the DRO model attains 78.9% robust accuracy across the 4 original groups (dark-
haired males and females, and blond males and females). These robust accuracies are not far off
from the original DRO model with just the ground-truth spurious attribute (86.7%) and significantly
outperform the ERM model (37.8%).

C EXPERIMENTAL DETAILS

C.1 DATASETS

MultiNLI. The standard MultiNLI train-test split allocates most examples (approximately 90%)
to the training set, with another 5% as a publicly-available development set and the last 5% as a held-
out test set that is only accessible through online competition leaderboards (Williams et al., 2018).
Because we are unable to assess model accuracy on each group through the online leaderboards, we
create our own validation and test sets by combining the training set and development set and then
randomly shuffling them into a 50−20−30 train-val-test split. We chose to allocates more examples
to the validation and test sets than the standard split to allow us to accurately estimate performance
on rare groups in the validation and test sets.

We use the provided gold labels as the target, removing examples with no consensus gold label (as is
standard procedure). We annotate an example as having a negation word if any of the words nobody,
no, never, and nothing appear in the hypothesis (Gururangan et al., 2018).
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Waterbirds. The CUB dataset (Wah et al., 2011) contains photographs of birds annotated by
species as well as and pixel-level segmentation masks of each bird. To construct the Waterbirds
dataset, we label each bird as a waterbird if it is a seabird (albatross, auklet, cormorant, frigate-
bird, fulmar, gull, jaeger, kittiwake, pelican, puffin, or tern) or waterfowl (gadwall, grebe, mallard,
merganser, guillemot, or Pacific loon). Otherwise, we label it as a landbird.

To control the image background, we use the provided pixel-level segmentation masks to crop each
bird out from its original background and onto a water background (categories: ocean or natural
lake) or land background (categories: bamboo forest or broadleaf forest) obtained from the Places
dataset (Zhou et al., 2017). In the training set, we place 95% of all waterbirds against a water
background and the remaining 5% against a land background. Similarly, 95% of all landbirds are
placed against a land background with the remaining 5% against water.

We refer to this combined CUB-Places dataset as the Waterbirds dataset to avoid confusion with the
original fine-grained species classification task in the CUB dataset.

We use the official train-test split of the CUB dataset, randomly choosing 20% of the training data
to serve as a validation set. For the validation and test sets, we allocate distribute landbirds and
waterbirds equally to land and water backgrounds (i.e., there are the same number of landbirds
on land vs. water backgrounds, and separately, the same number of waterbirds on land vs. water
backgrounds). This allows us to more accurately measure the performance of the rare groups, and
it is particularly important for the Waterbirds dataset because of its relatively small size; otherwise,
the smaller groups (waterbirds on land and landbirds on water) would have too few samples to
accurately estimate performance on. We note that we can only do this for the Waterbirds dataset
because we control the generation process; for the other datasets, we cannot generate more samples
from the rare groups.

In a typical application, the validation set might be constructed by randomly dividing up the available
training data. We emphasize that this is not the case here: the training set is skewed, whereas the
validation set is more balanced. We followed this construction so that we could better compare
ERM vs. reweighting vs. group DRO techniques using a stable set of hyperparameters. In practice,
if the validation set were also skewed, we might expect hyperparameter tuning based on worst-group
accuracy to be more challenging and noisy.

Due to the above procedure, when reporting average test accuracy in our experiments, we calcu-
late the average test accuracy over each group and then report a weighted average, with weights
corresponding to the relative proportion of each group in the (skewed) training dataset.

CelebA. We use the official train-val-test split that accompanies the CelebA celebrity face dataset
(Liu et al., 2015). We use the Blond Hair attribute as the target label and the Male attribute as the
spuriously-associated variable.

C.2 MODELS

ResNet50. We use the Pytorch torchvision implementation of the ResNet50 model, starting
from pretrained weights.

We train the ResNet50 models using stochastic gradient descent with a momentum term of 0.9 and
a batch size of 128; the original paper used batch sizes of 128 or 256 depending on the dataset (He
et al., 2016). As in the original paper, we used batch normalization (Ioffe & Szegedy, 2015) and no
dropout (Srivastava et al., 2014). For simplicity, we train all models without data augmentation.

We use a fixed learning rate instead of the standard adaptive learning rate schedule to make our dif-
ferent model types easier to directly compare, since we expected the scheduler to interact differently
with different model types (e.g., due to the different definition of loss). The interaction between
batch norm and `2 penalties means that we had to adjust learning rates for each different `2 penalty
strength (and each dataset). The learning rates below were chosen to be the highest learning rates
that still resulted in stable optimization.

For the standard training experiments in Section 3.1, we use a `2 penalty of λ = 0.0001 (as in
He et al. (2016)) for both Waterbirds and CelebA, with a learning rate of 0.001 for Waterbirds and
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0.0001 for CelebA. We train the CelebA models for 50 epochs and the Waterbirds models for 300
epochs.

For the early stopping experiments in Section 3.2, we train each ResNet50 model for 1 epoch. For
the strong `2 penalty experiments in that section, we use λ = 1.0 for Waterbirds and λ = 0.1 for
CelebA, with both datasets using a learning rate of 0.00001. These settings of λ differ because we
found that the lower value was sufficient for controlling overfitting on CelebA but not on Waterbirds.

For the group adjustment experiments in Section 3.3, we use the same settings of λ = 1.0 for
Waterbirds and λ = 0.1 for CelebA, with both datasets using a learning rate of 0.00001. For both
datasets, we use the value of C ∈ {0, 1, 2, 3, 4, 5} found in the benchmark grid search described
below.

For the benchmark in Section 4 (Table 3), we grid search over `2 penalties of λ ∈ {0.0001, 0.1, 1.0}
for Waterbirds and λ ∈ {0.0001, 0.01, 0.1} for CelebA, using the corresponding learning rates for
each λ and dataset listed above. (Waterbirds and CelebA at λ = 0.1, which is not listed above,
both use a learning rate of 0.0001.) To avoid advantaging DRO by allowing it to try many more
hyperparameters, we only test group adjustments (searching over C ∈ {0, 1, 2, 3, 4, 5}) on the `2
penalties used in Section 3.3, i.e., λ = 1.0 for Waterbirds and λ = 0.1 for CelebA. All benchmark
models were evaluated at the best early stopping epoch (as measured by robust validation accuracy).

BERT. We use the Hugging Face pytorch-transformers implementation of the BERT
bert-base-uncased model, starting from pretrained weights (Devlin et al., 2019).5 We use the
default tokenizer and model settings from that implementation, including a fixed linearly-decaying
learning rate starting at 0.00002, AdamW optimizer, dropout, and no `2 penalty (λ = 0), except
that we use a batch size of 32 (as in Devlin et al. (2019)) instead of 8. We found that this slightly
improved robust accuracy across all models and made the optimization less noisy, especially on the
ERM model.

For the standard training experiments in Section 3.1, we train for 20 epochs.

For the `2 penalty experiments in Section 3.2, we tried penalties of λ ∈
{0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0}. However, these models had similar or worse robust ac-
curacies compared to the default BERT model with no `2 penalty.

For the early stopping experiments in Section 3.2, we train for 3 epochs, which is the suggested
early-stopping time in Devlin et al. (2019).

For the benchmark in Section 4 (Table 3), we similarly trained for 3 epochs. All benchmark models
were evaluated at the best early stopping epoch (as measured by robust validation accuracy).

5https://github.com/huggingface/pytorch-transformers
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