
2nd Symposium on Advances in Approximate Bayesian Inference, 2019 1–12

The Gaussian Process Prior VAE for
Interpretable Latent Dynamics from Pixels

Michael Pearce scrambledpie@gmail.com

Complexity Science, University of Warwick, UK

1. Introduction

We consider the problem of unsupervised learning of a low dimensional, interpretable, latent
state of a video containing a moving object. The problem of distilling interpretable dynam-
ics from pixels has been extensively considered through the lens of graphical/state space
models (Fraccaro et al., 2017; Lin et al., 2018; Pearce et al., 2018; Chiappa and Paquet,
2019) that exploit Markov structure for cheap computation and structured priors for en-
forcing interpretability on latent representations. We take a step towards extending these
approaches by discarding the Markov structure; inspired by Gaussian process dynamical
models (Wang et al., 2006), we instead repurpose the recently proposed Gaussian Process
Prior Variational Autoencoder (Casale et al., 2018) for learning interpretable latent dynam-
ics. We describe the model and perform experiments on a synthetic dataset and see that
the model reliably reconstructs smooth dynamics exhibiting U-turns and loops. We also
observe that this model may be trained without any β annealing or freeze-thaw of train-
ing parameters in contrast to previous works, albeit for slightly different use cases, where
application specific training tricks are often required.

2. The Gaussian Process Prior VAE

Assume we are given a dataset of images and each image has a corresponding feature vector,
e.g. images of faces and features are pose angle, lighting intensity etc. The Gaussian
Process Prior Variational Autoencoder (GPP-VAE) may be used to learn intermediate
latent representations from features (input) to images (output) where the input-output
relationship is supervised but the latent representation is unsupervised. In the use case we
consider, we assume that we have a set of videos of a single object moving around on a pixel
display. Each video consists of a set of T images: v1, ..., vT ∈ [0, 1]32×32 which are binary
arrays and the corresponding feature of an image is its time stamp t. The intermediate
state we aim to learn is an interpretable 2D latent time-series of x1:T , y1:T coordindates for
the object for each frame. We have no ground truth data of object position hence this is
unsupervised. We place a Gaussian process prior over time on the functions x, y : [1, T]→ R.
A Gaussian process may be viewed as a more general linear Gaussian state space model,
this has the benefit of being more flexible, and smoothing (aggregating information across
all time) is performed by default. However sacrificing Markov structure typically increases
computational complexity from linear to cubic. A Gaussian process is fully specified by its

c© M. Pearce.

GP-VAE for Latent Dynamics

mean and covariance functions. Evaluating these functions at a discretization of the input
domain, T = 1 : T ⊂ [1, T], yields the mean vector and covariance matrix of a multivariate
Gaussian distribution. Hence without loss of generality, we adopt the notation of scalars
xt, yt and vectors x1:T , y1:T instead of functions x(t), y(t). The generative model is given by

P[v1:T , x1:T , y1:T] =
T∏
t=1

P[vt|xt, yt] P[x1:T , y1:T] (1)

=
T∏
t=1

B(vt|pθ(xt, yt))︸ ︷︷ ︸
Bernoulli over pixels

N
(
x1:T |0, kx(T , T)

)
N
(
y1:T |0, ky(T , T)

)︸ ︷︷ ︸
=GP(x1:T)GP(y1:T)

, (2)

where B(vt|pθ(xt, yt)) is a product of 32×32 independent Bernoulli distributions over pixels
parameterised by a neural network pθ(xt, yt) with parameters θ. The functions kx, ky :
[1, T]× [1, T]→ R are positive semi-definite kernels with hyperparameters that we assume
are known in this work for simplicity and N (x|µ,Σ) is the multivariate Gaussian density.
Given a video v1:T we aim to learn x1:T and y1:T which ideally would be inferred by Bayes
rule, P[x1:T , y1:T |v1:T]. However due to the B(vt|pθ(xt, yt)) terms, the true posterior has no
normalized analytic form.

We desire a variational approximation with two properties. Firstly for fast inference
at test time we require amortization; we aim to learn a function from observed variables
v1:T directly to approximate posterior q(x1:T , y1:T |v1:T). Secondly, at test time, video data is
streaming and frames are accumulated over time thus we also require an approximate poste-
rior that can handle variable length videos. Satisfying both of the properties and exploiting
the structure of the generative model, we propose the following variational approximation

q(x1:T , y1:T |v1:T) =
1

Z(v1:T)

T∏
t=1

q∗φ(xt, yt|vt) P[x1:T , y1:T] (3)

=
1

Z(v1:T)

T∏
t=1

N (xt|µ∗xφ(vt), σ
∗
xφ

2(vt))N (yt|µ∗yφ(vt), σ
∗
yφ

2(vt))︸ ︷︷ ︸
q∗φ(xt,yt|vt) approximating B(vt|pθ(xt,yt))

GP (x1:T , y1:T)

which is simply the true generative model with only the troublesome B(vt|pθ(xt, yt)) terms
replaced by Gaussian densities denoted q∗φ(xt, yt|vt). These new Gaussian factors are con-
jugate to the GP prior thereby enabling normalization. Each factor is parameterized by
the output of a recognition network µ∗xφ(vt), σ

∗
xφ

2(vt) (similarly for yt) with parameters

φ. By noting the symmetry of the Gaussian distribution, N (x|µ, σ2) = N (µ|x, σ2), the
denominator is exactly the form of the unnormalized likelihood × prior of standard GP
regression. The x1:T are latent function values and {(t, µ∗φx(vt)}T1 are a set of observations

(or pseudo-points) each with noise σ∗φx
2(vt). These points condition the generative prior

GP yielding an (analytic) posterior GP that approximates the (non analytic) true posterior
P[x1:T , y1:T |v1:T]. Thus the standard GP equations (see Appendix B) yield means, µx(t),
µy(t), and variances plotted in Figure 1.

Since, for simplicity, we assume x1:T and y1:T are independent, this may be viewed as two
standard 1-D Gaussian process regression models and the term Z(v1:T) = Zx(v1:T)Zy(v1:T)

2

GP-VAE for Latent Dynamics

2 1 0 1 2
x

2

1

0

1

2

y

Truth
q(x1 : T, y1 : T|v1 : T)

0 10 20 30
Time, t

2

1

0

1

2

y

Truth
*
y (v1 : T)
y(t)

0 10 20 30
Time, t

2

1

0

1

2

x

Truth
*
x (v1 : T)
x(t)

Figure 1: Left: video frames overlayed and shaded by time. Centre: example inferred
latent path rotated onto ground truth (not used in training). Right: each latent
dimension is a GP over time, using the generative prior GP conditioned on pseudo
points from the recognition network.

and Zx(v1:T) is thus precisely the marginal likelihood of the x GP commonly used in GP
regression for hyperparameter learning. At test time, if there are missing frames or the video
is shorter, Ts < T , mathematically, only q∗(v1:Ts) terms are included in Equation 3 and we
have Z(v1:Ts). Intuitively, the approximate posterior simply becomes a GP regression model
with fewer points, {(t, µ∗φx(vt)}Ts1 .

In this work we assume that the kernels are the popular squared exponential kx(t, t′) =
exp(−1

2(t − t′)2/l2x) with hyperparameters lx = ly = 5 that represent the time scale, or
speed, of changes in x and y positions respectively and may be learnt or informed by prior
knowledge, i.e. observing the volatility of object movement in videos. This is a stationary
kernel and enforces smoothness over latent trajectories and by setting lx, ly � 1 recovers a
standard factorised Gaussian prior of the traditional VAE model. In general, any kernel may
be used, quadratic kernel for parabolic motion, min kernel for Brownian motion, periodic
kernels for oscillatory motion, or any sum or product of these kernels depending on the
prior belief about a particular dataset or physical system.

For training the neural network parameters θ, φ, we maximize the evidence lower bound,

F(θ, φ; v1:T) = Eq

∑
t∈T

logB(vt|pθ(xt, yt))− log q∗φ(xt, yt|vt)

+ logZ(v1:T), (4)

a full derivation is given in the Appendix. The first (inner) term in Equation 4 is the re-
construction term, evaluated with the reparameterisation trick (Kingma and Welling, 2013;
Rezende et al., 2014), and the middle and final terms compose the analytically tractable
Kullback-Leibler divergence between the GP prior and the inference model. Alternatively,
the first two terms together may be viewed as the “error” between the true posterior and
approximate posterior introduced by replacing only the Bernoulli likelihoods with Gaussian
approximations, and the final term is a surrogate marginal likelihood.

3

GP-VAE for Latent Dynamics

Figure 2: Top: input video with frames over layed and shaded by time. Middle: inferred
x1:T , y1:T when using a VAE (ignoring time stamp of frames) showing both the
ground truth (blue, not used for training) and the inferred posterior mean (or-
ange). The inferred trajectory is linearly transformed onto the ground truth.
Bottom: x1:T , y1:T inferred using the the GPP-VAE.

3. Experiments

In order to test the ability to learn latent dynamics we synthesize a controlled dataset.
We generate videos of length T = 30 by first sampling a time series x1:T , y1:T ∼ N

(
·

|0, k(T , T)
)
. Each pair (xt, yt) is rescaled to pixel indeces and rendered as a ball onto a binary

canvas. Example videos are shown in Figure 2 and Appendix A, network details and training
are given in Appendix B.3. As a naive baseline model, we train a standard Variational
Autoencoder using the same inference and rendering networks. For model evaluation, we
consider how the latent space compares to the ground truth. In Figure 2 we plot videos and
approximate posterior means and see the GPP-VAE largely recovers the ground truth, note
this is never used in training. By construction, the generated images lie in a low dimensional
subspace of pixel space, and we expect similar images (many overlapping white pixels) to be
encoded into similar latents. Thus we consider how a regular pattern of images is encoded
into the latent space. In Figure 3 we plot such patterns with the output of the recognition
network (µ∗φx(v), µ∗φy(v)). In this case, the VAE appears to learn a distorted and discontinous
mapping from pixels to latents while the GPP-VAE learns a continuous mapping with mild
distortion. Both methods learn near perfect reconstruction of videos shown in Appendix A.
Source code is available at https://github.com/scrambledpie/GPVAE/.

4. Conclusion

We present a simple model and show proof-of-concept results that a Gaussian Process Prior
within a VAE may be used for learning complex but smooth latent dynamics without any

4

https://github.com/scrambledpie/GPVAE/

GP-VAE for Latent Dynamics

Input VAE Latent GPP-VAE Latent

Figure 3: Left: top: 19 images, bottom: 25 images generated with the ball in a regular pat-
tern. Centre: the patterns output from the recognition network q∗(x, y|v) from
the trained VAE. Ground truth in blue and recognition network means in orange
(rotated onto ground truth). Lines are for visual aid only. Right: the output of
q∗(x, y|v) from the trained GPP-VAE (rotated onto ground truth). There is no
time correlation in the images hence we do not plot approximate posterior/apply
smoothing. The VAE latent space is a highly distorted and discontinuous transfor-
mation of the pixel space while the GPP-VAE latent space is much more coherent.
For training, see video https://www.youtube.com/watch?v=riVhb6K_iMo.

special training. In this work we consider a toy dataset and the dynamics model gener-
ating the data was also used to fit the model removing miss-specification issues. Hence
future work is to apply the model to a wider variety of less controlled settings, and com-
parison with more sophisticated baselines. By comparison, using similar data, the Kalman-
Variational Autoencoder learnt dynamics (also including sharp turns, hence non-smooth)
using an LSTM and training required freeze-thaw of model parameters and re-weighting
of objective terms. Likewise extensions to this model (Chiappa and Paquet, 2019; Pearce
et al., 2018) consider multiple objects constrained to parabolic motion and either require β
annealing or other training tricks.

Acknowledgments

Thanks go to Ayman Boustati and Janis Klaise for proof reading the paper in the last hours
before the deadline and to Tobias Grafke and Warwick University Centre for Complexity
Science for providing Nvidia Quadro RTX 6000 graphics cards for experiments.

5

https://www.youtube.com/watch?v=riVhb6K_iMo
https://aboustati.github.io/
https://www.janisklaise.com/
http://homepages.warwick.ac.uk/staff/T.Grafke/index.html

GP-VAE for Latent Dynamics

References

Francesco Paolo Casale, Adrian Dalca, Luca Saglietti, Jennifer Listgarten, and Nicolo Fusi.
Gaussian process prior variational autoencoders. In Advances in Neural Information
Processing Systems, pages 10369–10380, 2018.

Silvia Chiappa and Ulrich Paquet. Unsupervised separation of dynamics from pixels.
METRON, 77(2):119–135, 2019.

Marco Fraccaro, Simon Kamronn, Ulrich Paquet, and Ole Winther. A disentangled recog-
nition and nonlinear dynamics model for unsupervised learning. In Advances in Neural
Information Processing Systems, pages 3601–3610, 2017.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosen-
baum, Oriol Vinyals, and Yee Whye Teh. Attentive neural processes. International
Conference on Learning Representations, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International
Conference on Learning Representations, 2013.

Wu Lin, Nicolas Hubacher, and Mohammad Emtiyaz Khan. Variational message passing
with structured inference networks. International Conference on Learning Representa-
tions, 2018.

Michael Pearce, Silvia Chiappa, and Ulrich Paquet. Comparing interpretable inference
models for videos of physical motion. In 1st Symposium on Advances in Approximate
Bayesian Inference, 2018.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropaga-
tion and approximate inference in deep generative models. International Conference on
Machine Learning, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

Jack Wang, Aaron Hertzmann, and David J Fleet. Gaussian process dynamical models. In
Advances in neural information processing systems, pages 1441–1448, 2006.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine
learning, volume 2. MIT press Cambridge, MA, 2006.

6

GP-VAE for Latent Dynamics

Appendix A. Further Experimental Results

2 0 2
2

0

2

2 0 2
2

0

2

2 0 2
2

0

2

2 0 2
2

0

2

2 0 2
2

0

2

2 0 2
2

0

2

Figure 4: Left: input video vtest1:T frames overlayed and shaded by time. Centre: the latent
position learnt by a variational autoencoder, VAE. Ground truth xtest1:T , y

test
1:T in

blue, and the mean of q(x1:T , y1:T |vtest1:T) in orange. Right: reconstruction learnt
by a VAE. The time stamp of each frame is ignored during training and each
frame is encoded in an i.i.d. fashion. Reconstruction is near perfect yet the
latent space is a not a physically accurate space.

7

GP-VAE for Latent Dynamics

2 0 2
2

0

2

2 0 2
2

0

2

2 0 2
2

0

2

2 0 2
2

0

2

2 0 2
2

0

2

2 0 2
2

0

2

Figure 5: Left: input video vtest1:T frames overlayed and shaded by time. Centre: the latent
position learnt by GPP-VAE. Right: reconstruction learnt by a GPP-VAE. The
latent space, when rotated onto the ground truth, recovers original dynamics.

8

GP-VAE for Latent Dynamics

Appendix B. Mathematical Derivations

B.1. Gaussian Process Regression and The Approximate Posterior

We assume independent factorised Gaussian process priors for the horizontal position x1:T
and vertical position y1:T . The recognition network returns fully factorised Gaussian den-
sities therefore the approximate posterior is also factorised across vertical and horizontal
positions. As a consequence the log marginal likelihood is a sum of individual marginal
likelihoods logZ(v1:T) = logZx(v1:T) + logZy(v1:T). We therefore give the expression
for a single term. In our case, for a single video, v1:T , the input-output pairs for Gaus-
sian process regression is the set of time stamps and means from the recognition network
{(1, µ∗φx(v1)), ..., (T, µ

∗
φx(vT))} with noise variance for each observation given by (σ∗φx

2(v1), ..., σ
∗
φx

2(vT)).

Denote the column vector of means as µ∗
x

= µ∗φx(v1:T) ∈ RT , the kernel matrix Kx =

kx(T , T) ∈ RT×T and the diagonal noise matrix as Σ∗x = diag(σ∗φx
2(v1:T)) ∈ RT×T . The log

marginal likelihood logZx(v1:T) ∈ R is given by

logZx(v1:T) = −1

2

(
T log(2π) + log |Kx + Σ∗x|+ µ∗

x
ᵀ(Kx + Σ∗x

)−1
µ∗
x

)
. (5)

Due to the matrix inversion, this has cubic cost in the number of observed frames T .
The matrix inversion is done via Cholesky decomposition as suggested by Williams and
Rasmussen (2006).

Secondly to compute the approximate posterior mean and approximate posterior vari-
ance, we may use the standard Gaussian process regression equations,

µx(t|v1:T) = kx(t, T)
(
Kx + Σ∗x

)−1
µ∗
x

(6)

kx(t, t′|v1:T) = kx(t, t′)− kx(t, T)
(
Kx + Σ∗x

)−1
kx(T , t′) (7)

where the dependence upon v1:T is embedded in the µ∗
x

and Σ∗x terms. The approximate

posterior variance for a single point is given by σ2x(t|v1:T) = kx(t, t|v1:T) and the approximate
posterior distribution for a single position xt, yt conditioned on all frames is

q(xt, yt|v1:T) = N
(
xt
∣∣ µx(t|v1:T), σ2x(t|v1:T)

)
N
(
yt
∣∣ µy(t|v1:T), σ2y(t|v1:T)

)
. (8)

B.2. Deriving Evidence Lower Bound Objective

The objective function given in the main text is

F(θ, φ; v1:T) = Eq

∑
t∈T

logB(vt|pθ(xt, yt))− log q∗φ(xt, yt|vt)

+ logZ(v1:T). (9)

9

GP-VAE for Latent Dynamics

For the next equations, we shall drop the time indices

logP[v] = log

∫
x,y

P[v, x, y]dxdy (10)

= log

∫
x,y

q(x, y|v)

q(x, y|v)
P[v, x, y]dxdy (11)

≥
∫
x,y
q(x, y|v) log

P[v, x, y]

q(x, y|v)
dxdy (12)

=

∫
x,y
q(x, y|v) logP[v|x, y] + log

P[x, y]

q(x, y|v)
dxdy (13)

= Eq [logP[v|x, y]] + Eq
[
log

P[x, y]

q(x, y|v)

]
(14)

where expectations are over x, y. The first term must be evaluated by Monte-Carlo using
the reparameterization trick (Kingma and Welling, 2013), a sample xit, y

i
t is generated by

taking the approximate posterior mean and standard deviation and sampling white-noise
ε ∼ N (·|0, 1), xit = µx(t|v1:T) + ε ∗ σx(t|v1:T) which can then be passed to pθ(·) and the
likelihood of the true image logB(vt|pθ(xit, yit)) can be computed.

Next we focus on the second term, the KL divergence from the approximate posterior
to the prior. Substituting in the from of q(x, y|v) = P[x, y]q∗(x, y|v)/Z(v),

Eq
[
log

P[x, y]

q(x, y|v)

]
= Eq

[
log

����P[x, y]

����P[x, y]q∗(x, y|v) 1
Z(v)

]
(15)

= Eq [− log q∗(x, y|v)] + logZ(v) (16)

and note that the prior term that is common to both generative and inference model cancels
out. Combining terms yields the expression in Equation 9. Recall that q∗(x, y|v1:T) is a
factorised Gaussian over all variables x1, .., xT , y1, ..., yT . Therefore the first term of Equa-
tion 16 term is a sum of univariate cross-entropys of Gaussian distributions, again dropping
time indices to minimize cluttering notation, the term for a single time is given by

Eq [− log q∗(x, y|v)] = Eq
[
− logN (x|µ∗x, σ∗x

2)− logN (y|µ∗y, σ∗y
2)
]

(17)

where the expectation is over the approximate posterior given in Equation 8. Let x ∼
N (x|µ, σ2), then the univariate Guassian cross-entropy is given by

Ex
[
logN (x|µ∗, σ∗2)

]
= −1

2

(
log 2π + 2 log σ∗ +

σ2 + (µ− µ∗)2

σ∗2

)
The Monte-Carlo integral of the reconstruction term and the analytic expression for

the KL divergence can all be implemented in any modern machine learning framework and
optimized by gradient ascent. This is discussed below in Section B.3.

B.3. Data generation, Network Architectures and Training

For training data, we generate videos of length T = 30 by first sampling two time series
x1:T , y1:T ∼ N

(
· |0, k(T , T)

)
where k(t, t′) = exp(−(t − t)2/(2 · 52)). Each pair (xt, yt) is

10

GP-VAE for Latent Dynamics

rescaled to pixel space (x̃t, ỹt) = 7 ∗ (xt, yt) + (16, 16) and rendered as a ball with radius
r = 3 onto a binary canvas. vt ∈ {0, 1}32×32 where [vt]ij = 1(||(i, j)− (x̃t, ỹt)||2 < 32).

The recognition network q∗ : {0, 1}1024 → R4 is a fully connected network that takes as
input a 32∗32 = 1024 image flattened to a vector vt ∈ {0, 1}1024. This is followed by a fully
connected hidden layer of 500 nodes with the tanh() activation function, and finally the out-
put layer of four nodes returning µ∗φx(vt), log σ∗φx(vt) and µ∗φy(vt), log σ∗φx(vt), the network

parameters are therefore two weight matrices and two bias vectors φ = {W 1
q , B

1
q ,W

2
q , B

2
q}.

The decoder, or rendering network, pθ : R2 → [0, 1]1024, is almost the same architecture
in reverse, the input layer has only two nodes, followed by a single fully connected layer of
500 nodes with the tanh() activation and finally 1024 nodes with the sigmoid() activation
yielding a unique independent Bernoulli probability between 0 and 1 for each of the 1024
pixels. The parameters are thus θ = {W 1

p , B
1
p ,W

2
p , B

2
p}.

Training is performed using the Adam optimizer with Tensorflow default parameters
α = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e − 08 and a batchsize of 35 randomly generated
videos. We train the each method for 50,000 iterations.

In preliminary testing we applied β annealing of the prior KL term in the objective as
it has been shown to stabilize learning however we found that a value of β > 1 would lead
to the approximate model learning the prior distribution and never recovering, posterior
collapse, and for β < 1 we found that training often became numerically unstable and
overflow/underflow errors would cause training to halt. Therefore we apply no β annealing,
all results are with the objective unmodified and optimized end-to-end.

B.4. Linear Trajectory Projection

We maintain a held-out test set of latent trajectories xtest1:T , y
test
1:T and their rendered coun-

terparts vtest1:T . We pass the images into the inference model to yield posterior mean vectors
µx(T |vtest1:T), µy(T |vtest1:T) ∈ RT . We then use linear regression to predict the ground truth tra-
jectories. Specifically we learn a rotation W ∈ R2×2 and translation B ∈ R2 that minimizes
the mean squared error over the whole test set

W,B = arg min
W,B

∑
test

T∑
t=1

∣∣∣∣W (µx(t|·), µy(t|·)) +B − (xtestt , ytestt)
∣∣∣∣2. (18)

The error minimizing W and B are used to rotate the latent trajectories onto the true
trajectories for the figures. The true trajectories are never used during training.

B.5. Comparison with Attentive Neural Processes

As a temporary aside for the interested reader, we may draw parallels between the Gaussian
Process Prior Variational Autoencoder and Attentive Neural processes (Kim et al., 2019). A
stochastic process is a collection of random variables (outputs) over an index set (inputs),
i.e. a random function generator. A video generator may be viewed as realisations of a
stochastic process, over the index set of time, random outputs are images in pixel space. At
test time, given a set of frames from a video v1:T and a new time stamp t′, we may query
a model to predict the new frame P[vt′ |v1:T], a simple regression problem, albeit with 1D
input and high dimensional output.

11

GP-VAE for Latent Dynamics

Assume we are given the distribution of the stochastic process realisations, the full
generative model of outputs given any inputs, and a subset of input-output pairs from a
single realisation of a stochastic process. For any new input, we desire statistical predictions
of the corresponding output from the same realisation.

The Neural process architecture allows a user to make such new predictions where the
generative stochastic process is not known, however instead one has access to a large corpus
of input-output pairs from many realisations of the same generative process. Firstly, each
element from the set of observed points, (t, vt), is encoded into a new representation rt,
and the set r1, ..., rT is accumulated through summation to get R. Secondly, R is used in a
decoder with the new input t′ to parameterise a distribution over the output P[vt′ |R, t′].

Attentive Neural processes augment this architecture in two ways. First, a self-attention
layer (Vaswani et al., 2017) is applied to the set r1, ..., rT yielding r̃1, ..., r̃T . Second, for
prediction, the new input t′ is used as a query to inform attention weights over r̃1, ..., r̃T ,
such that the aggregated representation Rt′ is informed by t′, essentially augmenting Neural
processes with a non-parametric memory.

In our use case, the encoder of (t, vt) is the identity function for t and the recognition
network for vt and the encoding rt is the time stamp and means and variances,

encoder :R× {0, 1}32×32 → R5 (19)

(t, vt)
(Id(·),q∗(·|vt))−−−−−−−−→

(
t, µ∗φx(vt), σ

∗
φx

2(vt), µ
∗
φy(vt), σ

∗
φx

2(vt)
)
. (20)

Encoding all observed time stamps and images yield the set of encodings r1, ..., rT . Pre-
dicting P[vt′ |v1:T] requires the approximate posterior at time t, the GP mean and variance.
Recall the equation for the approximate posterior mean at a new point t′,

µx(t′|v1:T) =

attention
weights︷ ︸︸ ︷

kx(t′, T)

self-attention
weights︷ ︸︸ ︷(

Kx + Σ∗x
)−1 values︷︸︸︷

µ∗
x︸ ︷︷ ︸

≈ self-attention layer

(21)

The new time stamp t′ is a query, the time stamps of observed/encoded frames 1 : T
are keys (the first element of each rt), and the kernel between query and keys are the
attention weights. The kernel matrix inversion may be viewed as one layer of self-attention
(admittedly with a stretch of the imagination). The self attention weight matrix has keys
1 : T , queries 1 : T , (the first elements of each rt vector) and also incorporates σ∗φx

2(v1:T).
The values being accumulated are µ∗

x
. The post self-attention representations are thus

r̃t =
(
t,
(
Kx + Σ∗x

)−1
t
µ∗
x

)
.

Therefore, standard Gaussian process regression may be viewed as applying self-attention
to the collection of encoded representations, and when making a new prediction, attention is
applied over the new representations. For prediction, a weighted average over other encoded
frames is used to compute q(xt, yt|v1:T), this is sampled to get xit′ , y

i
t′ , and passed through

the network pθ(·) to parameterize the distribution over pixels B(vt|pθ(xit′ , yit′)), one sample
for each pixel yields one predicted output P[v′t|v1:T].

12

	Introduction
	The Gaussian Process Prior VAE
	Experiments
	Conclusion
	Further Experimental Results
	Mathematical Derivations
	Gaussian Process Regression and The Approximate Posterior
	Deriving Evidence Lower Bound Objective
	Data generation, Network Architectures and Training
	Linear Trajectory Projection
	Comparison with Attentive Neural Processes

