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Abstract

Feature hashing and other random projection schemes are commonly used to
reduce the dimensionality of feature vectors. The goal is to efficiently project
a high-dimensional feature vector living in Rn into a much lower-dimensional
space Rm, while approximately preserving Euclidean norm. These schemes can be
constructed using sparse random projections, for example using a sparse Johnson-
Lindenstrauss (JL) transform. A line of work introduced by Weinberger et. al
(ICML ’09) analyzes the accuracy of sparse JL with sparsity 1 on feature vectors
with small `∞-to-`2 norm ratio. Recently, Freksen, Kamma, and Larsen (NeurIPS
’18) closed this line of work by proving a tight tradeoff between `∞-to-`2 norm
ratio and accuracy for sparse JL with sparsity 1.
In this paper, we demonstrate the benefits of using sparsity s greater than 1 in
sparse JL on feature vectors. Our main result is a tight tradeoff between `∞-to-`2
norm ratio and accuracy for a general sparsity s, that significantly generalizes the
result of Freksen et. al. Our result theoretically demonstrates that sparse JL with
s > 1 can have significantly better norm-preservation properties on feature vectors
than sparse JL with s = 1; we also empirically demonstrate this finding.

1 Introduction

Feature hashing and other random projection schemes are influential in helping manage large data
[11]. The goal is to reduce the dimensionality of feature vectors: more specifically, to project
high-dimensional feature vectors living in Rn into a lower dimensional space Rm (where m� n),
while approximately preserving Euclidean distances (i.e. `2 distances) with high probability. This
dimensionality reduction enables a classifier to process vectors in Rm, instead of vectors in Rn.
In this context, feature hashing was first introduced by Weinberger et. al [29] for document-based
classification tasks such as email spam filtering. For such tasks, feature hashing yields a lower
dimensional embedding of a high-dimensional feature vector derived from a bag-of-words model.
Since then, feature hashing has become a mainstream approach [28], applied to numerous domains
including ranking text documents [4], compressing neural networks [7], and protein sequence
classification [5].

Random Projections

Dimensionality reduction schemes for feature vectors fit nicely into the random projection literature.
In fact, the feature hashing scheme proposed by Weinberger et al. [29] boils down to uniformly
drawing a random m× n matrix where each column contains one nonzero entry, equal to −1 or 1.

The `2-norm-preserving objective can be expressed mathematically as follows: for error ε > 0 and
failure probability δ, the goal is to construct a probability distribution A over m× n real matrices
∗I would like to thank Prof. Jelani Nelson for advising this project.
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that satisfies the following condition for vectors x ∈ Rn:

PA∈A[(1− ε) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε) ‖x‖2] > 1− δ. (1)

The result underlying the random projection literature is the Johnson-Lindenstrauss lemma, which
gives an upper bound on the dimension m achievable by a probability distribution A satisfying (1):

Lemma 1.1 (Johnson-Lindenstrauss [16]) For any n ∈ N and parameters 0 < ε, δ < 1, there
exists a probability distribution A over m× n matrices, with m = Θ(ε−2 ln(1/δ)), that satisfies (1).

The optimality of the dimension m achieved by Lemma 1.1 was recently proven [17, 15].

To speed up projection time, it is useful to consider probability distributions over sparse matrices
(i.e. matrices with a small number of nonzero entries per column). More specifically, for matrices
with s nonzero entries per column, the projection time for a vector x goes down from O(m ‖x‖0)
to O(s ‖x‖0), where ‖x‖0 is the number of nonzero entries of x. In this context, Kane and Nelson
[19] constructed sparse JL distributions (which we define formally in Section 1.1), improving upon
previous work [2, 22, 12]. Roughly speaking, a sparse JL distribution, as constructed in [19], boils
down to drawing a random m × n matrix where each column contains exactly s nonzero entries,
each equal to −1/

√
s or 1/

√
s. Kane and Nelson show that sparse JL distributions achieve the same

(optimal) dimension as Lemma 1.1, while also satisfying a sparsity property.

Theorem 1.2 (Sparse JL [19]) For n ∈ N and 0 < ε, δ < 1, any sparse JL distribution As,m,n
(defined formally in Section 1.1) over m × n matrices, with dimension m = Θ(ε−2 ln(1/δ)) and
sparsity s = Θ(ε−1 ln(1/δ)), satisfies (1).

Sparse JL distributions are state-of-the-art sparse random projections. Moreover, these distributions
are near-optimal: any distribution satisfying (1) requires a sparsity Ω(ε−1 ln(1/δ)/ ln(1/ε)) at
m = Θ(ε−2 ln(1/δ)) as shown by Nelson and Nguyen [25].2 In practice, though, it can be necessary
to utilize a lower sparsity s, since the projection time is linear in s. Resolving this issue, Cohen [8]
showed that sparse JL distributions can achieve a lower sparsity with an appropriate gain in dimension.
He generalized Theorem 1.2 to show the following dimension-sparsity tradeoffs for sparse JL:

Theorem 1.3 (Dimension-Sparsity Tradeoffs [8]) For any n ∈ N and 0 < ε, δ < 1, a uniform
sparse JL distribution As,m,n (defined formally in Section 1.1) satisfies (1) if s ≤ Θ(ε−1 ln(1/δ))

and m ≥ min
(

2ε−2/δ, ε−2 ln(1/δ)eΘ(ε−1 ln(1/δ)/s)
)

.

Connection to Feature Hashing

Sparse JL distributions have particularly close ties to feature hashing. In particular, the feature hashing
scheme proposed by Weinberger et al. [29] can be viewed as a special case of sparse JL, namely with
s = 1. Interestingly, in practice, feature hashing can do much better than theoretical results, such as
Theorem 1.2 and Theorem 1.3, would indicate [13]. An explanation for this phenomenon is that the
highest error terms in sparse JL stem from vectors with mass concentrated on a very small number of
entries, while in practice, the mass on feature vectors may be spread out between many coordinates.
This motivates studying the tradeoff space for vectors with low `∞-to-`2 ratio.

More formally, take Sv to be
{
x ∈ Rn | ‖x‖∞‖x‖2 ≤ v

}
, so that S1 = Rn and Sv ( Sw for 0 ≤ v <

w ≤ 1. Let v(m, ε, δ, s) be the sup over all 0 ≤ v ≤ 1 such that a sparse JL distribution with sparsity
s and dimension m satisfies (1) for each x ∈ Sv. For s = 1, a line of work [29, 12, 18, 10, 19]
subsequently improved upper and lower bounds on v(m, ε, δ, 1), and was recently closed by Freksen
et al. [13]. We state this bound now and further discuss it later in the context of our result.

Theorem 1.4 ([13]) The function v(m, ε, δ, 1) is equal to f(m, ε, ln(1/δ)) where:

f(m, ε, p) =


1 if m ≥ 2ε−2ep

Θ

(
√
εmin

(
ln(mεp )

p ,

√
ln(mε

2

p )
√
p

))
if Θ(ε−2p) ≤ m < 2ε−2ep

0 if m ≤ Θ(ε−2p).
2In [19], it was also shown the analysis of the sparse JL distributions in Theorem 1.2 is tight at m =

Θ(ε−2 ln(1/δ)).
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Generalizing to Sparse Random Projections with s > 1

Dimensionality reduction schemes constructed using sparse random projections with sparsity s > 1
have been used in practice for projecting feature vectors. For example, sparse JL-like methods (with
s > 1) have been used to project feature vectors in machine learning domains including visual
tracking [27], face recognition [23], and recently in ELM (a type of feedforward neural network) [6].
Now, a variant of sparse JL is even included in the Python sklearn library for machine learning.3

While Theorem 1.4 is restricted to the case of s = 1, it is thus natural to explore how constructions
with s > 1 perform on feature vectors, by studying v(m, ε, δ, s) for sparse JL with s > 1. A related
question was considered by Weinberger et al. [29] for “multiple hashing,” an alternate distribution
over sparse matrices constructed by adding s draws from A1,m,n and scaling by 1/

√
s. More

specifically, they show that v(m, ε, δ, s) ≥ min(1,
√
s · v(m, ε, δ, 1)) for multiple hashing. However,

Kane and Nelson [19] later showed that multiple hashing has worse geometry-preserving properties
than sparse JL: that is, multiple hashing requires a larger sparsity than sparse JL to satisfy (1).

Thus, finding the behavior of v(m, ε, δ, s) for sparse JL distributions, which are state-of-the-art,
remained an open problem. In this work, we settle the question of how v(m, ε, δ, s) behaves for
sparse JL with a general sparsity s > 1.

Main Results

We characterize v(m, ε, δ, s) for sparse JL with s > 1. Our theoretical result shows that sparse JL
with s > 1, even if s is a small constant, can achieve significantly better norm-preservation properties
for feature vectors than sparse JL with s = 1. Moreover, we empirically demonstrate this finding.

We show the following tight bounds on v(m, ε, δ, s) for a general sparsity s:

Theorem 1.5 LetAs,m,n be a uniform sparse JL distribution4 (defined in Section 1.1). For s ≤ m/e
and for small enough5 ε and δ, the function v(m, ε, δ, s) is equal to f ′(m, ε, ln(1/δ), s), where
f ′(m, ε, p, s) is6:

1 if m ≥ min

(
2ε−2ep, ε−2pe

Θ

(
max

(
1, pε

−1

s

)))

Θ

√εs
√

ln(mε
2

p
)

√
p

 else, if max

(
Θ(ε−2p), s · e

Θ

(
max

(
1, pε

−1

s

)))
≤ m ≤ ε−2eΘ(p)

Θ

√εsmin

 ln(mε
p

)

p
,

√
ln(mε

2

p
)

√
p

 else, if Θ(ε−2p) ≤ m ≤ min

(
ε−2eΘ(p), s · e

Θ

(
max

(
1, pε

−1

s

)))
0 if m ≤ Θ(ε−2p).

Our main result, Theorem 1.5, significantly generalizes Theorem 1.2, Theorem 1.3, and Theorem
1.4. Notice our bound in Theorem 1.5 has up to four regimes. In the first regime, which occurs when
m ≥ min(2ε−2/δ, ε−2 ln(1/δ)eΘ(max(1,ln(1/δ)ε−1/s))), Theorem 1.5 shows v(m, ε, δ, s) = 1, so (1)
holds on the full space Rn. Notice this boundary on m occurs at the dimensionality-sparsity tradeoff
in Theorem 1.3. In the last regime, which occurs whenm ≤ Θ(ε−2 ln(1/δ)), Theorem 1.5 shows that
v(m, ε, δ, s) = 0, so there are vectors with arbitrarily small `∞-to-`2 norm ratio where (1) does not
hold. When s ≤ Θ(ε−1 ln(1/δ)), Theorem 1.5 shows that up to two intermediate regimes exist. One

of the regimes, Θ(
√
εsmin(ln(mεp )/p,

√
ln(mε

2

p )/
√
p)), matches the middle regime of v(m, ε, δ, 1)

in Theorem 1.4 with an extra factor of
√
s, much like the bound for multiple hashing in [29] that we

mentioned earlier. However, unlike the multiple hashing bound, Theorem 1.5 sometimes has another

regime, Θ(
√
εs
√

ln(mε
2

p )/
√
p), which does not arise for s = 1 (i.e. in Theorem 1.4).7 Intuitively,

3See https://scikit-learn.org/stable/modules/random_projection.html.
4We prove the lower bound on v(m, ε, δ, s) in Theorem 1.5 for any sparse JL distribution.
5By “small enough”, we mean the condition that that ε and δ are below some constant C′.
6Notice that the function f ′(m, ε, p, s) is not defined for certain “constant-factor” intervals between the

boundaries of regimes (e.g. C1ε
−2p ≤ m ≤ C2ε

−2p). See Appendix A for a discussion.
7This regime does not arise for s = 1, since eΘ(pε−1) ≥ ε−2eΘ(p) for sufficiently small ε.
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we expect this additional regime for sparse JL with s close to Θ(ε−1 ln(1/δ)): at s = Θ(ε−1 ln(1/δ))
and m = Θ(ε−2 ln(1/δ)), Theorem 1.2 tells us v(m, ε, δ, s) = 1, but if ε is a constant, then the

branch Θ(
√
εs ln

(
mε
p

)
/p) yields Θ(1/

√
ln(1/δ)), while the branch Θ(

√
εs
√

ln(mε
2

p )/
√
p) yields

Θ(1). Thus, it is natural that the first branch disappears for large m.

Our result elucidates that v(m, ε, δ, s) increases approximately as
√
s, thus providing insight into

how even small constant increases in sparsity can be useful in practice. Another consequence of our
result is a lower bound on dimension-sparsity tradeoffs (Corollary A.1 in Appendix A) that essentially
matches the upper bound in Theorem 1.3. Moreover, we required new techniques to prove Theorem
1.5, for reasons that we discuss further in Section 1.2.

We also empirically support our theoretical findings in Theorem 1.5. First, we illustrate with real-
world datasets the potential benefits of using small constants s > 1 for sparse JL on feature vectors.
We specifically show that s = {4, 8, 16} consistently outperforms s = 1 in preserving the `2 norm of
each vector, and that there can be up to a factor of ten decrease in failure probability for s = 8, 16 in
comparison to s = 1. Second, we use synthetic data to illustrate phase transitions and other trends in
Theorem 1.5. More specifically, we empirically show that v(m, ε, δ, s) is not smooth, and that the
middle regime(s) of v(m, ε, δ, s) increases with s.

1.1 Preliminaries

Let As,m,n be a sparse JL distribution if the entries of a matrix A ∈ As,m,n are generated as
follows. Let Ar,i = ηr,iσr,i/

√
s where {σr,i}r∈[m],i∈[n] and {ηr,i}r∈[m],i∈[n] are defined as follows:

• The families {σr,i}r∈[m],i∈[n] and {ηr,i}r∈[m],i∈[n] are independent from each other.

• The variables {σr,i}r∈[m],i∈[n] are i.i.d Rademachers (±1 coin flips).

• The variables {ηr,i}r∈[m],i∈[n] are identically distributed Bernoullis ({0, 1} random vari-
ables) with expectation s/m.

• The {ηr,i}r∈[m],i∈[n] are independent across columns but not independent within each
column. For every column 1 ≤ i ≤ n, it holds that

∑m
r=1 ηr,i = s. Moreover, the random

variables are negatively correlated: for every subset S ⊆ [m] and every column 1 ≤ i ≤ n,
it holds that E

[∏
r∈S ηr,i

]
≤
∏
r∈S E[ηr,i].

A common special case is a uniform sparse JL distribution, generated as follows: for every
1 ≤ i ≤ n, we uniformly choose exactly s of these variables in {ηr,i}r∈[m] to be 1. When s = 1,
every sparse JL distribution is a uniform sparse JL distribution, but for s > 1, this is not the case.

Another common special case is a block sparse JL distribution. This produces a different construc-
tion for s > 1. In this distribution, each column 1 ≤ i ≤ n is partitioned into s blocks of

⌊
m
s

⌋
consecutive rows. In each block in each column, the distribution of the variables {ηr,i} is defined by
uniformly choosing exactly one of these variables to be 1.8

1.2 Proof Techniques

We use the following notation. For any random variable X and value q ≥ 1, we call E[|X|q] the qth
moment of X , where E denotes the expectation. We use ‖X‖q to denote the q-norm (E[|X|q])1/q .

For every [x1, . . . , xn] ∈ Rn such that ‖x‖2 = 1, we need to analyze tail bounds of an error term,
which for the sparse JL construction is the following random variable:

‖Ax‖22 − 1 =
1

s

∑
i 6=j

m∑
r=1

ηr,iηr,jσr,iσr,jxixj =: R(x1, . . . , xn).

An upper bound on the tail probability of R(x1, . . . , xn) is needed to prove the lower bound on
v(m, ε, δ, s) in Theorem 1.5, and a lower bound is needed to prove the upper bound on v(m, ε, δ, s)

8Our lower bound in Theorem 1.5 applies to this distribution, though our upper bound does not. An interesting
direction for future work would be to generalize the upper bound to this distribution.
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in Theorem 1.5. It turns out that it suffices to tightly analyze the random variable moments
E[(R(x1, . . . , xn))q]. For the upper bound, we use Markov’s inequality like in [13, 19, 3, 24],
and for the lower bound, we use the Paley-Zygmund inequality like in [13]: Markov’s inequality
gives a tail upper bound from upper bounds on moments, and the Paley-Zygmund inequality gives a
tail lower bound from upper and lower bounds on moments. Thus, the key ingredient of our analysis
is a tight bound for ‖R(x1, . . . , xn)‖q on Sv =

{
x ∈ Rn | ‖x‖∞‖x‖2 ≤ v

}
at each threshold v value.

While the moments of R(x1, . . . , xn) have been studied in previous analyses of sparse JL, we
emphasize that it is not clear how to adapt these existing approaches to obtain a tight bound on every
Sv. The moment bound that we require and obtain is far more general: the bounds in [19, 9] are
limited to Rn = S1 and the bound in [13] is limited to s = 1.9 The non-combinatorial approach in
[9] for bounding ‖R(x1, . . . , xn)‖q on Rn = S1 also turns out to not be sufficiently precise on Sv,
for reasons we discuss in Section 2.10

Thus, we require new tools for our moment bound. Our analysis provides a new perspective, inspired
by the probability theory literature, that differs from the existing approaches in the JL literature. We
believe our style of analysis is less brittle than combinatorial approaches [13, 19, 3, 24]: in this setting,
once the sparsity s = 1 case is recovered, it becomes straightforward to generalize to other s values.
Moreover, our approach can yield greater precision than the existing non-combinatorial approaches
[9, 8, 14], which is necessary for this setting. Thus, we believe that our structural approach to
analyzing JL distributions could be of use in other settings.

In Section 2, we present an overview of our methods and the key technical lemmas to analyze
‖R(x1, . . . , xn)‖q. We defer the proofs to the Appendix. In Section 3, we prove the tail bounds in
Theorem 1.5 from these moment bounds. In Section 4, we empirically evaluate sparse JL.

2 Sketch of Bounding the Moments of R(x1, . . . , xn)

Our approach takes advantage of the structure of R(x1, . . . , xn) as a quadratic form of Rademachers
(i.e.

∑
t1,t2

at1,t2σt1σt2) with random variable coefficients (i.e. where at1,t2 is itself a random
variable). For the upper bound, we need to analyze ‖R(x1, . . . , xn)‖q for general vectors [x1, . . . , xn].
For the lower bound, we only need to show ‖R(x1, . . . , xn)‖q is large for single vector in each Sv,
and we show we can select the vector in the `2-unit ball with 1/v2 nonzero entries, all equal to v. For
ease of notation, we denote this vector by [v, . . . , v, 0, . . . , 0] for the remainder of the paper.

We analyze ‖R(x1, . . . , xn)‖q using general moment bounds for Rademacher linear and quadratic
forms. Though Cohen, Jayram, and Nelson [9] also view R(x1, . . . , xn) as a quadratic form, we
show in the supplementary material that their approach of bounding the Rademachers by gaussians is
not sufficiently precise for our setting.11

In our approach, we make use of stronger moment bounds for Rademacher linear and quadratic
forms, some of which are known to the probability theory community through Latała’s work in
[21, 20] and some of which are new adaptions tailored to the constraints arising in our setting. More
specifically, the Latała’s bounds [21, 20] target the setting where the coefficients are scalars. In our
setting, however, the coefficients are themselves random variables, and we need bounds that are
tractable to analyze in this setting, which involves creating new bounds to handle some cases.

Our strategy for bounding ‖R(x1, . . . , xn)‖q is to break down into rows. We define

Zr(x1, . . . , xn) :=
∑

1≤i6=j≤n

ηr,iηr,jσr,iσr,jxixj

9As described in [13], even for the case for s = 1, the approach in [19] cannot be directly generalized to
recover Theorem 1.4. Moreover, the approach in [13], though more precise for s = 1, is highly tailored to s = 1,
and it is not clear how to generalize it to s > 1.

10In predecessor work [14], we give a non-combinatorial approach similar to [9] for a sign-consistent variant
of the JL distribution. Moreover, a different non-combinatorial approach for subspace embeddings is given in
[8]. However, these approaches both suffer from issues in this setting that are similar to [9].

11We actually made a similar conceptual point for a different JL distribution in our predecessor work [14], but
the alternate bound that we produce there also suffers from precision issues in this setting.
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so that R(x1, . . . , xn) = 1
s

∑m
r=1 Zr(x1, . . . , xn). We analyze the moments of Zr(x1, . . . , xn), and

then combine these bounds to obtain moment bounds for R(x1, . . . , xn). In our bounds, we use the
notation f . g (resp. f & g) to denote f ≤ Cg (resp. f ≥ Cg) for some constant C.

2.1 Bounding ‖Zr(x1, . . . , xn)‖q

We show the following bounds on ‖Zr(x1, . . . , xn)‖q. For the lower bound, as we discussed
before, it suffices to bound ‖Zr(v, . . . , v, 0, . . . , 0)‖q. For the upper bound, we need to bound
‖Zr(x1, . . . , xn)‖q for general vectors as a function of the `∞-to-`2 norm ratio.

Lemma 2.1 Let As,m,n be a sparse JL distribution such that s ≤ m/e. Suppose that x =
[x1, . . . , xn] satisfies ‖x‖∞ ≤ v and ‖x‖2 = 1. If T is even, then:

‖Zr(x1, . . . , xn)‖T .


Ts
m , for T = 2, 3 ≤ T ≤ se

mv2

min
(

T 2v2

ln(mTv2/s)2 ,
T

ln(m/s)

)
for T ≥ 3, T ≥ se

mv2 , ln(Tmv2/s) ≤ T

v2
(

s
mTv2

)2/T
, for T ≥ 3, T ≥ se

mv2 , ln(Tmv2/s) > T.

Lemma 2.2 Let As,m,n be a sparse JL distribution. Suppose 1
v2 and T are even inte-

gers. Then, ‖Zr(v, . . . , v, 0, . . . , 0)‖2 & s
m . Moreover, if s ≤ m/e and T ≥ se

mv2 , then∥∥∥Zr(v, . . . , v, 0, . . . , 0)I∑1/v2

i=1 η1,i=2

∥∥∥
T
& v2

(
s

mTv2

)2/T
and

‖Zr(v, . . . , v, 0, . . . , 0)‖T &

 T 2v2

ln2(mv2T/s)
for 1 ≤ ln(mv2T/s) ≤ T, v ≤

√
ln(m/s)√
T

v2
(

s
mTv2

)2/T
for ln(mv2T/s) > T.

We now sketch our methods to prove Lemma 2.1 and Lemma 2.2. For the lower bound
(Lemma 2.2), we can view Zr(v, . . . , v, 0, . . . , 0) as a quadratic form

∑
t1,t2

at1,t2σt1σt2 where
(at1,t2)t1,t2∈[mn] is an appropriately defined block-diagonal mn dimensional matrix. We can
write Eσ,η[(Zr(v, . . . , v, 0, . . . , 0))q] as Eη [Eσ[(Zr(v, . . . , v, 0, . . . , 0))q]]: for fixed ηr,i values, the
coefficients are scalars. We make use of Latała’s tight bound on Rademacher quadratic forms
with scalar coefficients [21] to analyze Eσ[(Zr(v, . . . , v, 0, . . . , 0))q] as a function of the ηr,i.
Then, we handle the randomness of the ηr,i by taking an expectation of the resulting bound on
Eσ[(Zr(v, . . . , v, 0, . . . , 0))q] over the ηr,i values to obtain a bound on ‖Zr(v, . . . , v, 0, . . . , 0)‖q .

For the upper bound (Lemma 2.1), since Latała’s bound [21] is tight for scalar quadratic forms,
the natural approach would be to use it to upper bound Eσ[(Zr(x1, . . . , xn))q] for general vectors.
However, when the vector is not of the form [v, . . . , v, 0, . . . , 0], the asymmetry makes the resulting
bound intractable to simplify. Specifically, there is a term, which can be viewed as a generalization of
an operator norm to an `2 ball cut out by `∞ hyperplanes, that becomes problematic when taking an
expectation over the ηr,i to obtain a bound on Eσ,η[(Zr(x1, . . . , xn))q]. Thus, we construct simpler
estimates that avoid these complications while remaining sufficiently precise for our setting. These
estimates take advantage of the structure of Zr(x1, . . . , xn) and enable us to show Lemma 2.1.

2.2 Obtaining bounds on ‖R(x1, . . . , xn)‖q

Now, we use Lemma 2.1 and Lemma 2.2 to show the following bounds on ‖R(x1, . . . , xn)‖q:

Lemma 2.3 SupposeAs,m,n is a sparse JL distribution such that s ≤ m/e, and let x = [x1, . . . , xn]

be such that ‖x‖2 = 1. Then, ‖R(x1, . . . , xn)‖2 ≤
√

2√
m

. Now, suppose that 2 < q ≤ m is an even

integer and ‖x‖∞ ≤ v. If se
mv2 ≥ q, then ‖R(x1, . . . , xn)‖q .

√
q√
m

. If se
mv2 < q and if there exists a

constant C2 ≥ 1 such that C2q
3mv4 ≥ s2, then ‖R(x1, . . . , xn)‖q . g where g is:

max

(
√
q√
m
,

C
1/3
2 q2v2

s ln2(qmv2/s)

)
if ln( qmv

4

s2
) ≤ 2, ln( qmv

2

s
) ≤ q

√
q√
m

if ln( qmv
4

s2
) ≤ 2, ln( qmv

2

s
) > q

max

(
√
q√
m
, qv2

s ln(qmv4/s2)
,min

(
C

1/3
2 q2v2

s ln2(qmv2/s)
, q
s ln(m/s)

))
if ln( qmv

4

s2
) > 2, ln( qmv

2

s
) ≤ q

max
( √

q√
m
, qv2

s ln(qmv4/s2)

)
if ln( qmv

4

s2
) > 2, ln( qmv

2

s
) > q.
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Lemma 2.4 Suppose As,m,n is a uniform sparse JL distribution. Let q be a power of 2, and sup-
pose that 0 < v ≤ 0.5 and 1

v2 is an even integer. If qv2 ≤ s, then ‖R(v, . . . , v, 0, . . . , 0)‖q &
√
q√
m

. If m ≥ q, 2 ≤ ln(qmv4/s2) ≤ q, 2qv2 ≤ 0.5s ln(qmv4/s2), and s ≤ m/e, then

‖R(v, . . . , v, 0, . . . , 0)‖q & qv2

s ln(qmv4/s2) . If s ≤ m/e, v ≤
√

ln(m/s)
√
q , and 1 ≤ ln(qmv2/s) ≤ q,

then ‖R(v, . . . , v, 0 . . . , 0)‖q &
q2v2

s ln2(qmv2/s)
.

We now sketch how to prove bounds on ‖R(x1, . . . , xn)‖q using bounds on ‖Zr(x1, . . . , xn)‖T .
To show Lemma 2.3, we show that making the row terms Zr(x1, . . . , xn) independent does not
decrease ‖R(x1, . . . , xn)‖q, and then we apply a general result from [20] for moments of sums
of i.i.d symmetric random variables. For Lemma 2.4, handling the correlations between the row
terms Zr(x1, . . . , xn) requires more care. We show that the negative correlations induced by hav-
ing exactly s nonzero entries per column do not lead to significant loss, and then stitch together
‖R(v, . . . , v, 0, . . . , 0)‖q using the moments of Zr(v, . . . , v, 0, . . . , 0) that contribute the most.

3 Proof of Main Result from Moment Bounds

We now sketch how to prove Theorem 1.5, using Lemma 2.3 and Lemma 2.4. First, we simplify
these bounds at the target parameters to obtain the following:

Lemma 3.1 Let As,m,n be a sparse JL distribution, and suppose ε and δ are small enough, s ≤ m/e,
Θ(ε−2 ln(1/δ)) ≤ m < 2ε−2/δ, v ≤ f ′(m, ε, ln(1/δ), s), and p = Θ(ln(1/δ)) is even. If x =
[x1, . . . , xn] satisfies ‖x‖∞ ≤ v and ‖x‖2 = 1, then ‖R(x1, . . . , xn)‖p ≤

ε
2 .

Lemma 3.2 There is a universal constant D satisfying the following property. Let As,m,n be a
uniform sparse JL distribution, and suppose ε, δ are small enough, s ≤ m/e, f ′(m, ε, ln(1/δ), s) ≤
0.5, and q is an even integer such that q = min(m/2,Θ(ln(1/δ)). For each ψ > 0, there exists

v ≤ f ′(m, ε, ln(1/δ), s) + ψ, such that ‖R(v, . . . , v, 0, . . . , 0)‖q ≥ 2ε and
‖R(v,...,v,0,...,0)‖q
‖R(v,...,v,0,...,0)‖2q

≥ D.

Now, we use Lemma 3.1 and Lemma 3.2 to prove Theorem 1.5.

Proof of Theorem 1.5. Since the maps in As,m,n are linear, it suffices to consider unit vectors x.
First, we prove the lower bound on v(m, ε, δ, s). To handle m ≥ 2ε−2/δ, we take q = 2 in Lemma
3.1 and apply Chebyshev’s inequality. Otherwise, we take p = ln(1/δ) (approximately) and apply
Lemma 3.1 and Markov’s inequality. We see that P[| ‖Ax‖22 − 1| ≥ ε] can be expressed as:

P[|R(x1, . . . , xn)| ≥ ε] = P[R(x1, . . . , xn)p ≥ εp] ≤ ε−pE[R(x1, . . . , xn)]p ≤ δ.
Thus, condition (1) is satisfied for x ∈ Sv when v ≤ f ′(m, ε, ln(1/δ), s) as desired.

Now, we prove the upper bound on v(m, ε, δ, s). We need to lower bound the tail probability of
R(v, . . . , v, 0, . . . , 0), and to do this, we use the Paley-Zygmund inequality applied to qth moments.
Let D be defined as in Lemma 3.2, and take q = min(m/2, ln(1/δ)−2

−2 ln(D) ). By the Paley-Zygmund
inequality and Lemma 3.2, there exists v ≤ f ′(m, ε, ln(1/δ), s) + ψ such that:

P[|R(v, . . . , v, 0, . . . , 0)| > ε] ≥ 0.25

(
‖R(v, v, . . . , v, 0, . . . , 0)‖q
‖R(v, v, . . . , v, 0, . . . , 0)‖2q

)2q

≥ 0.25D2q > δ.

Thus, it follows that supx∈Sf′(m,ε,ln(1/δ),s)+ψ,‖x‖2=1 P[| ‖Ax‖22 − 1| > ε] > δ as desired.

4 Empirical Evaluation

Recall that for sparse JL distributions with sparsity s, the projection time for an input vector x is
O(s ‖x‖0), where ‖x‖0 is the number of nonzero entries in x. Since this grows linearly in s, in order
to minimize the impact on projection time, we restrict to small constant s values (i.e. 1 ≤ s ≤ 16).
In Section 4.1, we demonstrate on real-world data the benefits of using s > 1. In Section 4.2,
we illustrate trends in our theoretical bounds on synthetic data. Additional graphs can be found
in Appendix I. For all experiments, we use a block sparse JL distribution to demonstrate that our
theoretical upper bounds also empirically generalize to non-uniform sparse JL distributions.
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4.1 Real-World Datasets

We considered two bag-of-words datasets: the News20 dataset [1] (based on newsgroup documents),
and the Enron email dataset [26] (based on e-mails from the senior management of Enron).12 Both
datasets were pre-processed with the standard tf-idf preprocessing. In this experiment, we evaluated
how well sparse JL preserves the `2 norms of the vectors in the dataset. An interesting direction
for future work would be to empirically evaluate how well sparse JL preserves other aspects of the
geometry of real-world data sets, such as the `2 distances between pairs of vectors.

In our experiment, we estimated the failure probability δ̂(s,m, ε) for each dataset as follows. Let D
be the number of vectors in the dataset, and let n be the dimension (n = 101631, D = 11314 for
News20; n = 28102, D = 39861 for Enron). We drew a matrix M ∼ As,m,n from a block sparse
JL distribution. Then, we computed ‖Mx‖2

‖x‖2
for each vector x in the dataset, and used these values

to compute an estimate δ̂(s,m, ε) =
number of vectors x such that ‖Mx‖2‖x‖2

6∈1±ε
D . We ran 100 trials to produce

100 estimates δ̂(s,m, ε).

Figure 1: News20: δ̂(m, s, 0.07) v. s Figure 2: Enron: δ̂(m, s, 0.07) vs. s

Figure 1 and Figure 2 show the mean and error bars (3 standard errors of the mean) of δ̂(s,m, ε) at
ε = 0.07. We consider s ∈ {1, 2, 4, 8, 16}, and choose m values so that 0.01 ≤ δ̂(1,m, ε) ≤ 0.04.

All of the plots show that s ∈ {2, 4, 8, 16} achieves a lower failure probability than s = 1, with
the differences most pronounced when m is larger. In fact, at m = 1000, there is a factor of four
decrease in δ between s = 1 and s = 4, and a factor of ten decrease between s = 1 and s = 8, 16.
We note that in plots in the Appendix, there is a slight increase between s = 8 and s = 16 at some
ε, δ,m values (see Appendix I for a discussion of this non-monotonicity in s); however s > 1 still
consistently beats s = 1. Thus, these findings demonstrate the potential benefits of using small
constants s > 1 in sparse JL in practice, which aligns with our theoretical results.

4.2 Synthetic Datasets

We used synthetic data to illustrate the phase transitions in our bounds on v(m, ε, δ, s) in Theorem
1.5 for a block sparse JL distribution. For several choices of s,m, ε, δ, we computed an estimate
v̂(m, ε, δ, s) of v(m, ε, δ, s) as follows. Our experiment borrowed aspects of the experimental design
in [13]. Our synthetic data consisted of binary vectors (i.e. vectors whose entries are in {0, 1}). The
binary vectors were defined by a set W of values exponentially spread between 0.03 and 113: for each
w ∈W , we constructed a binary vector xw where the first 1/w2 entries are nonzero, and computed
an estimate δ̂(s,m, ε, w) of the failure probability of the block sparse JL distribution on the specific
vector xw (i.e. PA∈As,m,1/w2 [‖Axw‖2 6∈ (1 ± ε) ‖xw‖2]). We computed each δ̂(s,m, ε, w) using
100,000 samples from a block sparse JL distribution, as follows. In each sample, we independently

12Note that the News20 dataset is used in [10], and the Enron dataset is from the same collection as the dataset
used in [13], but contains a larger number of documents.

13We took W =
{
w | w−2 ∈ {986, 657, 438, 292, 195, 130, 87, 58, 39, 26, 18, 12, 9, 8, 7, 6, 5, 4, 3, 2, 1}

}
.
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drew a matrix M ∼ As,m,1/w2 and computed the ratio ‖Mxw‖2
‖xw‖2

. Then, we took δ̂(s,m, ε, w) :=

(number of samples where ‖Mxw‖2
‖xw‖2

6∈ 1 ± ε)/T . Finally, we used the estimates δ̂(s,m, ε, w) to

obtain the estimate v̂(m, ε, δ, s) = max
{
v ∈W | δ̂(s,m, ε, w) < δ for all w ∈W where w ≤ v

}
.

Why does this procedure estimate v(m, ε, δ, s)? With enough samples, δ̂(s,m, ε, w) →
PA∈As,m,1/w2 [‖Axw‖2 6∈ (1 ± ε) ‖xw‖2].14 As a result, if xw is a “violating” vector, i.e.

δ̂(s,m, ε, w) ≥ δ, then likely PA∈As,m,n [‖Axw‖2 6∈ (1 ± ε) ‖xw‖2] ≥ δ, and so v̂(m, ε, δ, s) ≥
v(m, ε, δ, s). For the other direction, we use that in the proof of Theorem 1.5, we show that asymp-
totically, if a “violating” vector (i.e. x s.t. PA∈As,m,n [‖Ax‖2 6∈ (1 ± ε) ‖x‖2] ≥ δ) exists in
Sv, then there’s a “violating” vector of the form xw for some w ≤ Θ(v). Thus, the estimate
v̂(m, ε, δ, s) = Θ(v(m, ε, δ, s)) as T →∞ and as precision in W goes to∞.

Figure 3: Phase transitions of v̂(m, 0.1, 0.01, s) Figure 4: Phase transitions of v̂(m, 0.05, 0.05, s)

Figure 3 and Figure 4 show v̂(m, ε, δ, s) as a function of dimension m for s ∈ {1, 2, 3, 4, 8} for two
settings of ε and δ. The error-bars are based on the distance to the next highest v value in W .

Our first observation is that for each set of s, ε, δ values considered, the curve v̂(m, ε, δ, s) has “sharp”
changes as a function of m. More specifically, v̂(m, ε, δ, s) is 0 at small m, then there is a phase
transition to a nonzero value, then an increase to a higher value, then an interval where the value
appears “flat”, and lastly a second phase transition to 1. The first phase transition is shared between s
values, but the second phase transition occurs at different dimensions m (but is within a factor of
3 between s values). Here, the first phase transition likely corresponds to Θ(ε−1 ln(1/δ)) and the
second phase transition likely corresponds to min

(
ε−2eΘ(ln(1/δ)), ε−2 ln(1/δ)eΘ(ln(1/δ)ε−1/s)

)
.

Our second observation is that as s increases, the “flat” part occurs at a higher y-coordinate. Here,
the increase in the “flat” y-coordinate as a function of s corresponds to the

√
s term in v(m, ε, δ, s).

Technically, according to Theorem 1.5, the “flat” parts should be increasing in m at a slow rate: the
empirical “flatness” likely arises since W is a finite set in the experiments.

Our third observation is that in the “useful” regimes of smaller m, we observe that s > 1 consistently
outperforms s = 1 as Theorem 1.5 suggests: that is, s > 1 attains a higher v̂(m, ε, δ, s) value than
s = 1. We note that at large m values (where v̂(m, ε, δ, s) is close to 1), lower s settings sometimes
attain a higher v̂(m, ε, δ, s) than higher s settings (e.g. the second phase transition doesn’t occur
in increasing order of s in Figure 4): see Appendix I for a discussion of this non-monotonicity in
s. Nonetheless, in practice, it’s unlikely to select such a large dimension m, since the `∞-to-`2
guarantees of smaller m are likely sufficient. Hence, a greater sparsity generally leads to a better
v(m, ε, δ, s) value, thus aligning with our theoretical findings.
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