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ABSTRACT

In high-dimensional reinforcement learning settings with sparse rewards, perform-
ing effective exploration to even obtain any reward signal is an open challenge.
While model-based approaches hold promise of better exploration via planning, it
is extremely difficult to learn a reliable enough Markov Decision Process (MDP)
in high dimensions (e.g., over 10100 states). In this paper, we propose learning
an abstract MDP over a much smaller number of states (e.g., 105), which we can
plan over for effective exploration. We assume we have an abstraction function
that maps concrete states (e.g., raw pixels) to abstract states (e.g., agent posi-
tion, ignoring other objects). In our approach, a manager maintains an abstract
MDP over a subset of the abstract states, which grows monotonically through tar-
geted exploration (possible due to the abstract MDP). Concurrently, we learn a
worker policy to travel between abstract states; the worker deals with the messi-
ness of concrete states and presents a clean abstraction to the manager. On three of
the hardest games from the Arcade Learning Environment (MONTEZUMA’S RE-
VENGE, PITFALL!, and PRIVATE EYE), our approach outperforms the previous
state-of-the-art by over a factor of 2 in each game. In PITFALL!, our approach is
the first to achieve superhuman performance without demonstrations.1

1 INTRODUCTION

Exploration is a key bottleneck in high-dimensional, sparse-reward reinforcement learning tasks.
Random exploration (e.g., via epsilon-greedy) suffices when rewards are abundant (Mnih et al.,
2015), but when rewards are sparse, it can be difficult for an agent starting out to even find any
positive reward needed to bootstrap learning. For example, the infamously difficult game MON-
TEZUMA’S REVENGE from the Arcade Learning Environment (ALE) (Bellemare et al., 2013) con-
tains over 10100 states and requires the agent to go thousands of timesteps without receiving reward.
Performing effective exploration in this setting is thus an open problem; without demonstrations,
even state-of-the-art intrinsically-motivated RL agents (Bellemare et al., 2016; Ostrovski et al., 2017;
Tang et al., 2017) achieve only about one-tenth the score of an expert human (Hester et al., 2018).

In this paper, we investigate model-based reinforcement learning (Kearns & Singh, 2002) as a po-
tential solution to the exploration problem. The hope is that with a model of the state transitions and
rewards, one can perform planning under the model to obtain a more informed exploration strategy.
However, as the model being learned is imperfect, errors in the model compound (Talvitie, 2014;
2015) when planning over many time steps. Furthermore, even if a perfect model were known,
in high-dimensional state spaces (e.g. over 10100 states), planning—computing the optimal policy
(e.g. via value iteration)—is intractable. As a result, model-based RL has had limited success in
high-dimensional settings (Talvitie, 2014). To address this, some prior work has focused on learning
more accurate models by using more expressive function approximators (Nagabandi et al., 2018),
and learning local models (Levine & Koltun, 2013; Zhang et al., 2018). Others have attempted to ro-
bustly use imperfect models by conditioning on, instead of directly following, model-based rollouts
(Weber et al., 2017), frequently replanning, and combining model-based with model-free approaches
(Abbeel et al., 2006; Sutton, 1990). However, none of these techniques offer a fundamental solution.

Instead of directly learning a model over the concrete state space, we propose an approach inspired
by hierarchical reinforcement learning (HRL) (Sutton et al., 1999; Vezhnevets et al., 2017; Oh et al.,

1 Videos of our trained agent: https://sites.google.com/view/abstract-models/home
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Figure 1: (a) Illustration of the abstract MDP on MONTEZUMA’S REVENGE. We have superimposed
a white grid on top of the original game. At any given time, the agent is in one of the grid cells –
each grid cell is an abstract state. In this example, the agent starts at the top of a ladder (yellow
dot). The worker then navigates transitions between abstract states (green arrows) to follow a plan
made by the manager (red dots). (b) Circles represent abstract states. Shaded circles represent states
within the known set. The manager navigates the agent to the fringe of the known set (s3), then
randomly explores with πd to discover new transitions near s3 (dotted box). (c) The worker extends
the abstract MDP by learning to navigate to the newly discovered abstract states (dotted arrows).

2017), and learn a model over a much smaller abstract state space. Specifically, we assume we have
a state abstraction function (Li et al., 2006; Singh et al., 1995; Dietterich, 1998), which maps a high-
dimensional concrete state (e.g. all pixels on the screen) to a low-dimensional abstract state (e.g. the
position of the agent). We then aim to learn an (abstract) Markov Decision Process (MDP) over this
abstract state space as follows: A manager maintains an (abstract) MDP over a subset of all possible
abstract states which we call the known set, which is grown over time. The crucial property we
enforce is that this abstract MDP is highly accurate and near deterministic on the known set, so we
can perform planning without suffering from compounding errors, and do it efficiently since we are
working with a much smaller number of abstract states. Concurrently, we learn a worker policy that
the manager uses to transition between abstract states. The worker policy has access to the concrete
states; its goal is to hide the messy details of the real world from the manager (e.g., jumping over
monsters) so that the manager has a much simpler planning problem (e.g., traversing between two
locations). In our implementation, the worker keeps an inventory of skills (i.e., options (Sutton et al.,
1999)), each of which is driven by a deep neural network; the worker assigns an appropriate skill for
each transition between abstract states. In this way, the worker does not “forget” (Kirkpatrick et al.,
2017), and we ensure monotonic progress in learning the abstract MDP. This abstract MDP, which
enables us to efficiently explore via planning, is a key difference between our work and previous
HRL work (e.g., (Bacon et al., 2017; Vezhnevets et al., 2017)), which also learn skills and operate
on latent abstract state spaces but without forming an MDP.

We evaluate our approach on three of the most challenging games from the ALE (Bellemare et al.,
2013): MONTEZUMA’S REVENGE, PITFALL!, and PRIVATE EYE. In all three domains, our ap-
proach achieves more than 2x the reward of prior non-demonstration state-of-the-art approaches. In
PITFALL!, we are the first to achieve superhuman performance without demonstrations, surpassing
the prior state-of-the-art by over 100x. Additionally, since our approach is model-based, we can
generalize to new rewards without re-training, as long as the reward function is a function of the
abstract states. When evaluated on a new reward function never seen during training, our approach
achieves over 3x the reward of prior state-of-the-art methods explicitly trained on the new rewards.

2 APPROACH OVERVIEW

We assume the world is an unknown episodic finite-horizon MDP with (concrete) states x ∈ X and
actions a ∈ A. We further assume we have a simple predefined state abstraction function mapping
concrete states x to abstract states s = φ(x). In MONTEZUMA’S REVENGE, for instance, a concrete
state contains the pixels on the screen, while the corresponding abstract state contains the agent’s
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position and inventory (Figure 1). We assume that reward only depends on the abstract states: taking
any action transitioning from concrete state x to x′ leads to reward R(φ(x), φ(x′)).

Model-based approaches promise better exploration via planning, but struggle in high-dimensional
state spaces due to compounding errors and computational intractability. To avoid these problems,
we propose to construct and operate on a low-dimensional representation of the world consisting
of abstract states, which we call the abstract MDP (we refer to the original MDP, the world, as the
concrete MDP). Then we plan in the abstract MDP. Concretely, the abstract MDP consists of:

• The state space is a subset of all abstract states, which we call the known set S, consisting
of abstract states that can be reliably reached from the initial abstract state via actions in the
action set. Over time, we monotonically grow the known set, which initially only contains
the starting abstract state.

• The action set comprises of calling the worker policy πw(a|x, (s, s′)) on transitions (s, s′)
from the current abstract state s to a nearby abstract state s′. When called on a transition
(s, s′), the worker navigates from s to s′ by taking concrete actions a conditioned on the
current concrete state x. The worker abstracts away the messiness of the underlying con-
crete MDP so that all other parts of the system can operate on the abstract MDP by calling
the worker. We denote calling the worker on transition (s, s′) as the action go(s, s′).

• The transition dynamics of calling action go(s, s′) at abstract state s are defined by the
original MDP: i.e., if the worker takes a concrete trajectory x0, a0, x1, a1, · · · , xT , the
resulting abstract state is φ(xT ). The rewards for transitioning from s to s′ are the rewards
in the concrete MDP R(s, s′), which only depend on the abstract states by assumption.

The core idea behind our approach is to construct the abstract MDP (Section 3) by growing the action
set (training the worker), which in turn grows the known set. At each point in time, the manager
maintains the known set and (accurate, to avoid compounding errors) estimates of the reward and
transition dynamics of the abstract MDP. With these dynamics estimates, the manager can solve the
abstract MDP at all times (e.g., by value iteration), since the abstract MDP is small. As the abstract
MDP grows, it captures more and more of the concrete MDP, enabling the manager to recover a
better and better policy via planning. Ultimately, the known set of the abstract MDP contains all
abstract states, enabling the manager to recover a high-reward policy.

As the manager constructs the abstract MDP, the abstract MDP maintains two key properties:

• The action set of the abstract MDP consists of only reliable actions, actions go(s, s′) that
transition from abstract state s to abstract state s′ with probability at least 1 − δ for some
small δ to avoid compounding uncertainty. This enables the manager to reach any abstract
state in the known set with high probability. To simplify notation, the manager estimates
the success rate P (s, s′) of action go(s, s′) instead of the full dynamics P (•|go(s, s′), s),
treating the (vanishingly small) fraction of failures equally.

• The action set and known set of the abstract MDP grow monotonically. Since the action
set only contains reliable transitions, a key danger is if learning new reliable transitions
(adding new actions) causes the worker to forget already learned transitions (removing
actions), stalling progress. We opt for a non-parametric approach, where the worker learns
a skill (neural subpolicy) for each transition, reusing skills when possible. When a worker
learns to reliably traverse a transition, it freezes the corresponding skill’s parameters.

3 CONSTRUCTING THE ABSTRACT MDP

The manager’s goal is to fully construct the abstract MDP so that the known set contains all ab-
stract states. Then, it can compute a high-reward policy on the concrete MDP via planning on the
abstract MDP. To construct the abstract MDP, the manager adds new actions to the abstract MDP:
training the worker to reliably traverse new transitions (driving the transition success rates toward
1). Concretely, the manager discovers new transitions, trains the worker on these transitions, and
updates its dynamics estimates using Algorithm 1. On each episode, the manager either chooses to
discover new transitions via randomized exploration (Section 3.1) or trains the worker. This is done
by constructing a prioritized list of exploration goals, where each goal is either a transition to learn
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Algorithm 1 MANAGER

1: while abstract MDP not fully constructed do
2: Compute a set of candidate exploration goals C
3: (c ∈ C is either a transition (s, s′) or an abstract state s)
4: Score all candidates and select highest priority candidate c
5: Compute a plan (s0, s1), (s1, s2), · · · , (sT−1, sT = s) with model
6: for t = 1 to T do
7: Call worker to navigate transition (st−1, st)
8: if c is a transition (s, s′) to learn then
9: LEARNWORKER(s, s′)

10: else c is an abstract state s to explore
11: DISCOVERTRANSITIONS()

or an abstract state to find nearby transitions (Section 3.2). Upon selecting the highest-priority goal
(e.g., the transition (s, s′)), the manager navigates to the relevant abstract state (e.g., s) by planning
with its dynamics models (e.g., the plan go(s0, s1), go(s1, s2), · · · , go(sT−1, sT = s)), executing
the plan, and then calling the worker on or randomly exploring from the selected goal. Finally, the
manager updates its dynamics models. It uses a sliding window estimate of the past Ntransition
worker attempts of traversing transition (s, s′) for the transition dynamics, and updates its reward
estimate of a transition (s, s′) as the reward accumulated by the first successful traversal of (s, s′).
When a transition (s, s′) becomes reliable (i.e., the dynamics T (s, s′) exceeds the threshold 1− δ),
the manager adds go(s, s′) to the action set of the abstract MDP and adds s′ to the known set.

3.1 DISCOVERING NEW TRANSITIONS

For the manager to train the worker on new transitions, it must first discover new transitions. To
discover new transitions, the manager navigates to an exploration candidate: an abstract state s.
Then, it performs randomized exploration to discover new transitions (s, s′) to nearby abstract states
s′. As exploration candidates, the manager simply chooses the abstract states in the known set that
have been explored fewer than Nvisit times: i.e., n(s) < Nvisit, where n(s) is the number of times
the manager has explored abstract state s for nearby transitions. Effectively, the manager assumes
that when n(s) ≥ Nvisit, all nearby transitions (s, s′) have been already discovered.

Concretely, at an abstract state s, the manager finds nearby transitions by following a simple policy
πd(at|x0:t, a0:t−1) for Td timesteps (Algorithm 3). The policy πd outputs randomized concrete ac-
tions at conditioned on the past concrete states x0:t and past concrete actions a0:t−1, where φ(x0) is
the abstract state s it was initially invoked. During those Td timesteps, the manager records the tran-
sitions and rewards it observes: (φ(x0), r0, φ(x1)), · · · (φ(xT−1), rT−1, φ(xT )), using the rewards
to update its rewards model and the transitions as candidates for the worker to learn. Additionally,
if it ends in another exploration candidate (i.e., n(s) < Nvisit) after exploring for Td timesteps, it
simply continues exploring for another Td timesteps.

The simplest possible policy for the πd is to uniformly sample a concrete action at each timestep.
However, we found that this inadequately discovered new transitions, because it would often perform
useless action sequences (e.g., left, right, left, right). Instead, we use a simple method for πd to
commit to an exploration direction. At each timestep, the πd uniformly samples a concrete action
and a number between 1 and Trepeat, and repeats the action the sampled number of times.

3.2 CHOOSING AN EXPLORATION GOAL

Exploration goals. The manager selects an exploration goal from the set of all candidate explo-
ration goals, consisting of exploration candidates for the transition discovery and candidate transi-
tions for the worker to learn. The exploration candidates are just the abstract states in the known
set with n(s) < Ntransition. The candidate transitions are the transitions discovered by the man-
ager. In addition, the worker imposes a heuristic on its transition learning process in order to pre-
serve the Markov property of the abstract MDP (Section 4), which sometimes makes it impossi-
ble for the worker to learn a transition. To avoid getting stuck, as candidates for the worker, the
manager also considers “long-distance” transitions: (s, s′) pairs for which the manager did not
directly transition from s to s′, but indirectly did so through a sequence of intermediate states
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Algorithm 2 LEARNWORKER(s, s′, x0)

Input: a transition (s, s′) to learn, called at concrete state x0 with φ(x0) = s
1: Set worker horizon H = d(s, s′)×Hworker
2: Choose a0 ∼ πw(x0, (s, s

′)) = πI(s,s′)(x0, s
′)

3: for t = 1 to H do
4: Observe xt
5: Compute worker intrinsic reward rt = R(s,s′)(xt|s′)
6: Update worker on (xt−1, at−1, rt, xt)
7: Choose at ∼ πw(xt, (s, s

′)) = πI(s,s′)(xt, s
′)

8: Compute success = 1[r1 + · · ·+ rH ≥ Rmin]
9: Update transition model P (s, s′)← success rate of past Ntransition attempts

10: if P (s, s′) ≥ 1− δ then
11: Freeze worker’s skill πI(s,s′)

(s0 = s, s1, · · · , sT = s′). Letting d(s, s′) be the length of the shortest such path, the manager
considers all pairs (s, s′) for which d(s, s′) ≤ dmax.

Priority scores of the exploration goals. The manager must choose exploration goals in some
order. Our theoretical results (Section 5) hold for any priority function that eventually chooses
all exploration goals. In our implementation, the manager prioritizes the easiest exploration goals
(enabling the fastest growth of the action set), and the most useful goals (goal that either lead to
more reward or enable the worker to learn new transitions).

Concretely, the manager heuristically computes the easiness of a learning transition (s, s′) as
e(s, s′) = λ1nsucc(s, s

′) − nfail(s, s′) − d(s, s′)2, where nsucc is the number of times the worker
has successfully traversed (s, s′) and nfail is the number of times the worker has failed in travers-
ing (s, s′). Intuitively, both 1) succeeding more and failing less and 2) shorter transitions, re-
quiring fewer timesteps indicate easier to learn transitions. Similarly, for an abstract state s,
the manager computes the easiness of discovering new neighboring transitions as e(s) = −n(s)
since abstract states that have been explored less are more likely to have undiscovered transi-
tions. The manager heuristically computes the usefulness of a learning a transition (s, s′) as
u(s, s′) = λ2Inew + R(s0, s), where Inew is an indicator that is 1 if there is an outgoing tran-
sition (s′, s′′) and no current candidate transitions end in s′′. R(s0, s) is the reward achieved by
navigating from the initial abstract state s0 to s. If Inew is 1, then learning (s, s′) opens new candi-
date transitions for the worker to learn, indicating that learning (s, s′) is useful. For an abstract state
s, the manager computes the usefulness just as u(s) = λ3 +R(s0, s). The λ3 constant accounts for
how much more or less useful discovering new transitions is compared to learning new transitions.

To prioritize exploration goals, the manager uniformly switches between two priority functions.
The first priority function simply equals the easiness plus usefulness: e+ u, and the second priority
function is the same, but without the reward term in u, to avoid falling into a local reward maximum.

4 LEARNING THE WORKER POLICY

The worker forms the action set of the abstract MDP by learning many subtasks of the form: navigate
from abstract state s to s′. It does this while maintaining the three properties: 1) the worker reliably
(with high probability) traverses (s, s′) for each action go(s, s′) in the abstract MDP; 2) the action
set grows monotonically, so learning new transitions never causes the worker’s old transitions to
become unreliable; and 3) the worker learns transitions in a way that preserves the Markov property.

While it is possible to learn a single policy for all transition subtasks, it is tricky to satisfy 2), since
learning new transitions can have deleterious effects on previously learned transitions. Instead, the
worker maintains an inventory of skills (Section A.3), where each transition is learned by a single
skill, sharing the same skill amongst many transitions when possible. The worker uses these skills to
form the action set of the abstract MDP following Algorithm 2: When the manager calls the worker
on a transition (s, s′), the worker selects the appropriate skill from the skill inventory and begins an
episode of the subtask of traversing s to s′ (Section 4.2). During the skill episode, the skill receives
intrinsic rewards, and is declared to have successfully completed the subtask if it meets the worker’s
holding heuristic, which heuristically maintains 3) by ensuring the worker can always control the
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abstract state. If at the end of the skill episode, the success rate of the worker traversing (s, s′)
exceeds the reliability threshold 1− δ, the action go(s, s′) is added to the abstract MDP.

4.1 SKILL REPOSITORY

The worker’s skill inventory I indexes skills so that the skill at index I(s, s′) reliably traverses tran-
sition (s, s′). Each skill is a goal-conditioned subpolicy πI(s,s′)(a|x, s′), which produces concrete
actions a conditioned on the current concrete state x and the goal abstract state s′. When the worker
traverses a transition (s, s′), it calls on the corresponding skill until the transition is traversed: i.e.,
πw(a|x, (s, s′)) = πI(s,s′)(a|x, s′).

When learning a new transition (s, s′), the worker first tries to reuse its already learned skills from
the skill inventory. For each skill πi in the skill inventory, it measures the success rate of πi on the
new transition (s, s′) over Ntransition attempts. If the success rate exceeds the reliability threshold
1 − δ for any skill πi, it updates the skill repository to reuse the skill: I(s, s′) ← πi. Otherwise, if
no already learned skill can reliably traverse the new transition, the worker creates a new skill and
trains it to navigate the transition by optimizing intrinsic rewards during skill episodes (Section 4.2).

4.2 WORKER SUBTASK

Given a transition (s, s′), the worker’s subtask is to navigate from abstract state s to abstract state s′.
Each episode of this subtask consists of d(s, s′)×Hworker timesteps (longer transitions need more
timesteps to traverse), where the reward at each timestep is R(s,s′)(xt) = 1 if the skill has success-
fully reached the end of the transition (φ(xt) = s′) and 0 otherwise. These episodes additionally
terminate if the main episode terminates or if the manager receives negative environment reward.

When solving these subtasks to construct the action set of the abstract MDP, the worker must be
careful not to violate the Markov property. In particular, the concrete state may contain some history-
dependent information lost due to the state abstraction function. For example, consider the task of
jumping over a dangerous hole, consisting of three abstract states: s1 (the cliff before the hole), s2

(the air above the hole), and s3 (the solid ground on the other side of the hole). The worker might
incorrectly assume that it can reliably traverse from s1 to s2 by simply walking off the cliff. But
adding this as a reliable transition to the abstract MDP causes a problem: there is now no way to
successfully traverse from s2 to s3 due to missing history-dependent information in the abstract state
(i.e., the way the worker navigated s1 to s2), violating the Markov property.

On navigating a transition (s, s′), the worker avoids this problem by navigating to s′ and then check-
ing for history-dependent consequences with the holding heuristic. The worker assumes that if its
navigation of (s, s′) changed unobserved parts of the state, then those changes would eventually
cause the abstract state to change (e.g., in the example, the worker would eventually hit the bottom
and die). Consequently, if the worker can stay in s′ for many timesteps, then it did not significantly
unobserved parts of the state. This corresponds to only declaring the episode as a success if the
worker accumulates at least Rhold reward (equivalent to being in s′ for Rhold timesteps).

Any RL algorithm can be used to represent and train the skills to perform this subtask. We choose
to represent each skill as a Dueling DDQN (van Hasselt et al., 2016; Wang et al., 2016). For faster
training, the skills use self-imitation (Oh et al., 2018) to more quickly learn from previous successful
episodes, and count-based exploration similar to (Bellemare et al., 2016) to more quickly initially
discover skill reward. Since the skill inventory can contain many skills, we save parameters by oc-
casionally using pixel-blind skills. Appendix A.3 fully describes our skill training and architecture.

5 FORMAL ANALYSIS

We are interested in the sample complexity (Kakade et al., 2003), the number of samples required
to learn a policy that achieves reward close to the optimal policy, with high probability. Standard
results in the tabular setting (e.g., MBIE-EB (Strehl & Littman, 2008)) guarantee learning a near-
optimal policy, but require a number of timesteps polynomial in the size of the state space, which
is effectively vacuous in the deep RL setting, where state spaces can be exponentially large (e.g.,
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> 10100 states). In contrast, our approach is able to use time and space polynomial in the size of the
abstract state space, which is exponentially smaller, by operating on the abstract MDP.

Formally, assuming that our neural network policy class is rich enough to represent all necessary
skills, with high probability, our approach can learn a near-optimal policy on a subclass of MDPs in
time and space polynomial in the size of the abstract MDP (details in Appendix C). The key intuition
is that instead of learning a single task where the time horizon is the length of the game, our approach
learns many subtasks where the time horizon is the number of steps required to navigate from one
abstract state to another. This is critical, as many deep RL algorithms (e.g. ε-greedy) require a
number of samples exponential in the time horizon to solve a task.

6 EXPERIMENTS

Following (Aytar et al., 2018), we empirically evaluate our approach on three of the most challenging
games from the ALE (Bellemare et al., 2013): MONTEZUMA’S REVENGE, PITFALL!, and PRIVATE
EYE. We do not evaluate on simpler games (e.g., Breakout), because they are already solved by
prior state-of-the-art methods (Hessel et al., 2017) and do not require sophisticated exploration.
We use the standard ALE setup (Appendix A) and end the episode when the agent loses a life.
We report rewards from periodic evaluations every 4000 episodes, where the manager plans for
optimal reward in the currently constructed abstract MDP. We average our approach over 4 seeds
and report 1 standard deviation error bars in the training curves. Our experiments use the same
set of hyperparameters (Appendix A.1) across all three games, where the hyperparameters were
exclusively and minimally tuned on MONTEZUMA’S REVENGE.

In all three games, the state abstraction function uses the RAM state, available through the ALE
simulator, to extract the bucketed location of the agent and the agent’s current inventory. Roughly,
this distinguishes states where the agent is in different locations or has picked up different items,
but doesn’t distinguish states where other details differ (e.g. monster positions or obstacle config-
urations). Notably, the abstract state function does not specify what each part of the abstract state
means, and the agent does not know the entire abstract state space beforehand. We describe the
exact abstract states in Appendix A.2.

6.1 MAIN RESULTS

Among the many deep RL approaches, in each game, we compare with the prior non-demonstration
state-of-the-art approach, which use prior knowledge comparable to our RAM information:

• In MONTEZUMA’S REVENGE, we compare with SmartHash (Tang et al., 2017), a count-
based exploration approach which estimates state visit counts with a hash-based density
model and provides intrinsic reward to revisit states with low visit counts. Like our ap-
proach, SmartHash also uses RAM state information. It hashes each state to a hand-selected
subset of the RAM state and maintains visit counts on the hashes.2

• In PITFALL!, we compare with SOORL (Keramati et al., 2018), a planning approach which
requires prior knowledge to extract the objects on the screen. SOORL is the only prior non-
demonstration approach to achieve positive reward in PITFALL!, but requires extensive
engineering (much stronger than RAM state info) to identify and extract all objects. Once
SOORL has access to the objects, it learns in very few frames since data from similar objects
can be pooled in learning. Consequently, in our training curves, we report its final average
performance over 100 runs, as well as its final best performance over 100 runs,

• In PRIVATE EYE, we compare with another count-based exploration method, DQN-
PixelCNN (Ostrovski et al., 2017), which uses a pixel-based density model to estimate state
visitation counts. We compare with the results reported in Ostrovski et al. (2017). DQN-
PixelCNN uses less prior knowledge than our approach, but we compare with it because it
achieves the previous non-demonstration state-of-the-art results.

• In all three games, we compare with AbstractStateHash, which performs count-based ex-
ploration identical to SmartHash, but uses the same RAM information as our approach.

2The results from SmartHash and AbstractStateHash are obtained by running code generously provided by
the original authors (Tang et al., 2017).
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Figure 2: Comparison of our approach with the prior non-demonstration state-of-the-art approaches
in MONTEZUMA’S REVENGE, PITFALL!, and PRIVATE EYE. Our approach achieves more than
double the reward of prior state-of-the-art approaches in all three.

Task Ours (Best Seed) Ours (Worst Seed) Prior SOTA (Best Seed)
MONTEZUMA’S REVENGE 12500 10500 6600 (SmartHash)

PITFALL! 15000 6000 4000 (SOORL)
PRIVATE EYE 40100 36200 39000 (DQN-PixelCNN)

Table 1: Comparison between our worst performing seed with the best performing seed of the
prior-state-of-the-art. Our worst performing seed outperforms the prior best on MONTEZUMA’S
REVENGE and PITFALL! and performs comparably to the prior best on PRIVATE EYE. Our best
performing seed achieves new peak rewards.

Figure 2 shows the main results. AbstractStateHash matches the prior state-of-the-art on MON-
TEZUMA’S REVENGE, but performs relatively poorly on PRIVATE EYE and PITFALL!. This sug-
gests both that prior state-of-the-art methods do not effectively leverage the state abstraction func-
tion, and that the state abstraction function does not trivialize the learning problem.

In MONTEZUMA’S REVENGE, after 2B training frames, our approach achieves a final average re-
ward of 11020, more than doubling the average reward of SmartHash: 5001. Our approach achieves
higher average reward than SmartHash at every point along the training curves and continues to
learn even late into training, while SmartHash plateaus (Appendix B.3 presents more results on the
ability of our approach to continue to learn without plateauing).

Our approach is the first non-demonstration approach to achieve superhuman performance on PIT-
FALL!, achieving a final average reward of 9959.6 after 2B frames of training, compared to average
human performance: 6464 (Pohlen et al., 2018). In addition, our approach achieves more than dou-
ble the reward of SOORL, which achieves a maximum reward of 4000 over 100 seeds and a mean
reward of 80.52, and even significantly outperforms Ape-X DQfD (Pohlen et al., 2018), which uses
high-scoring expert demonstrations during training to achieve a final mean reward of 3997.5.

In PRIVATE EYE, our approach achieves a mean reward of 35636.1, more than double the reward of
DQN-PixelCNN, which achieves 15806.5. Our approach performs even better, approaching human
performance, if we change a single hyperparameter (Appendix B.4).

Stability. Recent work (Henderson et al., 2017) has drawn attention to the instability of deep RL
results. To highlight the stability of our results, we compare our worst performing seed against the
prior state-of-the-art’s best performing seed in Table 1. Even our worst seed outperforms the mean
performance of the prior state-of-the-art approaches. In addition, our worst seed is competitive
with the highest previously reported rewards in each of the games, significantly outperforming the
previous high in MONTEZUMA’S REVENGE and PITFALL!, and narrowly performing worse than
the previous high in PRIVATE EYE. Even in PRIVATE EYE, while DQN-PixelCNN achieves 39000
reward on its best single episode across all seeds, none of its seed consistently achieves more than
15806.5 reward over many episodes. In contrast, our worst seed consistently obtains 36200 reward.
Furthermore, our best seeds achieve new peak performances in each of the games.

8



Under review as a conference paper at ICLR 2019

0 20 40 60 80 100 120 140
Training Frames (Millions)

10000

0

10000

20000

30000

40000

50000

R
e
w

a
rd

Private Eye
Ours (deterministic)
Ours (stochastic)
DQN-PixelCNN

Figure 3: Our method continues to out-
perform the prior state-of-the-art on the
stochastic version of PRIVATE EYE.
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Figure 4: Our method outperforms the
prior state-of-the-art on a wide range
of granularities of the state abstraction
function.

6.2 GENERALIZATION TO NEW TASKS

By using the abstract MDP, our approach can quickly generalize to new tasks in the same environ-
ment that were not seen during training. It does this by revisiting the transitions in the abstract MDP
to update the rewards model with the newly observed reward. We study the ability of our approach
to do this. After our approach completes training on the original reward function on MONTEZUMA’S
REVENGE, we evaluate its performance on three new reward functions, allowing our approach to
interact with the environment for an additional 1M frames to observe each new reward function. We
compare with SmartHash, trained from scratch directly on the new reward functions for 1B frames.
Even when evaluated on an unseen reward function, our approach achieves about 3x as much reward
as SmartHash, which is directly trained on the new reward function. This suggests that our approach
can generalize to new tasks with the same dynamics. We describe the details in Appendix B.2.

6.3 ROBUSTNESS TO STOCHASTICITY

We additionally evaluate the performance of our approach on the recommended (Machado et al.,
2017) form of ALE stochasticity (sticky actions 25% of the time) on PRIVATE EYE (selected because
it requires the fewest frames for training). Figure 3 compares the performance of our method on the
stochastic version of PRIVATE EYE with the performance of our method on the deterministic version
of PRIVATE EYE. Performance degrades slightly on the stochastic version, because the worker’s
skills become harder to learn. However, both versions outperform the prior state-of-the-art DQN-
PixelCNN, and the worker is able to successfully abstract away stochasticity from the manager in
the stochastic version of the game so that the abstract MDP remains near-deterministic.

6.4 VARYING THE GRANULARITY OF THE ABSTRACT STATE

To see how easy it is to create a high-performing state abstraction function on new tasks, we study
the robustness of our approach to state abstraction functions of varying degrees of coarseness on
PRIVATE EYE. Our state abstraction function buckets the agent’s (x, y) coordinates. We vary the
coarseness of the abstraction function by varying the bucketing size: increasing the bucketing size
results in fewer, coarser abstract states.

We report results in Figure 4 on five different bucket sizes obtained by scaling the original bucket
size by 1

2 ,
2
3 , 1,

3
2 , and 2. To adjust for the updated bucket sizes, we also scale the worker’s skill

episode horizon Hworker by the same value. Our method outperforms the prior state-of-the-art
approach DQN-PixelCNN across the entire range of bucket sizes, suggesting that our approach does
not require a highly tuned state abstraction function.

7 RELATED WORK

Exploration in tabular settings is well-understood via optimism in the face of uncertainty (OFU)
(Brafman & Tennenholtz, 2002; Strehl et al., 2009) and posterior sampling (Osband et al., 2013;
Osband & Roy, 2016). OFU methods (Brafman & Tennenholtz, 2002; Strehl & Littman, 2005;
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Jaksch et al., 2010) achieve provably near-optimal policies in polynomial time by providing re-
ward bonuses for exploring regions of uncertainty. Nevertheless, despite recent stronger optimality
bounds (Azar et al., 2017; Dann et al., 2017), these methods do not scale to the deep RL setting,
where the state space is prohibitively large. Bellemare et al. (2016); Tang et al. (2017); Ostrovski
et al. (2017) similarly apply optimism reward bonuses in the case of high-dimensional state spaces,
empirically improving exploration. However, these methods no longer guarantee optimality, and can
suffer from insufficient exploration because they reactively seek infrequently visited states, whereas
our manager proactively seeks new abstract states.

While model-based RL succeeds in the tabular setting (Strehl et al., 2009) and in tasks with relatively
small (e.g., < 100 dimensions) state spaces (Nagabandi et al., 2018), it has little success on tasks
with exponentially large state spaces (e.g., pixel inputs). Prior work (Oh et al., 2015) that learns
models in these large state spaces suffers from compounding errors (Talvitie, 2014), where long-
term predictions become extremely inaccurate. To make matters worse, while prior model-based
works (Weber et al., 2017; Ha & Schmidhuber, 2018) succeed on relatively dense reward tasks,
model-based planning methods (e.g., value iteration) can be computationally intractable in long-
horizon, sparse-reward tasks, even when a perfect model is known. To circumvent these problems,
our work learns an abstract MDP consisting of an exponentially smaller abstract state space and
learned skills. Oh et al. (2017) similarly learns a model over abstract states and skills, but uses
manually engineered skills, whereas ours are learned.

Our work relates to prior work on hierarchical reinforcement learning (HRL), which also operates
on abstract states (Dietterich, 2000; Li et al., 2006) with learned skills or subgoals (Schmidhuber,
1993; Singh et al., 1995; Vezhnevets et al., 2017; Bacon et al., 2017). However, a key difference is
that our work constructs the abstract MDP, enabling us to perform targeted exploration via planning
and rely on the Markov property to avoid exponentially large state histories. In contrast, the abstract
states and skills in these other works do not meet such useful structural properties, and consequently
can be difficult to learn with. Roderick et al. (2017) similarly constructs an abstract MDP like ours.
However, due to critical design decisions, our approach outperforms theirs by nearly an order of
magnitude. Whereas our approach monotonically grows the known set by saving worker parameters
as transitions become reliable, Roderick et al. (2017) uses the same worker parameters to simulta-
neously learn many transitions. This causes catastrophic forgetting, as training on a new transition
causes the worker to fail a previously learned transition, and prevents growth of the abstract MDP.

Only imitation learning methods (Aytar et al., 2018; Hester et al., 2018; Pohlen et al., 2018) outper-
form our method on the ALE’s hardest exploration games. However, using demonstrations sidesteps
the exploration problem our approach seeks to solve because following demonstrations leads to high
reward.

8 DISCUSSION

This work presents a framework for tackling long-horizon, sparse-reward, high-dimensional tasks
by using abstraction to decrease the dimensionality of the state space and to address compounding
model errors. Empirically, this framework performs well in hard exploration tasks, and theoretically
guarantees near-optimality. However, this work has limitations as well. First, our approach relies
on some prior knowledge in the state abstraction function, although we compare against state-of-
the-art methods using a similar amount of prior knowledge in our experiments. This information is
readily available in the ALE, which exposes the RAM, and in many robotics tasks, which expose
the underlying state (e.g., joint angles and object positions). Still, future work could attempt to au-
tomatically learn the state abstraction or extract the abstraction directly from the visible pixels. One
potential method might be to start with a coarse represention, and iteratively refine the representa-
tion by splitting abstract states whenever reward is discovered. Another limitation of our work is
that our simple theoretical guarantees require relatively strong assumptions. Fortunately, even when
these assumptions are not satisfied, our approach can still perform well, as in our experiments.

Reproducibility Our code is available at https://github.com/anonymous
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Hyperparameter Value
Success weight λ1 (1 (stochastic), 10, 100 (deterministic))

New transition exploration goal weight λ2 5000
Abstract state exploration goal weight λ3 -2000

Discovery exploration horizon Td 50
Discovery visit threshold Nvisit 500
Discovery repeat action range 1 to 10, 1 to 20, 1 to 30

Worker horizon Hworker (10, 15, 20, 30, 45)
Skill failure tolerance δ (0.05, 0.1)

Skill holding heuristic Rhold 4
Maximum transition distance dmax 15

Dynamics sliding window size Ntransition 100
Adam learning rate 0.001

Max buffer size of each skill 5000
Skill DQN target sync frequency 75

Skill batch size 32
Skill minimum buffer size 50

Gradient norm clipping 3.0
Count-based weight β 0.63

Margin weight λ 0.5

Table 2: Table of all hyperparameters and the values used in the experiments.

A EXPERIMENT DETAILS

Following Mnih et al. (2015), the pixel concrete states are downsampled and cropped to 84 by 84
and then are converted to grayscale. To capture velocity information, the worker receives as input
the past four frames stacked together. Every action is repeated 4 times.

In addition, MONTEZUMA’S REVENGE and PITFALL! are deterministic by default. As a result,
the manager deterministically navigates to the fringes of the known set by calling on the worker’s
deterministic, saved skills. To minimize wallclock training time, we save the states at the fringes of
the known set and enable the worker to teleport to those states, instead of repeatedly re-simulating
the entire trajectory. When the worker teleports, we count all the frames it would have had to
simulate as part of the training frames. Importantly, this only affects wallclock time, and does not
benefit or change the agent in any way. Notably, this does not apply to PRIVATE EYE, where the
initial state is stochastically chosen from two similar possible states.

A.1 HYPERPARAMETERS

All of our hyperparameters are only tuned on MONTEZUMA’S REVENGE. Our skills are trained
with the Adam optimizer (Kingma & Ba, 2014) with the default hyperparameters. Table 2 describes
all hyperparameters and the values used during experiments (bolded), as well as other values that
we tuned over (non-bolded). Most of our hyperparameters were selected once and never tuned.

A.2 STATE ABSTRACTION FUNCTION

In MONTEZUMA’S REVENGE, each abstract state is a (bucketed agent x-coordinate, bucketed agent
y-coordinate, agent room number, agent inventory, current room objects, agent inventory history)
tuple. These are given by the RAM state at indices 42 (bucketed by 20), 43 (bucketed by 20), 3,
65, and 66 respectively. The agent inventory history is a counter of the number of times the current
room objects change (the room objects change when the agent picks up an object).

In PITFALL!, each abstract state is a (bucketed agent x-coordinate, bucketed agent y-coordinate,
agent room number, items that the agent has picked up) tuple. These are given by the RAM state at
indices 97 (bucketed by 20), 105 (bucketed by 20), 1, and 113 respectively.
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In PRIVATE EYE, each abstract state is a (bucketed agent x-coordinate, bucketed agent y-coordinate,
agent room number, agent inventory, agent inventory history, tasks completed by the agent) tuple.
These are given by the RAM state at indices 63 (bucketed by 40), 86 (bucketed by 20), 92, 60, 72,
and 93 respectively.

A.3 SKILL TRAINING AND ARCHITECTURE

Architecture. Our skills are represented as Dueling DDQNs (van Hasselt et al., 2016; Wang
et al., 2016), which produce the state-action value Q(s,s′)(x, a) = A(s,s′)(x, a) + V(s,s′)(x), where
A(s,s′)(x, a) is the advantage and V(s,s′)(x) is the state-value function. The skills recover a policy
πK(s,s′)(a|x, (s, s′)) by greedily selecting the action with the highest Q-value at each concrete state
x.

The skill uses the standard architecture (Mnih et al., 2015) to represent A(s,s′)(x, a) and V(s,s′)(x)
with a small modification to also condition on the transition (s, s′). First, after applying the standard
ALE pre-processing, the skill computes the pixel embedding ex of the pixel state x by applying three
square convolutional layers with (filters, size, stride) equal to (32, 8, 4), (64, 4, 2), and (64, 4, 2) re-
spectively with rectifier non-linearities (Nair & Hinton, 2010), and applying a final rectified linear
layer with output size 512. Next, the skill computes the transition embedding e(s,s′) by concatenat-
ing [er; ediff ] and applying a final rectified linear layer with output size 64, where:

• er is computed as the cumulative reward received by the skill during the skill episode,
represented as one-hot, and passed through a single rectified linear layer of output size 32.

• ediff is computed as s′ − s passed through a single rectified linear layer of output size 96.

Finally, ex and e(s,s′) are concatenated and passed through a final linear layer to obtain A(s,s′)(x, a)
and V(s,s′)(x).

To prevent the skill from changing rapidly as it begins to converge on the optimal policy, we keep a
sliding window estimate of its success rate psuccess. At each timestep, with probability 1−psuccess,
we sample a batch of (x, a, r, x′) tuples for transition (s, s′) from the replay buffer and update
the policy according the DDQN loss function: L = ||Q(s,s′)(x, a) − target||22, where target =
(r+Qtarget(x′, arg maxa′∈AQ(s,s′)(x

′, a′))). Additionally, since the rewards are intrinsically given,
the optimal Q-value is known to be between 0 and Rhold. We increase stability by clipping target
between these values.

Pixel blindness. In addition, some skills are easy to learn (e.g. move a few steps to the left) and
don’t require pixel inputs to learn at all. To prevent the skills from unnecessarily using millions
of parameters for these easy skills, the worker first attempts to learn pixel-blind skills for simple
transitions (s, s′) with d(s, s′) = 1 (i.e. (s, s′) was directly observed by the manager). The pixel-
blind skills only compute e(s,s′) and pass this through a final layer to compute the advantage and
value functions (they do not compute or concatenate with ex). If the worker fails to learn a pixel-
blind skill, (e.g. if the skill actually requires pixel inputs, such as jumping over a monster) it will
later try to learn a pixel-aware skill instead.

Epsilon schedule. The skills use epsilon-greedy exploration, where at each timestep, with proba-
bility ε, a random action is selected instead of the one produced by the skill’s policy (Watkins, 1989).
Once a skill becomes frozen, ε is permanently set to 0.

The number of episodes required to learn each skill is not known in advance, since some skills
require many episodes to learn (e.g. traversing a difficult obstacle), while other skills learn in few
episodes (e.g. moving a little to the left). Because of this, using an epsilon schedule that decays over
a fixed number of episodes, which is typical for many RL algorithms, is insufficient. If epsilon is
decayed over too many episodes, the simple skills waste valuable training time making exploratory
actions, even though they’ve already learned near-optimal behavior. In contrast, if epsilon is decayed
over too few episodes, the most difficult skills may never observe reward, and may consequently fail
to learn. To address this, we draw motivation from the doubling trick in online learning Auer et al.
(1995) to create an epsilon schedule, which accomodates skills requiring varying number of episodes
to learn. Instead of choosing a fixed horizon, we decay epsilon over horizons of exponentially
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Figure 5: The saw-tooth epsilon schedule used by our skills

increasing length, summarized in Figure 5. This enables skills that learn quickly to achieve low
values of epsilon early on in training, while skills that learn slowly will later explore with high
values of epsilon over many episodes.

Count-based exploration. Our skill additionally use count-based exploration similar to Tang et al.
(2017); Bellemare et al. (2016) to learn more quickly. Each skill maintains a count of the number
of times visit(s) it has visited each abstract state s. Then, the skill provides itself with additional
intrinsic reward to motivate itself to visit novel states, equal to β√

visit(s)
each time it visits abstract

state s. We choose β = 0.63, an intrinsic reward of approximately 2√
10×visit(s)

.

Self-imitation. When learning to traverse difficult obstacles (e.g. jumping over a disappearing
floor), the skill may observe a few successes long before successfully learning a policy to reliably
traverse the difficult obstacle. We use a variant of the self-imitation described in (Oh et al., 2018) to
decrease this time. Whenever a skill successfully traverses a transition, it adds the entire successful
trajectory to a separate replay buffer and performs imitation learning on the successful trajectories.
These successful trajectories are actually optimal skill trajectories because the skill episode uses
undiscounted reward, so all successful trajectories are equally optimal. To update on these skills,
the skill periodically samples from this replay buffer and updates on an imitation loss function
Limitation(θ) = L1(θ) + L2(θ), where θ is the skill’s parameters, and L1 and L2 are defined as
below:

• Let Gt =
∑T
i=t rt be the reward to-go for a successful trajectory

(x0, a0, r0), · · · , (xT , aT , rT ). L1 directly regresses Q(s,s′)(x, a) on the reward to-go of
the successful trajectory, because Gt is actually the optimal Q-value on successful trajec-
tories (all successful trajectories are equally optimal): i.e., L1 = ||Gt −Q(s,s′)(xt, at)||2.

• We use the margin-loss from Hester et al. (2018) for L2. When sampling a transition
(x, aE , r, x

′), L2 = maxa∈A[Q(s,s′)(x, a) + λ1[a = aE ]] − Q(s,s′)(s, aE). Intuitively,
L2 encourages the skill to replay the actions that led to successful trajectories over other
actions. We use λ = 0.5, which was chosen with no hyperparameter tuning.

B ADDITIONAL RESULTS

B.1 SKILL SHARING

The worker learns skills that successfully apply in to many similar transitions. Figure 6 depicts the
number of different transitions each skill is used on in MONTEZUMA’S REVENGE, PITFALL!, and
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Figure 6: The number of different transitions each skill can traverse. Skills are sorted by decreasing
usage.

(a) (b)

Figure 7: Skill reuse in MONTEZUMA’S REVENGE. The same skill is useful in multiple rooms and
can both climb up ladders and jump over a monster.

PRIVATE EYE. The simplest skills (e.g. move to the left) enjoy the highest number of reuses, while
more esoteric skills (e.g. jump over a particular monster) are only useful in few scenarios.

Figure 7 provides an example of a skill in MONTEZUMA’S REVENGE with relatively high reuse.
The arrows denote the movement of the agent when it executes the skill. The same skill that jumps
over a monster in the first room (Figure 7(a)) can also climb up ladders. In Figure 7(b), the skill
appears to know how to climb up all parts of the ladder except for this middle. This occurs because
the spider occasionally blocks the middle of the ladder, and a different special skill must be used to
avoid the spider. However, the skill reuse is not perfect. For example, in Figure 7(a), the skill can
climb up the top half of ladders, but a separate skill climbs the bottom half of the ladders.

B.2 GENERALIZATION TO NEW TASKS

To evaluate the ability of our approach to generalize to new reward functions, we train our approach
on the basic MONTEZUMA’S REVENGE reward function and then test it on three challenging new
reward functions (illustrated in Figure 8), not seen during training:

• Get key: the agent receives 1000 reward for picking up the key in room 14 (6 rooms away
from the start). In addition, the agent receives -100 reward for picking up any other objects
or opening any other doors.
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Figure 8: Display of all the rooms of the MONTEZUMA’S REVENGE pyramid. The agent starts
in room 1 and must navigate through the pyramid, picking up objects and dodging monsters to
complete the new tasks. The end of each task is marked with a star. Example paths for each task are
marked with different colors. Multiple colors indicate sections of the paths that are shared across
multiple tasks. (Red: Get key, Yellow: Kill spider, Blue: Enter room 8).
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Figure 9: Training curves of SmarthHash on alternate tasks in MONTEZUMA’S REVENGE, com-
pared with the performance of our approach generalizing to the new task. Our approach only re-
ceives 1M frames with the new task.

• Kill spider: the agent receives 1000 reward for killing the spider in room 13 (5 rooms away
from the start). To kill the spider, the agent must first pick up the sword in room 6 (3 rooms
away from the start) and save the sword for the spider. The agent receives no other reward.

• Enter room 8: the agent receives 1000 reward for entering room 8 (6 rooms away from the
start). The agent receives no other reward.

In all three tasks, the episode ends when the agent completes its goal and receives positive reward.

Our approach trains on the basic MONTEZUMA’S REVENGE reward function for 2B frames, and then
is allowed to observe the new reward functions for only 1M frames. We compare with SmartHash,
which trains directly on the new reward functions for 1B frames. The results are summarized in
Figure 9. Even when evaluated on a reward function different from the reward function it was
trained on, our approach achieves about 3x as much reward as SmartHash, which is trained directly
on the new reward function. Averaged over all 3 tasks, our approach achieves an average reward
of 716.7 out of an optimal reward of 1000, whereas SmartHash only achieves an average reward of
220, even when trained directly on the new reward function. These experiments suggest that after
our approach is trained in an environment on one task, it can quickly and successfully adapt to new
tasks with little additional training.
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Figure 10: The number of transitions learned by the worker vs. number of training frames. The
worker continues to learn new transitions even late into training, showing almost no signs of slowing
down in MONTEZUMA’S REVENGE and PITFALL!.
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Figure 11: Performance of our approach on PRIVATE EYE, when decreasing the number of explo-
ration episodes (Nvisit). (a) When Nvisit is set to 10, our approach performs even better, achieving
near human-level rewards. (b) Decreasing Nvisit enables the worker to learn more transitions in
fewer frames.

B.3 NEAR-LINEAR TRAINING

Whereas many prior state-of-the-art approaches tend to plateau toward the end of training, our ap-
proach continues to make near-linear progress. Figure 10 graphs the number of transitions learned
by the worker against the number of frames in training. In MONTEZUMA’S REVENGE and PIT-
FALL! particularly, the rate the worker learns new transitions is nearly constant throughout training.
Because of this, when we continued to train a single seed on PITFALL!, by 5B frames, it achieved a
reward of 26000, and by 20B frames, it achieved a reward of 35000.

B.4 ADDITIONAL RESULTS ON PRIVATE EYE

By changing a single hyperparameter, our approach can perform even better on PRIVATE EYE,
exceeding human performance on 2 of 4 seeds. Since nearby abstract states are particularly easy
to discover in PRIVATE EYE, the manager needs not explore for new transitions as many times.
Consequently, if we decrease the number of times the manager explores around each abstract state
Nvisit from the 500 (used in the main experiments for all three games) to 10, performance improves.
Figure 11 compares the performance with the decreased value of Nvisit with the original value of
Nvisit reported in the main experiments. Decreasing Nvisit prevents the manager from wasting
frames with unnecessary exploration and consequently enables the worker to learn more transitions
in fewer total frames. With Nvisit set to 10, our approach achieves a final average performance
of 60247 after 200M frames of training. Additionally, the top 2 of our 4 seeds achieve rewards of
75600 and 75400, exceeding average human performance: 69571 (Pohlen et al., 2018).
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C GUARANTEES FOR NEAR OPTIMALITY

In general, a hierarchical policy over skills is not guaranteed to be near-optimal, because certain
optimal trajectories may be impossible to follow using the skills. Because of this, hierarchical
reinforcement learning literature typically focuses on hierarchical optimality (Dietterich, 2000) op-
timality given the abstractions. However, under the following assumptions, our approach provably
achieves a near-optimal policy on the original MDP in time polynomial in the size of the abstract
MDP, with high probability.

Notation. Recall that we are interested in finding a near-optimal policy on the concrete MDP, with
concrete states x ∈ X and concrete actions a ∈ A. We refer to the value function of the optimal
policy in the concrete MDP as V ∗(x).

From the concrete MDP approach constructs the abstract MDP, consisting of abstract states s in the
known set S, learned abstract actions o (e.g., go(s, s′)), transition dynamics P (s′|o, s), and rewards
R(s, s′). The abstract MDP changes over time. We refer to the known set at timestep t as St and to
the set of all abstract states as Φ = {φ(x) : x ∈ X}. We refer to the optimal value function on the
abstract MDP at timestep t as V ∗t (s).

Our approach maintains estimates of the rewards and transition dynamics of the abstract MDP. With
these estimates, at each timestep t, our approach computes πt, the policy that is optimal with respect
to these models (e.g., via value iteration). To simplify notation, we refer to the expected reward
achieved by πt on the abstract MDP at timestep t starting at abstract state s as V πtt (s). The policy
computed by our approach, πt also applies on the concrete MDP, because actions on the abstract
MDP are implemented as subpolicies on the concrete MDP. Consequently, we refer to the expected
reward achieved by πt on the concrete MDP starting at concrete state x as V πt(x).

Assumptions. Formally, we require the following assumptions:

1. The learned abstract MDP is deterministic.

2. The learned abstract MDP has rewards that are path independent: i.e., all trajectories to an
abstract state s achieve the same reward.

3. The diameter of each abstract state is at most Hworker, where we define the diameter of an
abstract state s to be the maximum number of steps required to navigate to an immediate
neighbor s′.

Assumption 1 intuitively says that the worker can successfully abstract away stochasticity from the
manager, which our experiments in Section 6.3 suggests is possible. Humans typically also make
this assumption when they plan. For example, when humans plan (e.g., to get to Paris), they expect
to deterministically hit subgoals (e.g., get to the airport, get on the plane, get to the hotel) even
though the world is actually non-deterministic (e.g., the taxi may be late.)

Assumption 2 tends to hold under many natural abstraction functions. For example, in the ALE
games we evaluate on, the state abstraction function captures the agent’s inventory and a history of
the agent’s inventory. Since all reward in these games is given when the agent picks up new items,
or uses an item in its inventory, the agent’s inventory and history encodes path independent reward.
This also holds for many robotic arm manipulation tasks. For example, in a block stacking task
with sparse rewards, a natural state abstraction might be the location of all the blocks. Then, the
reward of a trajectory is encoded by the last abstract state of the trajectory: all trajectories that lead
to a stacked configuration of blocks achieve the same reward for a success, while all non-stacking
trajectories achieve the same failure reward.

Assumption 3 ensures that the worker has enough timesteps to navigate to any immediate neighbors.
This is easily satisfied by setting Hworker conservatively.

Main results. While the above assumptions enable us to prove near-optimality, our method per-
forms well empirically even when these assumptions are violated. Given the above assumptions, our
main theoretical result holds:
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Proposition 1. Under the assumptions, for a given input η and ε, πt is at most ε suboptimal,

V πt(x0) ≥ V ∗(x0) − ε, on all but the first O
(
|Φ|3(|A| + logK|Φ|+log 1

η

log 1
p

) + dmax × Hworker

)
timesteps, where x0 is the starting concrete state and p and K are polynomial in |Φ| and |A|.

To prove Proposition 1, we require the following three lemmas:

Lemma 1. By setting Ntransition to be O( log 1−(1−η′)
1
|Φ|2 /2

2(ε/|Φ|HV ∗(x0))2 ), with probability 1 − η′, at each
timestep t, πt is near-optimal on the current abstract MDP: i.e., V πtt (s) ≥ V ∗t (s)−ε for all abstract
states s ∈ Φ.

Lemma 2. If the known set is equal to the set of all abstract states (S = Φ) at timestep T , then for
any policy π on the abstract MDP, π achieves the same expected reward on the abstract MDP as on
the concrete MDP: i.e., V πT (φ(x0)) = V π(x0), where x0 is the initial concrete state.

In addition, the expected return of the optimal policy on the abstract MDP is equal to the expected
return of the optimal policy on the concrete MDP: i.e., V ∗T (φ(x0)) = V ∗(x0) where x0 is the initial
state.

Lemma 3. With probability 1− η, the known set grows to cover all abstract states in O
(
|Φ|3(|A|+

logK|Φ|+log 1
η

log 1
p

) + dmax ×Hworker

)
time.

Given these lemmas, we are ready to prove Proposition 1:

Proof of Proposition 1. For simplicity, we ignore terms due to appropriately setting Ntransition and
1− η′ from Lemma 1, but these terms are all polynomial in the size of the abstract MDP.

By Lemma 3 the known set grows to cover all abstract states in T = O
(
|Φ|3(|A|+ logK|Φ|+log 1

η

log 1
p

)+

dmax×Hworker

)
timesteps. For all timesteps t ≥ T , by Lemma 1, πt is at most ε suboptimal on the

abstract MDP. On all those timesteps, the known set is equal to all abstract states, so by Lemma 2,
πt is at most ε suboptimal on the concrete MDP.

Proofs. Now, we prove Lemma 1, Lemma 2, and Lemma 3.

Proof of Lemma 1. Let P̂ (s′|o, s) denote the estimated transition dynamics3 and R̂(s, s′) denote the
estimated reward model in the abstract MDP.

For each reliable transition (s, s′) (action in the abstract MDP), the manager estimates P̂ (s′|o, s)
from Ntransition samples of the worker. We bound the error in the model |P̂ (s′|o, s) − P (s′|o, s)|
with high probability by Hoeffding’s inequality:

P (|P̂ (s′|o, s)− P (s′|o, s)| ≥ α) ≤ 2e−2Ntransitionα
2

(1)

By the Assumption 2, R̂(s, s′) = R(s, s′) because all trajectories leading to s achieve some reward
r and all trajectories leading to s′ achieve some reward r′, so a single estimate R(s, s′) = r′ − r is
sufficient to accurately determine R̂.

Because the model errors are bounded, and because the abstract MDP is Markov, we can apply the
simulation lemma (Kearns & Singh, 2002), which states that if |P̂ (s′|o, s) − P (s′|o, s)| ≤ α and
|R̂(s, s′)−R(s, s′)| ≤ α, then the policy π optimizing the MDP formed by P̂ and R̂ is at most ε sub-
optimal: i.e., at each timestep t, V πt (s) ≥ V ∗t (s)−ε for all s ∈ S, where α isO

(
(ε/|S|HV ∗(x0))2

)
,

and H is the horizon of the abstract MDP. Since the total number of transitions is bounded by |S|2,
substituting for Ntransition gives the desired result.

3In Section 2, we simplify notation to estimate the success rate instead of the full dynamics, but the manager
could have estimated the full dynamics as required here.
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Proof of Lemma 2. Assume that the known set is equal to the set of all abstract states at timestep T
and let π be a policy on the abstract MDP.

To prove the first part of Lemma 2, consider a trajectory s0, o0, r0, s1, o1, · · · , oT−1, rT−1, sT
rolled out by π on the abstract MDP. Each abstract action oi is implemented as a subpolicy in the
concrete MDP, so it expands to the trajectory solving the subtask of navigating from si to si+1:
x(i,0), a(i,0), r(i,0), x(i,1), · · · , o(i,Ti−1), r(i,Ti−1), x(i+1,0), where φ(x(i,0)) = si, φ(x(i+1,0)) =

si+1, and ri =
∑Ti−1
j=0 r(i,j), by definition of the abstract MDP rewards. Consequently, for each

trajectory, π achieves the same total reward in the concrete MDP as in the abstract MDP, implying
V πT (φ(x0)) = V π(x0).

To prove the second part of Lemma 2, it suffices to show that the optimal policy on the concrete MDP
achieves no more reward than V ∗T (φ(x0)), because the first part already shows that V ∗T (φ(x0)) ≤
V ∗(x0). Let π∗ be the optimal policy on the concrete MDP and let τ = x0, x1, · · · , xT be the
highest-reward trajectory generated π∗ achieving reward R. Because the known set contains all
abstract states, in particular, it contains φ(xT ). By Assumption 1, and because φ(xT ) is in the
known set, it is possible to deterministically navigate to φ(xT ). By Assumption 2, traversing to
φ(xT ) in the abstract MDP achieves reward R. Hence, V ∗T (φ(x0)) is at least R, proving the desired
result.

Proof of Lemma 3. For the known set to cover all abstract states, the manager must discover all
neighboring transitions for each abstract state and the worker must learn all the discovered transi-
tions. The number of samples to do this is equal to the sum of:

1. The number of samples used by the manager to discover all transitions.

2. The number of samples used by the worker to learn new transitions.

3. The number of samples used by the worker to navigate to the fringes of the known set, for
the worker to learn new transitions and for the manager to discover new transitions.

Samples used by the manager to discover transitions. At each abstract state, let p be the prob-
ability that the manager fails to discover a particular abstract state on a single discovery episode.
Let K be the maximum number of outgoing transitions from an abstract state (maximum degree).
Both p and K are polynomial in |Φ| and |A| because the diameter of each abstract state is bounded
by assumption. By setting the number of times the manager explores from each abstract state,

Nvisit =
logK|Φ|+log 1

η

log 1
p

, the manager finds all outgoing transitions of each abstract state with prob-

ability at least 1− η by the following elementary argument. There are at most K|Φ| total transitions
to discover, and the manager fails to discover each transition with probability pNvisit . By the union
bound, the probability the manager fails to discover at least one transition is at most K|Φ|pNvisit .
Consequently, the manager explores for O(

logK|Φ|+log 1
η

log 1
p

) timesteps.

Samples used by the worker to learn transitions. We assume that policy search with neural net-
work function approximators can learn each transition at least as quickly as brute-force search over
deterministic policies. By Assumption 3, the maximum number of timesteps required to traverse a
transition (s, s′) is d(s, s′) times the diameter Hworker, which is at most H = dmax × Hworker.
Consequently, we bound the time required to learn each transition by |A|H , the total number of
possible action trajectories for the worker.

Samples used to navigate to the fringes of the known set. The total number of samples used to
navigate to the fringes of the known set is given by:

O(
∑
s∈Φ

N(s)) (2)

where N(s) is the number of times the worker visits state s at the endpoint of a transition, counted
when all abstract states are in the known set.
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We now prove:

N(s) ≤ Nvisit + |E(Gs)|(|A|H +Nvisit), (3)

where E(Gs) is the set of transitions in the subgraph of the abstract MDP consisting of di-
rected transitions from s. This holds by strong induction on |E(Gs)|. In the base case, when
|E(Gs)| = 0, s is only visited Nvisit times for the manager to explore. In the inductive case, supp-
pose |E(Gs)| = c and that the inductive hypothesis holds for all values less than c. N(s) is at most
Nvisit +

∑
(s,s′)∈E(Gs)

N(s′). Since E(Gs) =
⋃

(s,s′)∈E(Gs)
E(Gs′) ∪ {(s, s′)}, the inductive

hypothesis holds for each N(s′).

We bound |E(Gs)| by the total number of transitions: |Φ|2. Substituting into (3) and (2), yields that

total time for the worker to traverse to the fringes of the known set is: O
(
|Φ|3(|A|+ logK|Φ|+log 1

η

log 1
p

)
)
.

Total samples. Adding all three terms together gives that with probability at least 1−η, the known

set covers all abstract states in O
(
|Φ|3(|A|+ logK|Φ|+log 1

η

log 1
p

) + dmax ×Hworker

)
samples.

D DISCOVERING NEW TRANSITIONS PSEUDOCODE

Algorithm 3 DISCOVERTRANSITIONS(x0)

Input: called at concrete state x0 to explore transitions near φ(x0)
1: Choose a0 ∼ πd(x0)
2: while n(φ(x0)) ≤ Nvisit do
3: for t = 1 to Td do
4: Observe xt, rt
5: if (φ(xt−1), φ(xt)) has never been observed before then
6: Update reward model R(φ(xt−1), φ(xt))← rt
7: Add transition to transitions model P (φ(xt−1), φ(xt))← 0.
8: Choose at ∼ πd(x1:t, a1:t−1)
9: Continue exploring: reset x0 ← xTd and choose a0 ∼ πd(x0)
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